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Abstract
Keyword-based tags (referred to as tags) are used to
represent additional attributes of nodes in addition
to what is explicitly stated in their contents, like the
hashtags in YouTube. Aside of being auxiliary in-
formation for node representation, tags can also be
used for retrieval, recommendation, content organi-
zation, and event analysis. Therefore, tag represen-
tation learning is of great importance. However, to
learn satisfactory tag representations is challenging
because 1) traditional representation methods gen-
erally fail when it comes to representing tags, 2)
bidirectional interactions between nodes and tags
should be modeled, which are generally not dealt
within existing research works. In this paper, we
propose a tag representation learning model which
takes tag-related node interaction into considera-
tion, named Tag2Gauss. Specifically, since tags
represent node communities with intricate overlap-
ping relationships, we propose that Gaussian dis-
tributions would be appropriate in modeling tags.
Considering the bidirectional interactions between
nodes and tags, we propose a tag representation
learning model mapping tags to distributions con-
sisting of two embedding tasks, namely Tag-view
embedding and Node-view embedding. Extensive
evidence demonstrates the effectiveness of repre-
senting tag as a distribution, and the advantages
of the proposed architecture in many applications,
such as the node classification and the network vi-
sualization.

1 Introduction
Tagged networks, namely networks including not only rela-
tionships between nodes but also the subordinate relation-
ship between nodes and tags, are ubiquitous. Keyword-
based tags (referred to as tags) are used to represent ad-
ditional attributes of nodes in addition to what is explic-
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itly stated in their contents. Taking YouTube as an exam-
ple, a million-video sample shows that 6 tags are applied
to each video on average, the majority of which do not ex-
ist in the title [Geisler and Burns, 2007; Aggarwal, 2011;
Huang et al., 2010; Godin et al., 2013].

In addition to mere literal meanings expressed in the words
of tags, tags also convey more complex semantics illustrated
in the way they interact with tagged nodes, thereby provid-
ing nodes with information highly useful to users. Conse-
quently, tags can be used for different tasks, such as infor-
mation retrieval, item recommendation, and event analysis
[Chang, 2010; Tsur and Rappoport, 2012].

However, it is challenging to learn satisfactory tag repre-
sentations.

• Traditional representation methods generally fail when it
comes to representing tags. On one hand, naive one-hot
representations of tags ignore the semantic relationships
between tags. On the other hand, representing tags with
mere word embedding focus more on the literal meaning
of keyword-based tags, which ignores their interaction
with tagged nodes and is not suitable for tag represen-
tation. In addition, conventional representation learning
models, which map objects to vectors also fail to gen-
erate satisfactory representations, since, a single point
in the vector space is unable to represent complex re-
lationships between tags, such as inclusion, entailment
and hierarchy. Consequently, more flexible representa-
tion methods should be involved.

• Bidirectional interactions between nodes and tags
should be modeled, which are generally not dealt within
existing research works. For example, in Bilibili, the tag
“MAD” is similar to the tag “ANIMATION” according
to tagged videos, however it is difficult to find the cor-
relation in general literal corpus. More extremely, some
tags with mosaic keywords cannot convey any useful lit-
eral information. As discussed above, the meanings tags
express are largely defined by the nodes adhered with
them, and vise versa. However, explicit similarity mea-
sures, such as links between tag pairs, are not available
in tagged networks, which underscores the need for us to
design models capturing complex interactions between
nodes and tags.

To cope with these problems, we study the tag embed-
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ding problem in node-tag hybrid networks derived from a
tagged network (see Figure 1) and propose our model, named
Tag2Gauss, which deals with the challenges correspond-
ingly. On one hand, since tags represent node communities
with intricate overlapping relationships, we propose that dis-
tributions, namely a region associated with different inten-
sity, would be more appropriate in modeling tags contain-
ing nodes with scattering positions in vector space. On the
other hand, considering the bidirectional interactions between
nodes and tags, we propose a tag representation learning
model mapping tags to distributions consisting of two embed-
ding tasks, namely tag-view embedding and node-view em-
bedding. Specifically, in tag-view embedding module, tags
are represented as Gaussian distributions. To capture similar-
ity between tags, a walking strategy, named Hybrid Walker,
is proposed based on the node-tag hybrid network, followed
by a max-margin ranking objective to optimize tag represen-
tations. In node-view embedding, we present a generative
model for node representations inspired by the Gaussian Mix-
ture Model. In this way, tag distributions are directly used
for node embedding generation, enabling the joint learning of
tag representations and node representations in the multi-task
learning framework we propose.

To summarize, we make the following contributions:

• We represent tags as Gaussian distributions, which is
able to characterize the complex semantic relationships
between tags, such as inclusion, entailment and hierar-
chy.

• We design a multi-task learning framework, Tag2Gauss,
involving both tag representation learning and node rep-
resentation learning that can be optimized jointly.

• We conduct extensive experiments on three real-world
tagged networks, and the results demonstrate that our
model can capture the rich information carried in both
nodes and tags and achieve superior performance from
its counterparts.

2 Related Work
Network Embedding. Network embedding aims to map
the vertices or edges of a network into low-dimensional vec-
tor space for the sake of better performance of learning
tasks such as node classification and link prediction [Goyal
and Ferrara, 2018]. Some methods proposed are based on
context of the vertex to preserve its structural properties
[Perozzi et al., 2014; Tang et al., 2015; Du et al., 2018a;
Du et al., 2018b], others are based on graph factorization or
deep learning [Goyal and Ferrara, 2018; Wang et al., 2016].
Embedding of attributed network whose nodes are each as-
sociated with their rich features [Huang et al., 2017], has re-
ceived attention in recent years. TADW leverages rich text
features in graph factorization [Yang et al., 2015], while GCN
and GraphSAGE turn to scalable deep learning architecture
with neighborhood aggregation [Kipf and Welling, 2017;
Hamilton et al., 2017]. However, stable discrete node fea-
tures as tags are often treated as one-hot vector in those works
and interactions between them are overlooked.

T1 T2

n1

n2

n3

n4

Figure 1: The node-tag hybrid network, which has two types of
nodes, plain nodes ni and tag nodes Tk; and two types of edges,
interaction edges (undirected) and affiliation edges (directed).

Variational Representation with Gaussian Distribution.
Gaussian distribution is used to describe the variation bound
for posterior probabilities in Variational Autoencoders (VAE)
[Kingma and Welling, 2014]. Uncertainty of Gaussian dis-
tribution has also been utilized in word embedding models
to make the parameters more expressive both in prior [Vil-
nis and McCallum, 2015] and posterior [Brazinskas et al.,
2017] ways. When it comes to network/graph, KG2E train
Gaussian embeddings for entities and relations in knowledge
graph [He et al., 2015]; VGAE, based on VAE, embeds the
network with Gaussian using GCN encoder and inner dot de-
coder [Kipf and Welling, 2016]. However, to the best of our
knowledge, expressive Gaussian methods has not been gen-
eralized to tagged networks yet.

3 Problem Definition
Definition 1 (Tagged Network). A tagged network is de-
fined as G = <V,E, T>, where V = {vi}, i = 1, 2, . . . , n
represents the set of nodes, E = {eij}, i, j = 1, 2, . . . , n, i 6=
j represents the set of edges, and T = {tk}, k = 1, 2, . . . , |T |
represents the set of tags that each node belongs to. Each node
vi has k tags, i.e., Tvi={ti1 , ti2 , . . . , tik}, tij ∈ T . If node vi
is marked with tag t, node vi has a tag t, or tag t belongs to
node vi.

Tags are literal symbols to label characteristics of a node.
The semantics of tag is essentially determined by the charac-
teristics of the set of nodes marked with it. In order to explore
the tag representation based on the interaction of nodes, we
introduce the definition of node-tag hybrid network as shown
in Figure 1 as follows:

Definition 2 (Node-Tag Hybrid Network). A node-tag hy-
brid network H=<VH , EH> is derived from a tagged net-
work G=<V,E, T>, where VH = V ∪ T , EH = E ∪ ET .
For vH ∈ VH , vH is a plain node if vH ∈ V . Otherwise, it
is a tag node if vH ∈ T . For eH ∈ EH , eH is an interaction
edge if eH = <v1, v2> ∈ E. Otherwise, it is an affiliation
edge eH = <v, t> and node v is marked with tag t.

Due to the bidirectional interactions between nodes and
tags, tag representation learning task and node representation
learning task can reinforce each other and be jointly opti-
mized. Next, we introduce the definition of node-view em-
bedding for node representation and tag-view embedding for
tag representation, respectively.

Definition 3 (Node-view Embedding). Given a tagged net-
work G = <V,E, T>, the problem of node-view embed-
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Figure 2: An overview of Tag2Gauss. Tag2Gauss consists of two major components: (a) tag view embedding module projects tags to
Gaussian distribution N (µ,Σ) and preserve the proximity exploring from the nodes interaction with the help of the hybrid walker; (b) node
view embedding module maps nodes to a single point in the vector space which preserves the neighbor-aware proximity and the tag-aware
proximity with the help of GCN and GMM, respectively. Besides, the multi-task learning part is proposed to jointly optimize the two tasks,
i.e., tag-view embedding and node-view embedding.

ding aims to represent each node v ∈ V attached with mul-
tiple tags Tv into a low-dimensional Euclidean space condi-
tional on tags adhered with it, i.e., learning a mapping func-
tion Φ(V |T ) : V → Rd, where d� |V |.

According to the above analysis, a single point in the vector
space is unable to represent complex relationships between
tags. Inspired by the Word2Gauss [Vilnis and McCallum,
2015], we represent each tag as a Gaussian distribution. Next,
we introduce the definition of tag-view embedding for tag
representation learning.

Definition 4 (Tag-view Embedding). Given a tagged network
G = <V,E, T>, the problem of tag-view embedding aims
to represent each tag t ∈ T and preserve tag proximity into a
low-dimensional Euclidean space based on the interaction of
nodes V . The tag tk ∈ T is mapped to a Gaussian distribution
N (µk,Σk) in a d-dimensional space, where µk ∈ Rd is a
mean vector and Σk ∈ Rd×d is a covariance matrix.

4 Tag2Gauss
In this section, we introduce the overview of our model
Tag2Gauss and more specifically introduce two main mod-
ules, i.e., tag-view embedding module and node-view em-
bedding module. Finally, we propose a multi-task learning
framework to jointly learn tag representations as well as node
representations.

4.1 Framework Overview
In the framework of Tag2Gauss (see Figure 2), the parame-
ters set {N (µk,Σk))}, where k = 1, 2, . . . , |T | are the tag
representations to be learned, and N (µk,Σk) is the tag tk
corresponding Gaussian distribution. In tag-view embedding
module, we design a hybrid walker to generate tag pair cor-
pus and train them with the max-margin ranking objective. In
node-view embedding module, we present a generative model
based on Gaussian Mixture Model for the node representation
generation [Rasmussen, 2000]. During the joint learning pro-
cess, tag representation can be directly used to generate the
node embedding. Meanwhile, the optimization process of the

node embedding can also tune the tag representation by the
back-propagation.

4.2 Tag-view Embedding
In this section, we design the tag-view embedding module to
map each tag to a Gaussian distribution based on the inter-
action of nodes. Because there is no explicit link between
tag pairs in the tagged network, we design a walking strategy
based on the node-tag hybrid network, namely hybrid walker,
to capture the tag proximity which is preserved by optimizing
the max-margin ranking objective.

Hybrid Walker
We first define “tag relation sequence” as such a walking se-
quence which starts and ends with tag nodes, and the rest are
plain nodes (see Figure 3).

Ts

Ts

Ts

n1

n1

n1

n2

· · · nt Te

Te

Te

Figure 3: The tag relation sequences.

The hybrid walker strategy is as follows: v refers to the
current position, Γ is the type mapping function,

Γ(v) =

{
1 type(v) = node

0 type(v) = tag
. (1)

According to the definition of “tag relation sequence”,
Γ(v0) = 0, and the walking process ends up with vL, where
Γ(vL) = 0. The transition probability p(vi+1|vi) at step i is
defined as follows:

p(vi+1|vi) = p(t|vi)p(vi+1|t, vi), (2)
where,

t = Γ(vi), (3)

p(t|vi) = (
1

ci
)t + (1− 1

ci
)1−t, (4)

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3801



p(vi+1|vi, t = 1) =


wi,i+1∑
wi,∗

(vi+1, vi) ∈ E

0 (vi+1, vi) /∈ E
, (5)

p(vi+1|vi, t = 0) =


ŵi,i+1∑
ŵi,∗

(vi+1, vi) ∈ ET

0 (vi+1, vi) /∈ ET

, (6)

where, wi,i+1 refers to the edge weight of plain nodes, ŵi,i+1

refers to the edge weight between plain nodes and tag nodes,
and c is a damping factor, which punishes the length of the
walking sequence, such as c = 2. p(vi+1|vi, t = 0) is
the transition probability from a node vi to a tag node vi+1.
p(vi+1|vi, t = 1) is the transition probability from a node vi
to another plain node vi+1. Such a walk strategy essentially
learns the number of different-order co-neighbors of tags cor-
responding node groups. Therefore, the closer the semantic
distance between the node groups, the higher the probability
of the corresponding tags appearing in the same “tag relation
sequence”.

Max-margin Ranking Objective
From each tag relation sequence, we can get the tag and its
context. Considering mapping tags to Gaussian distributions,
we train them with max-margin ranking objective Otag view,
which pushes scores of positive pairs above negatives by a
margin [Vilnis and McCallum, 2015]:

Otag view =
∑

utag∼Z
vtag∼PsimG

(u,·)

∑
ṽtag∼Q

L(utag , vtag , ṽtag), (7)

L(utag ,vtag , ṽtag)=max
(
0,m−S(utag ,vtag)+S(utag ,ṽtag)

)
,
(8)

S(tag i, tagj)=−DKL(Ntagj‖ Ntagi)

=−1

2

(
tr(Σ−1i Σj)+(µi−µj)

>Σ−1i (µi−µj)

−d− log
det(Σj)

det(Σi)

)
.

(9)

where utag is drawn from some distribution Z , vtag is drawn
from the similarity distribution of PsimG

(utag, ·) in network
G. In our model, PsimG

(utag , ·) is determined by the fre-
quency of tag occurrence in tag pair corpus from the hybrid
walker. ṽtag is drawn from noise distribution Q. KL diver-
gence is used to measure the similarity S(tag i, tagj) to help
learn the complex semantic relationship between tags, such
as inclusion, entailment and hierarchy.

4.3 Node-view Embedding
In this section, we design the node-view embedding module
to generate node embeddings with the distribution of tags.
This feedback from the node embeddings tunes the tag repre-
sentations during training. When it comes to the node embed-
ding, compared with neighbor-aware proximity ( e.g. first-
order and second-order proximity in [Tang et al., 2015]), tag-
aware proximity does not require two nodes to be directly
linked or share many “contexts” for being close, even with
high order. Therefore, not only neighbor-aware proximity,

Algorithm 1 Node Embedding Generation Algorithm

Input: Tagged Network G = <V,E, T>; input features
{xv}; tag sets {Ti}; neighborhood function N : v → 2V

Output: Node representations U for all v ∈ V ; Tag repre-
sentations Utag for all t ∈ T

1: Initialize the set of parametersN (µk,Σk) for all tag tk ∈
T

2: Initialize weight matrixW
3: for vi in V do
4: ~ni = GCN(vi)
5: α = softmax(W · ~ni)
6: sample ~ti from

∑
tk∈|Ti| αkN (µk,Σk)

7: Φ(vi) = MLP([~ni,~ti])

tag-aware proximity is taken into consideration in the node
embedding.

Because tags are represented as distributions, we elaborate
a generative node embedding model, where the node repre-
sentation Φ(vi) is drawn from Pr(vi|Nvi

, Tvi
) which is the

conditional distribution given the neighbor structure Nvi
and

the tag set Tvi
of the node, i.e.,

Φ(vi) ∼
∑

k∈Tvi

αk(Nvi
)N (µk,Σk) (10)

where Tvi
is the tag set of vi, and Nvi

is the neighbor in-
formation of vi. Gaussian distribution N (µk,Σk), where
k = 1, 2, . . . , |T | is the representation of k-th tag in Tvi

. In
order to model the node representation distribution Pr with
the neighbor information, we design the α as the function of
Nvi

, i.e., αk(Nvi
).

Node Embedding Generation
According to Equation 10, we describe the node embedding
generation (Algorithm 1). To capture the neighbor-aware
proximity, Graph Convolutional Networks [Kipf and Welling,
2017] are introduced to aggregate information. The parame-
ters to be tuned in the training process are the Gaussian distri-
bution N (µk,Σk) for any tag tk ∈ T , and the weight matrix
W for modelling mixing coefficients α. The tag-aware in-
formation ~ti is drawn from the mixture distribution and next
bonded with the neighbor-aware information ~ni to generate
the final node representation Φ(v).

NCE Objective Function
In order to learn useful and predictive representations in a
fully unsupervised setting, we apply the following NCE loss
function to distinguish between node samples u and v from
the empirical similarity distribution PsimG

and those nega-
tive samples {ṽ} generated by a noise distribution Q over the
nodes, which encourages nearby nodes to have similar repre-
sentations:

Onode view=
∑
u∼Z

v∼PsimG
(u,·)

[
− log

(
σ
(
EPr(Φ(u))>EPr(Φ(v))

))
−k · Eṽ∼Q log

(
σ
(
−EPr(Φ(u))>EPr(Φ(ṽ))

))] (11)

where σ(·) = 1/(1 + exp(−x)) is the sigmoid function, u is
drawn from some distribution Z , v is drawn from the similar-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3802



ity distribution PsimG
(u, ·) which is determined by the plain

edge weights linked from u. ṽ is drawn from noise distribu-
tion Q. EPr(Φ(u)) is the expectation of Φ(u), which can be
calculated by drawing multiple times from the distribution Pr
defined in Equation 10.

4.4 Multi-task Learning
Based on previous analysis, Otag view and Onode view can
be jointly optimized for better learning tag representations,
as well as node representations. In the multi-task learning
framework, the whole objective is designed as follows:

min Otag view + λOnode view (12)
Obviously, we can optimize Otag view with Stochastic Gra-

dient Descendent (SGD). However, generating EPr(Φ(u))
with multiple times sampling is a non-continuous operation
and has no gradient, which can not be back-propagated the
error with SGD. Next, we introduce the solution for this prob-
lem, called “reparameterization trick” which extends from
[Kingma and Welling, 2014]

Reparameterization Trick
For any Gaussian Mixture Model P (x), i.e.,

P (x) =
∑
i

αiNi(x) (13)

we can get the expectation EP (x) by first sampling from each
Gaussian distribution Ni(x) to get the expectation ENi(x),
then mixing these expectations with α to get EP (x), which is
proved as follows:

EP (x)=

∫
x

∑
i

αiNi(x)·xdx =
∑
i

αi

∫
x

Ni(x)·xdx

=
∑
i

αiENi(x)

(14)

Also, given µ and Σ of a Gaussian distribution, we can
sample x from N (µ,Σ) by first sampling ε ∼ N (0, I), then
computing x = µ+ Σ

1
2 ∗ ε, i.e.,

EN (x)⇔ Eε∼N (0,I)(x = µ+ Σ
1
2 ∗ ε) (15)

Therefore, the sampling operation in our model can be
moved to an input layer. With the help of reparameterization
trick, none of the expectations are related to distributions that
depend on our model parameters. Therefore we can optimize
Onode view with SGD.

5 Experiments
5.1 Experiment Setup
Data Sets
Leetcode1 is an online programming website. Nodes stand
for open problems, edges mean direct hyperlink between
problems, and tags are certain categories associated with the
problem; we treat difficulty as the label (562 nodes, 1095
edges, 34 tags, 3 classes).
Bilibili2 is a start-up Chinese video website. Nodes resemble
videos, edges are the links of “related video”, and tags are

1https://leetcode.com/
2https://www.bilibili.com/

certain short words added by uploaders. We collect a sam-
ple of videos and their links using BFS and regard the genre
(namely type name) of each video as the label (11727 nodes,
187149 edges, 151 tags, 10 classes).
Cora. We also convert the open data set Cora [Sen et al.,
2008] to the tagged network where each of the 1433 words re-
sembles a tag (2707 nodes, 5429 edges, 1433 tags, 7 classes).

Baselines
We choose the following methods as baselines for classifica-
tion: DeepWalk [Perozzi et al., 2014], Node2Vec [Grover and
Leskovec, 2016], LINE [Tang et al., 2015], and GraphSAGE
[Hamilton et al., 2017].

Parameters Settings
In Tag2Gauss, diagonal covariance is set as the covariance
of Gaussian distribution and λ in Equation 12 is selected ac-
cording to the grid search. The learning rate is 0.001. The
experimental results are reported in our experiment with the
10-fold cross-validation.

5.2 Node Classification
For classification, the embedding dimension across different
models is 64. We classify the pre-trained embeddings using
Logistic Regression over different training size. We take the
mean Macro-F1 as the result. Table 1 shows the Macro-F1

on node classification. As Tag2Gauss takes the polysemy and
complex semantic relations of tags, it outperforms all other
methods. Especially, the necessity of discriminating the tag
from node feature can be verified from the outperformance of
Tag2Gauss to GraphSage.

5.3 Tag Representation Capacity
We prove it is more advantageous for network mining tasks
when tags are mapped to distribution through node classifi-
cation experiment. A more detailed analysis is as follows.
Figure 5 shows the node classification accuracy on data set
Leetcode on different models, i.e., DeepWalk, Hybrid Deep-
Walk, and Tag2Gauss. As a typical algorithm that preserves
the structure, DeepWalk is introduced into our experiments to
verify the validity of regarding tags as auxiliary information.
Especially, Hybrid DeepWalk, applies DeepWalk algorithm
to node-tag hybrid network and learn the representations of
nodes and tags simultaneously and finally joint node embed-
ding with corresponding tag embedding. Tag2Gauss takes the
representations of nodes from node-view embedding module.

The figure shows that tags do play a role in network repre-
sentation learning as DeepWalk is worse than Hybrid Deep-
Walk and Tag2Gauss; however, Hybrid DeepWalk is inadvis-
able as it is not significantly improved and lacks robustness.
This naive method cannot exploit the implicit information be-
tween tags and nodes well. In such situations, Tag2Gauss
shows its incomparable advantages on account of exploiting
the implicit information of tags and keeping robust by map-
ping tags to distributions.

5.4 Tag Representation Visualization
In this section, we verify the advantages of mapping tags to
Gaussian distributions. Different from a single point, the rep-
resentation of each tag can learn the semantics and polysemy
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Model Leetcode Bilibili Cora

10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Node2Vec 36.37% 36.37% 38.68% 37.63% 39.68% 48.19% 48.19% 45.36% 45.36% 42.88% 57.12% 57.40% 57.40% 50.84% 48.84%
LINE 34.41% 38.59% 35.89% 33.66% 40.46 % 6.55% 7.21% 7.65% 8.30% 9.28% 49.00% 49.96% 46.23% 45.48% 39.13%
GraphSage 34.00% 37.37% 36.65% 39.77% 44.37% 61.48% 60.81% 60.52% 59.02% 54.26% 50.95% 51.63% 49.10% 45.70% 34.15%
Tag2Gauss 42.27% 42.68% 43.70 % 44.04% 45.03% 61.65% 61.23% 60.83% 60.58% 56.85% 68.45% 67.21% 66.56% 64.87% 63.26%

Table 1: The comparison of node classification measured by Macro-F1 on different models and different training size.

with the help of the mean vector and variance matrix in Gaus-
sian distribution. We train 2-dimension embeddings with di-
agonal covariance to visualize the tags in a plane. Figure 4
depicts the visualization of a subset of tag representations in
Leetcode. In Figure 4(a), we draw every tag representation
as an ellipse with a mean vector and three times of standard
derivation. For comparison, Figure 4(b) shows the tags drawn
with the mean vector.

(a) Shown as ellipses

(b) Shown as scatters

Figure 4: A subset of tags visualization in Leetcode dataset.

Compared with point representations, ellipses are of great
benefit because the overlaps illustrate the inclusion, entail-
ment and hierarchy of tags, hence they reveal the correlation
between tags more precisely. The ellipse region of tags in
Leetcode shows the applicability of related algorithm among
these programming problems, and the intersection of ellipses
means that the corresponding tag has the same set of solv-
able problems. For example, tag DP has a larger set of solv-
able problems than tag DFS. As for the complicated interac-
tion among tags, point representation can only show the re-
lationship as distance, thus limited in the expression ability.
For example, figure 4(b) shows that Heap is close to Queue,
but Heap actually contains Queue which can be seen in fig-
ure 4(a).

5.5 Cold Start
In cold start, a model generates embedding for new nodes
unseen during training. For Tag2Gauss, tag representations

20% 50% 80%
36
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40
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44

M
ac

ro
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)

DeepWalk Hybrid DeepWalk Tag2Gauss

Figure 5: Node classification on data set leetcode. Each bar rep-
resents an algorithm in a certain training ratio, plotted by training
ratios on the horizontal axis and Macro-F1 on the vertical.
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Figure 6: Cold start on Leetcode and Cora dataset

provide the auxiliary information for new nodes represent-
ing. To validate the effectiveness of Tag2Gauss in cold start,
we divide the network into two parts, i.e., the initial network
Ginit and the new node set Gnew . Ginit is used to train the
embedding model, and then the learned node embedding is
used to learn a logistic regression classifier(same as above).
In the testing process, embedding of nodes in Gnew are in-
ferred with the trained embedding model and classifier. Fig-
ure 6 shows the node classification accuracy on Gnew with
10-fold cross-validation. It can be seen from Figure 6 that
Tag2Gauss prevail over GraphSage on Leetcode and Cora.

6 Conclusion
In this paper, we propose Tag2Gauss to learn tag representa-
tion via Gaussian distribution in the tagged network. Specifi-
cally, we represent the tag as a Gaussian distribution to char-
acterize the complex semantic relationships between tags,
such as inclusion, entailment and hierarchy. Moreover, we
propose a tag representation learning model mapping tags to
distributions consisting of two embedding tasks, namely tag-
view embedding and node-view embedding. Empirically, the
extensive experimental results on node classification and net-
work visualization, as well as cold start of new nodes, demon-
strate the advantages of Tag2Gauss.
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