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Abstract

Partial label learning deals with training examples
each associated with a set of candidate labels, a-
mong which only one label is valid. Previous stud-
ies typically assume that the candidate label sets are
provided for all training examples. In many real-
world applications such as video character clas-
sification, however, it is generally difficult to la-
bel a large number of instances and there exists
much data left to be unlabeled. We call this kind
of problem semi-supervised partial label learning.
In this paper, we propose the SSPL method to ad-
dress this problem. Specifically, an iterative label
propagation procedure between partial label exam-
ples and unlabeled instances is employed to disam-
biguate the candidate label sets of partial label ex-
amples as well as assign valid labels to unlabeled
instances. The importance of unlabeled instances
increases adaptively as the number of iteration in-
creases, since they carry richer labeling informa-
tion. Finally, unseen instances are classified based
on the minimum reconstruction error on both par-
tial labeled and unlabeled instances. Experiments
on real-world data sets clearly validate the effec-
tiveness of the proposed SSPL method.

1 Introduction

Conventional supervised learning often assumes that each
training instance is associated with a ground-truth label.
However, in many real-world applications, one can only get
access to a candidate label set associated with each training
instance among which only one label is valid. For exam-
ple, an episode of a video or TV serials may contain sever-
al characters and their faces may appear simultaneously in a
screenshot. We have scripts and dialogues or subtitles which
indicate that who is in the given screenshot. So that we can
ambiguously name a face appeared in a screenshot by a candi-
date label set which contains the names appeared in the script-
s and dialogues corresponding to it, but can not tell which
face is associated with which name. In order to deal with this
kind of training examples, partial label learning (PLL) has re-
cently been proposed [Cour et al., 2011; Chen et al., 2014;
Yu and Zhang, 2017] and attracted considerable attention,

which has consequently resulted in a large number of PLL
methods [Hiillermeier and Beringer, 2006; Nguyen and Caru-
ana, 2008; Liu and Dietterich, 2012; Zhang and Yu, 2015;
Tang and Zhang, 20171

In the previous studies on PLL, a basic assumption for
training data is that all the candidate label sets are provid-
ed. However, in many real-world applications, such assump-
tion is difficult to hold. Taking the above example again, al-
though we can ambiguously label a face by a candidate label
set which contains the names appeared in the scripts and di-
alogues, there still exist many screenshots that have no cor-
responding dialogues so that we have actually no label in-
formation for them. Similar situation occurs in many popular
real-world applications such as web mining [Jie and Orabona,
2010], multimedia contents analysis [Zeng et al., 2013], e-
coinformatics [Liu and Dietterich, 2012], etc.

It is evident that neither PLL nor semi-supervised learning
(SSL) can tackle the problem concerned in this paper. For ex-
ample, PLL ignores the use of large amount of unlabeled in-
stances that could be very useful; while SSL assumes that the
ground-truth single-label is accessible to each labeled train-
ing example, which is not the case in our situation. Note that
the data scenario studies in the paper are quite different from
previous work. We call this kind of problem semi-supervised
partial label learning.

In this paper, a novel algorithm named SSPL (Semi-
Supervised Partial Label Learning), is proposed. It is crucial
to disambiguate the candidate label sets of partial label ex-
amples at the same time as utilizing the data distribution in-
formation of unlabeled instances. In our method, an iterative
label propagation procedure between partial labeled and un-
labeled instances is employed to disambiguate the candidate
label sets of partial label instances as well as assign valid la-
bels to unlabeled instances. The label propagation procedure
contains four phases. 1. Label propagation from partial label
examples to unlabeled instances; 2. Label sets disambigua-
tion of partial label examples; 3. Label set disambiguation
of unlabeled instances; 4. Label propagation from unlabeled
instances to partial label examples. The importance of unla-
beled instances increases adaptively as the number of itera-
tion increases, since they carry richer labeling information.
Finally, unseen instances are classified based on the mini-
mum reconstruction error on both partial label and unlabeled
instances. Extensive experiments on real-world partial label
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data sets clearly show that SSPL achieves highly competitive
performance against state-of-the-art approaches.

The rest of this paper is organized as follows. Section 2
discusses existing works. Section 3 presents technical details
of the proposed SSPL approach. Section 4 reports compara-
tive experiments. Finally, Section 5 concludes.

2 Related Work

The problem focused in this paper, i.e. semi-supervised par-
tial label learning, is the intersection of PLL and SLL. Both
PLL and SSL can be regarded as weakly supervised frame-
works [Zhou, 2017] where label information conveyed by
training examples is implicit or partially inaccessible.

One kind of strategy attempts to fitting widely-used learn-
ing techniques to partial label examples. For maximum like-
lihood techniques, the likelihood function is defined as the
probability of observing each partial label training exam-
ple over its candidate label set [Liu and Dietterich, 2012].
For maximum margin techniques, the classification margin
over each partial label training example is defined by dis-
criminative modeling outputs from candidate labels and non-
candidate labels [Nguyen and Caruana, 2008; Yu and Zhang,
2017]. For instance-based techniques, the candidate label
sets of neighbouring instances are merged via weighted vot-
ing for making prediction [Hiillermeier and Beringer, 2006;
Zhang and Yu, 2015]. Another kind of strategy aims to fit par-
tial label examples to existing learning techniques. Following
this, partial label examples can be transformed into binary
examples via feature mapping [Chen er al., 2014], one-vs-
one decomposition [Wu and Zhang, 2018], or error-correcting
outputs coded [Zhang et al., 2017]. However, PLL methods
are not sufficient to learn from semi-supervised partial label
examples well, because they ignore the data distribution in-
formation lie in the large amount of unlabeled data which is
known to be very useful.

SLL [Zhu and Goldberg, 2009; Li and Liang, 2019]
aims to induce a classifier f : X +— ) from both la-
beled and unlabeled examples. There are four major cate-
gories of SLL approaches, i.e. generative methods [Miller
and Uyar, 1997], graph-based methods [Blum and Chawla,
2001], low-density separation methods [Joachims, 1999] and
disagreement-based methods [Zhou and Li, 2010]. Appar-
ently, although SSL had taken the unlabeled instances into
account, it still lacks of the ability of learning from partial
label examples associated with candidate label sets.

Semi-supervised partial label learning is also related to
other ‘mixed’ cases under weakly supervised learning frame-
works such as multi-instance multi-label learning [Zhou et
al., 20121, multi-instance active learning [Settles et al.,
20081, semi-supervised multi-label learning [Kong et al.,
20131, learning from incomplete and inaccurate supervision
[Zhang et al., 2019] and semi-supervised weak-label learning
[Dong e al., 2018]. It is worth noting that the data scenari-
o studied in this paper looks similar to the semi-supervised
multi-label learning. However, multi-label learning focuses
on exploiting the label relationship among providing labels
while PLL aims to disambiguate them.
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Algorithm 1 A simple solution

Inputs:

D,: the partial label training set {(x;,S;) | 1 < i < p}
D,: the unlabeled training set {x; | p+1 <i < p+ u}
P:  PLL algorithm

S: SSL learning algorithm

x*: the unseen instance

Outputs:

y*: the predicted class label for «*

Process:

1: Disambiguate the partial label training examples (x;, S;)
in D, into single-label example (x;, 7;) with PLL algo-
rithm § < P(D,) ;

2: Train a multi-class classifier with labeled and unlabeled
examples by SSL algorithm C + S(D;,D,,), here D,
denotes {(x;,9;) | 1 <i <p};

3: Predict the unseen instance with C.

3 The Proposed Method

3.1 Problem Statement and Notation

In the original PLL, let ¥ = R? be the d-dimensional in-
stance space and Y = {y1, ya, . .., yq } be the label space with
q class labels. Formally, the partial label training set can be
written as D = {(z;,5;)|]1 <i < m}, where z;, € X isad-
dimensional feature vector (z;1, T2, . . ., ¥;q) " and S; C Vs
the associated candidate label set. Following the key assump-
tion of PLL, the ground-truth label y; for x; is concealed in
its candidate label set (i.e. y; € 5;) and therefore cannot be
accessed by the learning algorithm.

In the semi-supervised partial label learning, the train-
ing set consists of not only partial label examples D, =
{(x;,5;)|1 < i < m} but also unlabeled instances D,, =
{z;|]1 < i < m}. Given the semi-supervised partial label
training set D = {D, U D,,}, semi-supervised partial label
learning aims to induce a classification model f : X — Y
from D such that for any unseen instance, f predicts its label.

3.2 A Simple Solution

The main difficulty of semi-supervised partial label learning
lies in that the learning algorithm is required to disambiguat-
ing the candidate label sets of partial label examples and at the
same time exploiting the data distribution information of un-
labeled data. An intuitive solution is to disambiguate the can-
didate label sets of partial label training examples, i.e., picks
up the valid single-label from candidate label set. Then, the
problem is transformed into a simple SSL problem, which can
be solved by a number of well-studied learning algorithms.
Algorithm 1 summarizes the procedure for such a simple so-
lution.

In the algorithm above, the label set disambiguation pro-
cedure and the exploitation of unlabeled data are completely
separated. The unlabeled instances can not help improving
the disambiguation accuracy of partial label examples. To ad-
dress this critical limitation, in the proposed SSPL approach,
an iterative label propagation procedure between partial label
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examples and unlabeled instances is employed to put them in-
to a framework. In the following sections, the weighted graph
construction procedure, which is necessary for label propaga-
tion, is first introduced and then the iterative label propagation
algorithm.

3.3 Weighted Graph Construction

To realize the process of labeling information propagation
from the source training set S = {x; | 1 < i < s} to
the target training set 7 = {x; | 1 < i < t}, a weight-
ed directed bipartite graph G = (U,V, E) is constructed
over S and 7. While vertex set U corresponds to the in-
stances in the source training set and vertex set V' correspond-
s to the instances in target training set. Edge set E/ contains
the directed edges from U to V' (note that £ only consist-
s of this kind of edges but not, e.g., edges from U to U or
from U to U). For each instance x; in the target training
set, its k-nearest neighbours A/(z;) in the source training set
are identified. Accordingly, the edges of graph G are set as
E={(xj,z;) | zj € N(x;),1 <i<t}

From the graph G constructed above, we can simply spec-
ify a t x s weight matrix W = [w; ;]¢xs Where w; ; > 0 if
(xj,x;) € FE and w; ; = 0 otherwise. In order to capture
the fine-grained influences between instances, in this paper,
we employed the weights calculation method applied in the
IPAL approach [Zhang and Yu, 2015], which determines the
weights by solving an novel optimization problem (OP). Let
wi = [w;jﬂ...,wﬁjk]T (ja S N((Ll),l S a S k) de-
notes the weight vector of x; in the target training set and its
k-nearest neighbours A (z;) in the source training set, the in-
fluences of the instances ;, in N (z;) to «; can be calculated
by solving the following OP:

k
min W%—Z;wmuwxﬂ 0

st. wij, >0 (jo€N(z:),1<a<k)

As shown in OP(1), the weight vector is optimized by fit-
ting a linear least square problem subject to the non-negativity
constraints, which can be obtained easily by a quadratic pro-
gramming solver. Then the weight matrix W' is normalized
by row:W = D~'W. Here, D = diag[dy,ds,...,d;] is a
diagonal matrix with d; = Z;zl w;, ;. Algorithm 2 summa-
rizes the procedure of weighted graph construction.

3.4 Iterative Label Propagation

To facilitate the iterative label propagation procedure, four
normalized weight matrix are constructed corresponding to
the four phases in the label propagation procedure respective-
ly. Specifically, H = WGC(D,,, D, k) is used for the label
propagation from D,, (source training set) to D,, (target train-
ing set). J = WGC(D,, D), k) is used for the label propaga-
tion from D, to itself, i.e., label set disambiguation of partial
label examples in D,. K = WGC(D,,, D, k) is used for the
label propagation from D,, to itself. L = WGC(D,,, D), k) is
used for the label propagation from D, to D,,.

In the SSPL approach, labeling confidence matrix for par-
tial label training examples and unlabeled instances, i.e.

Algorithm 2 WGC (weighted graph construction) procedure

Inputs:

S:  the source training set {x; | 1 <i < s}

T: the target training set {x; | 1 < i < ¢}

k:  the number of nearest neighbour considered
Outputs:

W: the normalized weight matrix

Process:

1: Initialize weight matrix W = [w; ;]¢xs:

2: fori =1totdo

3:  Identify the k-nearest neighbours A (z;) in the source
training set S for x; in the target training set 7;

4:  Determine the weight vector w; = [w;j,, ..., w7
w.r.t. ; and N (z;) by solving OP(1);

5:  for j, € N(x;) do

6: Set Wi, j, = w[,ja;

7:  end for

8: end for ~

9: Normalize weight matrix W by column: W = D~1W.,

Fp = [ficlpxq and Fy = [fi cJuxq are introduced, where
fi,e = 0 corresponds to the probability of label y. being
the ground-truth label of instance ;. For partial label ex-
amples, the labeling confidence matrix can be initialized with
Fp=P= [pi,c}qu-

1
, if y.€5;
1<i<p: pic=2{ |5 2)
0 5 if yc¢S’L

For unlabeled instances, the labeling confidence matrix can
be initialized with Fyy = U = [t c]uxq-

1<i<u: we=- (3)

q

In other words, at the initialization step, for partial label ex-
amples, the probability of a label being the ground-truth la-
bel of instance x; is distributed over its candidate labels in
S;. And for unlabeled instances, the probability is distributed
over all ¢ labels in ).

The iterative label propagation procedure contains four
phases: 1. label propagation from partial label examples to
unlabeled instances; 2. label sets disambiguation of partial
label examples; 3. label set disambiguation of unlabeled in-
stances; 4. label propagation from unlabeled instances to par-
tial label examples.

During the iteration, labeling confidence matrix F, and F,
are updated according to the following equations.

Fo—a H-Fy+(1—a)-F, )
Fp=a-J-Fo+(1-a) P (5)
Fo=3-K-Fy+(1—p)-F, 6)
Fp=3-L-Fy+(1-8)Fp ()
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Algorithm 3 The proposed SSPL approach

Inputs:
D,: the partial label training set {(x;,.5;) | 1 <1i < p}
D,: the unlabeled training set {x; |p+ 1 <i<p+u}
k:  the number of nearest neighbour considered

Q, 5 N

T:  the number of iterations

the tuning parameter

*

x*: the unseen instance

Outputs:

y*: the predicted class label for «*
Process:
1: Construct normalized weight matrix H, J, K and L ac-
cording to the WGC procedure in Table 2;
2: Initialize the label confidence matrix F, and F, accord-
ing to Eq.(2) and Eq.(3);
3: fort =1toT do
4:  Set Fy, according to Eq.(4);
5:  Set Fp according to Eq.(5);
6:  Re-scale Fy, to F, according to Eq.(8);
7 Set F, according to Eq.(6);
8:  Set f‘p according to Eq.(7);
9:  Re-scale F, to F, according to Eq.(8);
10: end for
11: fori =1topdo
12:  Disambiguate partial label example (x;, S;) into single
label example (x;, ¢;) according to Eq.(9);
13: end for
14: fori=p+1top+udo
15:  Assign valid label y; for unlabeled instance x; accord-
ing to Eq.(9);
16: end for
17: Identify the k-nearest neighbours of «* in the D), and D,
ie. Np(x*) and NV, (x*);
18: Determine the weight vectors w* and 8* w.r.t. * and its
k-nearest neighbours in D,, and D,, by solving OP(1);
19: Return the predicted class label y* according to Eq.(10).

Here, parameters « and (3 are used to balance the importance
of partial label examples and unlabeled instances. As par-
tial label examples carry more labeling information than un-
labeled ones i.e. more important than unlabeled instances, o
is always larger than 5. In the SSPL approach, parameter (3
is set to zero at the beginning of the iteration as the unlabeled
instances carrying no labeling information. As the iteration
goes on, the unlabeled instances carry more labeling informa-
tion and 3 increases and finally approaches to the pre-defined

upper bound (3. Parameter « is set to be a constant.

The labeling confidence matrix of partial label examples,
i.e., Fp, needs to be re-scaled into Fj, after updated by prop-
agating labeling information from F, and F, after phase2
and phase4. The re-scale operation clears the probability of
labels outside of the candidate label set being the ground-truth
label of partial label examples and then normalize sum of the

labeling probability of an instance into one.

#, if Ye € Si
ZyzGSi fi’l

07 1fy0¢57

1<i<p:fic= ®)

Finally, we can pick up the valid labels of partial label and un-
labeled instances based on the final labeling confidence ma-
trix Fp and F,,. Here, the SSPL approach adjusts the final
label confidence towards the class prior distribution using the
famous class mass normalization mechanism [Zhu and Gold-
berg, 2009]

i = argmax =< - fi, ©)

Ye€Y Mg

Here, n, = Zle Yi,c 1s the prior distribution of . in the
initial labeling confidence matrix P, and 71, = Zf;ﬂ ficis
the class mass of ¥, in the final labeling confidence matrix i.e.
Fpand F,.

During the testing phase, the class label of an unseen in-
stance x* is predicted based on the minimum reconstruction
error criterion on the disambiguated training examples, i.e.
the disambiguated partial label examples {(z;,7;) | 1 <
i < p} and disambiguated unlabeled instances {(x;, 7;) |
p+1 < i < p+u}. Firstly, the k-nearest neighbours of x* in
D, and D,, i.e. N(x*) and N, (x*) are identified separate-

ly. After that, the weight vectors w* = [w} ,w}, ..., w} ]’
(ia € Np(z*),1 < a < k) and 0* = [Hfl,ﬂjz,...,efk]T

(ip, € Nu(z*),1 < a < k) are determined w.r.t. x* and
its k-nearest neighbours in D, and D,, by solving the same
optimization problem OP(1). Finally, the unseen instance is
classified based on the following equation:
k
*=arg min |z* —17r- Iy;, = ye) - w; -x
y g min | ;(ya Ye) - wi, - xg,
. (10)
—(L=7) > Ui, =ye) - 05, - o, |

b=1

Here, r is the tuning parameter weighting the reconstruction
error on partial label and unlabeled instances.

Algorithm 3 summarizes the complete procedure of the
proposed SSPL approach. Given the semi-supervised par-
tial label training set, four normalized weight matrix are con-
structed over D), and D,, (Step 1). After that, label confidence
matrix F, and F, are initialized and updated by iterative la-
bel propagation (Steps 2-10). Then, the SSPL approach pick-
s up the valid labels of training examples according to F
and F, (Steps 11-16). Finally, unseen instances are classified
based on the minimum reconstruction error of disambiguated
training examples (Steps 17-19).

4 Experiments

In this section, we compare the performances of the proposed
SSPL approaches with several state-of-the-art PLL algorithm-
s on various real-world tasks including: automatic face nam-
ing, object classification and bird song classification.
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p=0.05 »=0.10 p=0.15 »=0.20 »=0.30 p = 0.40 P =0.50
SSPL  0.299+0.004 0.374+£0.003 0.408£0.002 0.461£0.002 0.489+£0.003 0.529+0.003  0.556+0.001
IPAL  0.26540.003 0.343+0.001 0.373£0.003 0.398-£0.002 0.458-20.002  0.48120.002  0.5484-0.003
PL-KNN 0.1934+0.001e 0.225+0.001e 0.254-£0.001e 0.254--0.002¢ 0.267+0.001e 0.31840.002¢ 0.335+0.001e
CLPL  0.30840.001  0.384+0.001 0.380+£0.002 0.363+£0.001e 0.40740.003  0.55440.002  0.651+0.0020
PL-SVM  0.12740.003e 0.166+0.002¢ 0.262+0.003e 0.216-+0.0068 0.253-£0.002¢ 0.307--0.0008 0.302--0.005e
»=0.05 »=0.10 »=0.15 »=0.20 »=0.30 p = 0.40 p =0.50
SSPL  0.493£0.000 0.500£0.000 0.500£0.000 0.506£0.000 0.510+£0.000 0.517£0.000 _ 0.523+0.000
IPAL  0.48940.000 0.492+0.000 0.500+£0.000  0.503-£0.000 0.5110.000 0.51240.000  0.52040.000
PL-KNN 0.48940.000 0.491+0.000 0.491£0.000 0.490-£0.000 0.4910.000  0.49240.000  0.49240.000
CLPL  0.34840.000e 0.280+0.001e 0.250-+0.000e 0.254--0.000e 0.278-0.000e 0.33140.0008 0.385+0.000e
PL-SVM 0.46840.000e 0.465+0.001  0.439+£0.007 0.4650.001  0.4780.000e 0.48240.000e 0.480-0.000e
p=0.05 p=0.10 p=0.15 »=0.20 »=0.30 p=0.40 p=0.50
SSPL  0.428£0.000 0.474£0.000 0.497£0.000 0.514E0.000 0.536£0.000 0.556=0.000 0.566+0.000
IPAL  0.38040.0008 0.437+0.000e 0.454-£0.000e 0.477-0.000e 0.51140.000e 0.52940.0008 0.552+0.000e
PL-KNN 0.31240.000e 0.35140.000e 0.368+0.000e 0.375-:0.000e 0.404-£0.000e 0.424--0.000e 0.435--0.000e
CLPL  0.40840.000e 0.465+0.000e 0.499-£0.000 0.525£0.000 0.554-20.0000 0.57240.000  0.588-0.0000
PL-SVM  0.2454+0.004e 0.260+0.004e 0.230-+£0.004e 0.248--0.003e 0.243+0.003e 0.27340.005¢ 0.251+0.001e

Table 1: Classification accuracy (mean=std) of each comparing algorithm on Lost, Soccer Player and Yahoo!News (from top to
bottom). In addition, e /o indicates whether SSPL is statistically superior/inferior to the comparing algorithm on each data set (pairwise ¢-test
at 5% significance level).

p=0.05 p=0.10 p=0.15 »=0.20 »=0.30 p = 0.40 P =0.50
SSPL  0.2774£0.003 0.344+£0.002 0.356£0.001 0.41450.002 0.448E0.003 0.465£0.001  0.494L0.001
IPAL  0.28940.003  0.337+0.002  0.349+0.003 0.386+0.005 0.39840.000 0.44440.001  0.446+0.001
PL-KNN 0.20740.002  0.257+0.001e 0.276+0.002 0.317+0.001e 0.345+0.001e 0.35740.001e 0.357+0.001e
CLPL  026440.003 0.288+0.001e 0.287-£0.002¢ 0.309-£0.002¢ 0.326--0.001e 0.35040.001e 0.361+0.001e
PL-SVM  0.16940.002¢ 0.218+0.004e 0.240-+0.003e 0.236+0.001e 0.22240.001e 0.20640.001e 0.204+0.001e

Table 2: Classification accuracy (mean=std) of each comparing algorithm on MSRCv2. In addition, /o indicates whether SSPL is statistically
superior/inferior to the comparing algorithm on each data set (pairwise ¢-test at 5% significance level).

k =10[;

e CLPL [Cour et al., 2011] which transforms PLL into bi-

nary learning problem via feature mapping with convex

loss optimization [suggested configuration: SVM with

squared hinge loss];

Data Set |#Examples |#Features |#Class Labels | Avg. #CLs
Lost 1,122 108 16 2.23
MSRCv2 1,758 48 23 3.16
BirdSong 4,998 38 13 2.18
Soccer Player| 17,472 279 171 2.09
Yahoo! News | 22,991 163 219 1.91

e PL-svM [Nguyen and Caruana, 2008] which adapts

Table 4: Characteristic of the real-world partial label data sets.

4.1 Experimental Setup

The performance of SSPL is compared against five state-of-
the-art PLL algorithms, each configured with parameters sug-

gested in respective literature:

e IPAL [Zhang and Yu, 2015] disambiguate the candidate
label set via an iterative label propagation procedure

[suggested configuration: k = 10, = 0.95,7 = 100]

e PL-KNN [Hiillermeier and Beringer, 2006] which adapts
k-nearest neighbor technique to learn from partial label
examples via weighted voting [suggested configuration:

maximum margin technique to learn from PL data vi-
a [, regularization [suggested configuration: regulariza-
tion parameter pool with {1073,...,10%}];

For each data set, we consider the percentage of partial la-
bel examples in the whole training set by randomly sampling
p € {0.05,0.10,0.15,0.20,0.30,0.40,0.50} instances from
the whole training set with their candidate label sets and the
other with no labeling information. For compared methods,
only sampled partial label examples and their candidate label
sets are provided. That is because PLL algorithms can not
exploit from unlabeled data. According to the experiments
conducted by us, using unlabeled data directly (simply view
unlabeled instance as partial label example with its candidate
label set equals to the whole label space ))) always hurt the
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p=0.05 »=0.10 p=0.15 »=0.20 »=0.30 p = 0.40 P =0.50

SSPL  0.464+0.001 0.501£0.001 0.520£0.001 0.549£0.001 0.567£0.001 _ 0.572+0.000 _ 0.586+0.000
IPAL  0.44340.001  0.474+0.000 0.497+0.002¢ 0.509+0.000e 0.538+0.001  0.55440.000  0.557+0.000e
PL-KNN 0.33340.001e 0.400+0.001e 0.426-£0.0008 0.445--0.000e 0.469+0.000e 0.50440.0008 0.518+0.000e
CLPL  0.34740.001e 0.362+0.000e 0.359-£0.000e 0.368--0.001e 0.365-0.000e 0.358-0.000e 0.357--0.000e
PL-sVM  0.230+0.005e 0.086+0.004e 0.151£0.009¢ 0.138--0.006e 0.178+0.012e 0.1294-0.005¢ 0.182+0.012e

Table 3: Classification accuracy (mean+std) of each comparing algorithm on BirdSong. In addition, /o indicates whether SSPL is
statistically superior/inferior to the comparing algorithm on each data set (pairwise ¢-test at 5% significance level).

performance of PLL algorithms.

As shown in Table 3, parameters employed by SSPL are set
ask =10, a =0.70, 5 =0.25,r = 0.7 and T' = 100. In the
rest of this section, five-fold cross-validation is performed on
each real-world data set and in each training fold, the partial
label instances are randomly sampled for three times. Ac-
cordingly, the mean predictive accuracies (and also the stan-
dard deviations) are recorded for all comparing algorithms.

4.2 Automatic Face Naming Task

In the automatic face naming task, our goal is to label the
faces appeared in video or news images by the ground-truth
names of characters or concerned people. For example, an
episode of a video contains several characters and their faces
may appear simultaneously in a screenshot. The scripts and
dialogues are provided indicating which characters are in the
screenshot, which forms the candidate label sets of the cor-
responding faces. Moreover, it is often the case that in a
news collection every image is accompanied by a short textu-
al description. Such a news image may contain several faces
and the associated description will indicate the names of the
people appeared in this image, which forms the candidate
label sets of the faces. Three data sets are adopted for this
task: Lost [Cour et al., 2011], Soccer Player [Zeng et
al., 2013] and Yahoo ! News [Guillaumin et al., 20101, each
contains 1122, 17472 and 22991 face images across 16, 171
and 219 classes respectively. The average amount of can-
didate label sets for a single label are 2.23, 2.09 and 1.91.
Please refer to Table 4 for details.

Pairwise -test at 0.05 significance level is conducted based
on the five-fold cross-validation and three-time random sam-
pling, where the test outcomes between SSPL and the com-
paring approaches are also recorded.

As shown in Table 1, we can observe that SSPL achieves
highly comparable performances to all the state-of-the-art
PLL algorithms. Furthermore, we can also find that: 1) On
all the three data sets in this task, SSPL outperforms PL-
KNN and PL-SVM at all subtasks; 2) SSPL achieves statis-
tically superior performances to PL-KNN and PL-SVM on
Lost and Yahoo ! News and statistically superior to IPAL on
Yahoo !News; 3) SSPL achieves comparable performances
to CLPL on Lost and Yahoo !News while outperforms it
on Soccer Player.

4.3 Object Classification Task

In this task, every image is segmented to several compact re-
gions, and the labels of segmented regions, which are provid-

ed manually, forms the candidate label set of the image. A-
mong the candidate label set, the label of the most dominant
region is selected as the ground-truth single-label. Our goal
is to predict the unseen images. MSRCv2 [Liu and Dietterich,
2012] data set is adopted for this task. This data set contains
1758 images with totally 23 classes. The average amount of
candidate label sets for a single label is 3.16.

Results are presented in Table 2, from which we can
observe that SSPL also achieves highly comparable perfor-
mances to all the compared methods. Specifically, SSPL
achieves the best performances on 6 of 7 subtasks (IPAL ob-
tains the best performance when p = 0.05) and statistically
superior to PL-KNN, CLPL and PL-SVM on most subtasks.

4.4 Bird Song Classification Task

The BirdSong [Briggs er al., 2012] data set is adopted
for this task. BirdSong is collected from 548 bird sound
records. Each record is consisted of 1-40 syllables, lead-
ing to totally 4998 syllables included in the data set. The
bird species appeared in every record are manually annotat-
ed, which forms the candidate label sets of every syllable. We
need to identity which syllable is from which kind of bird.

Results are reported in Table 3. It is impressive to observe
that the proposed SSPL approach significantly outperforms
all the compared algorithms. The SSPL approach achieves
the best performances on all subtasks. Moreover, SSPL is
statistically superior to IPAL on 3 subtasks and superior to
PL-KNN, CLPL and PL-SVM on all subtasks.

5 Conclusion

In this paper, we consider a new learning setup called semi-
supervised partial label learning where the training set con-
sists of two kinds of weak supervision, i.e., partial label data
and unlabeled data. We propose an iterative label propagation
method, which can process two kinds of weakly supervised
data simultaneously by jointly propagating label between par-
tial labeled and unlabeled instances, and derive a good label
assignment. The experimental results show that our method
is superior to approaches that only considering one kind of
weak supervision. In future, we consider scaling up our mod-
el to large-scale data, and consider weak supervision data in
dynamic environments.
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