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Abstract

Reinforcement learning has enjoyed multiple im-
pressive successes in recent years. However, these
successes typically require very large amounts of
data before an agent achieves acceptable perfor-
mance. This paper focuses on a novel way of
combating such requirements by leveraging exist-
ing (human or agent) knowledge. In particular, this
paper leverages demonstrations, allowing an agent
to quickly achieve high performance. This paper
introduces the Dynamic Reuse of Prior (DRoP)
algorithm, which combines the offline knowledge
(demonstrations recorded before learning) with
an online confidence-based performance analysis.
DRoP leverages the demonstrator’s knowledge by
automatically balancing between reusing the prior
knowledge and the current learned policy, allow-
ing the agent to outperform the original demon-
strations. We compare with multiple state-of-the-
art learning algorithms and empirically show that
DRoP can achieve superior performance in two do-
mains. Additionally, we show that this confidence
measure can be used to selectively request addi-
tional demonstrations, significantly improving the
learning performance of the agent.

1 Introduction
There have been increasingly successful applications of rein-
forcement learning [Sutton and Barto, 1998] (RL) methods
in both virtual agents and physical robots. However, RL of-
ten suffers from slow learning speeds in complex domains,
which is particularly detrimental when initial performance is
critical. External knowledge may be leveraged by RL agents
to improve learning — demonstrations have been shown to
be useful for many types of agents’ learning [Schaal, 1997;
Argall et al., 2009]. In contrast to many behavior cloning
methods, which seek to mimic the demonstrated behavior,
our goal is to leverage a demonstration to learn faster, and
ultimately outperform the demonstrator.

Inverse reinforcement learning (IRL) [Ng et al., 2000] is
an alternative to behavior cloning where the agent aims to es-
timate the demonstrator’s reward function and then optimize

it. It is typically used in cases where no environmental reward
is available, and often requires the transition model.

To further improve over the demonstrations, one approach
is the Human Agent Transfer [Taylor et al., 2011] (HAT)
algorithm, which formulates the problem as that of transfer
learning [Taylor and Stone, 2009]: a source agent can demon-
strate a policy and then a target agent can improve its perfor-
mance over that policy. As refinement, the Confidence Hu-
man Agent Transfer [Wang and Taylor, 2017] algorithm was
proposed by leveraging the confidence in a policy.

In order to leverage demonstrations to improve learning,
four problems must be considered. First, the demonstration
may be suboptimal, and the agent should aim to improve
upon it. Second, if there are multiple demonstrators, their
outputs must be combined in a way to handle any inconsis-
tencies [Mao et al., 2018]. Third, the demonstration is rarely
exhaustive and some type of generalization must be used to
handle unseen states. Fourth, the agent must balance the us-
age of the prior knowledge and its own self-learned policy.

In this paper, we introduce DRoP (Dynamic Reuse of
Prior) as a interactive method to assist RL by addressing the
above problems. Prior research [Chernova and Veloso, 2007;
Wang and Taylor, 2017] used offline confidence. In con-
trast, DRoP leverages temporal difference models to achieve
online confidence-based performance measurement on trans-
ferred knowledge for better domain adaption. To guaran-
tee convergence, we introduce an action selection method to
help the target agent balance between following the demon-
stration and following its own learned knowledge. We em-
pirically evaluate DRoP using the domains of Cartpole and
Mario, showing improvement over existing methods, com-
pared with other state-of-art demonstration learning methods.
Results also validate our claim that multiple experts’ demon-
strations can be leveraged simultaneously, and that DRoP is
able to distinguish between high- and low-quality demonstra-
tions automatically. Finally, we show that these confidence
measures can be used to actively request additional demon-
strations, significantly improving learning performance.

The main contributions of this paper are: 1) automati-
cally balancing between an existing demonstration and a self-
learned policy, 2) efficiently integrating demonstrations from
multiple sources by distinguishing the knowledge quality,
and 3) actively requesting demonstrations in low confidence
states.
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2 Background
This section presents a selection of relevant background
knowledge and techniques from recent research.

2.1 Reinforcement Learning
By interacting with an environment, an RL agent can learn
a policy to maximize an external reward. A Markov deci-
sion process is common formulation of the RL problem. In a
Markov decision process, A is a set of actions an agent can
take and S is a set of states. There are two (initially un-
known) functions within this process: a transition function
(T : S ×A 7→ S) and a reward function (R : S ×A 7→ R).

The goal of an RL agent is to maximize the expected re-
ward — different RL algorithms have different ways of ap-
proaching this goal. This paper uses Q-learning [Watkins and
Dayan, 1992] as the base RL althorithm:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)]

2.2 Transfer Learning and Learning from
Demonstration

The key idea of transfer learning is to leverage existing
knowledge to improve a new agent’s learning performance.
Transfer learning has been applied in various domains, such
as multitask learning [Kirkpatrick et al., 2017; Teh et al.,
2017], deep reinforcement learning [Rusu et al., 2016;
Parisotto et al., 2016; Higgins et al., 2017], and represen-
tation learning [Maurer et al., 2016; Luo et al., 2017]. In this
section, we will discuss knowledge transfer techniques using
demonstrations.

Probabilistic Policy Reuse [Fernández and Veloso, 2006]
is one transfer learning approach. Like many other existing
approaches, it assumes both the source and the target agents
share the same internal representations and optimal demon-
strations are required. Existing policies could guide the learn-
ing direction as shown elsewhere [Da Silva and Mackworth,
2010; Brys et al., 2017], but near-optimal policies could be
impracticable due to the complexity of the learning task or
the cost of a domain expert’s time.

Imitation is a popular and fundamental approach that trans-
fers the demonstrator’s behavior by having an agent exactly
following the demonstrations. However the learner’s perfor-
mance could possibly be limited by the demonstrator. On top
of imitation learning, Dagger [Ross et al., 2011] incorporates
the demonstration trajectories into the target agent’s real vis-
ited states. Dagger works by collecting a dataset (real visited
state-action pairs) at each iteration under the current policy
(starting from the pure demonstration policy) and trains the
next policy under the aggregate of all collected datasets. It
shows the ability of adapting demonstrations into the target
agent’s own learning experience and outperforming the pure
demonstration reuse. However, the shortcoming is that Dag-
ger treats the policy training simply as a supervised learn-
ing problem and the only contribution is how it organizes the
training data set for each iteration of building the action clas-
sifier. This would limit the adaptive capacity of Dagger, par-
ticularly when the target task’s state environment (transition
MDPs) is not exactly the same as the demonstration’s.

Human Agent Transfer (HAT) takes a novel step by inte-
grating the demonstrations with RL. The goal of HAT is to
leverage demonstration from a source human or source agent,
and then improve agents’ performance with RL. Rule trans-
fer [Taylor and Stone, 2007] is used in HAT to remove the
requirements on sharing the same internal representation be-
tween source and target agents, which is the novel approach
that allows knowledge transfer across different types agents
(e.g., from human to an agent). The following steps summa-
rize HAT:

1. Learn a policy (π : S 7→ A) from the source task.

2. Train a decision list upon the learned policy as “IF-
ELSE” rules.

3. The target agent’s action is guided by the trained rules
under a decaying probability.

By fitting the demonstration reuse into RL domains with
reward distributions, HAT can better adapt the transferred
policy into the target task comparing to the pure classifier
training of Dagger.

As an extension, Confidence Human Agent Trans-
fer [Wang and Taylor, 2017] (CHAT) provides a method
based on confidence — it leverages a confidence-based
source agent’s/human’s demonstration to improve the learn-
ing performance. Instead of rule transfer, CHAT measures
the confidence in the source demonstration. Such offline con-
fidence is used to predict how reliable the transferred knowl-
edge is. To assist RL, CHAT will leverage the source demon-
strations to suggest an action in the agent’s current state,
along with the calculated confidence. For example, CHAT
can use a Gaussian distribution to predict an action from a
demonstration with an offline probability. If the calculated
confidence is higher than a pre-tuned confidence threshold,
the agent would consider the prior knowledge reliable and
execute the suggested action.

To guarantee that the demonstration data will not harm the
agent’s learning convergence, all above methods use similar
solutions — following the artificial probability control, which
forces the agent into reusing the prior knowledge under a de-
caying probability curve.

3 Dynamic Reuse of Prior (DRoP)
This section introduces DRoP, a method to estimate the con-
fidence of the agent in different data sources over time. Sec-
tion 3.1 discusses how we build the confidence-based policy
from the demonstration dataset. Section 3.2 introduces the
confidence update methods which dynamically analyze the
prior confidence during online learning. Based on the confi-
dence update, Section 3.3 shows how an agent should select
an action to execute, as well as how multiple sources could
be integrated by DRoP.

DRoP follows a three step process:

1. Collect a demonstration dataset (state-action pairs).

2. Use supervised learning to train a policy on the demon-
stration data. Different methods (e.g. IRL, HAT, etc.)
could be applied in this step but this paper uses two
methods: Gaussian regression and a fully connected
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neural network. The demonstration data might not be
i.i.d. for supervised learning and hence the policy might
be sub-optimal. We will show in the results that our
method can still improve the performance without an op-
timal start policy.

3. DRoP’s bootstrap (Algorithm 1) is used to assist an RL
agent in the target task. This is the core step that helps
the agent tranfer the prior to its own knowledge base dur-
ing self-learning.

Relative to other existing work, there are significant ad-
vantages to DRoP’s online confidence measurement: First, it
removes the trial-and-error confidence threshold tuning pro-
cess. Second, the target agent’s experience is used to mea-
sure confidence on demonstrations. DRoP performs the adap-
tive confidence-based performance analysis during the target
agent’s learning. This online process can help guarantee the
transfer knowledge is adapted to the target tasks. Third, there
is no global reuse probability control, a parameter that is cru-
cial in other knowledge reuse methods [Wang and Taylor,
2017; Taylor et al., 2011; Fernández and Veloso, 2006] to
avoid suboptimal asymptotic performance.

3.1 Policy Models Using Confidence-based
Classification

A Gaussian could be an effective kernel for the policy re-
gression because we consider the demonstrations recorded
from human teachers, which could contain noise. Given the
demonstration dataset D = {x1, a1, x2, a2, ..., xi, ai}, a ∈
A, and a query state point x, the policy model would make an
action prediction using the Gaussian kernel K(x, xi):

f(x) = arg max
a∈A

∑
xi∈D, ai=a

K(x, xi) / Na

normalized by total number of action a in the dataset: Na =
#{ai ∈ A | ai = a}, where A is the set of all possible actions.
The confidence of the above prediction is computed through
the weighted probability:

P =

∑
xi∈D, ai=a

K(x, xi) / Na∑
â∈A

∑
xi∈D, ai=â

K(x, xi) / Nâ

The other policy model considered is a two-hidden-layer
neural network (NN). The prediction with the highest confi-
dence is made through a softmax [Bishop, 2006] layer:

P = max

{
1∑

i exp(θ
T
i · p)

exp(θ
T
1 · p))

exp(θT2 · p))
...

exp(θTi · p))

}

θi is the weight vector of the i-th output of the softmax
layer and p is the corresponding input. max{·} in the above
equation is the weighted confidence by the network.

3.2 Temporal Difference Confidence Update
The online confidence metric is measured via a temporal dif-
ference (TD) approach. For each action source (learned Q

function or prior knowledge), we build a TD model to mea-
sure the confidence-based performance via experience.

A confidence-based TD model is used to analyze the per-
formance level of every action source with respect to every
state. Once an action is taken, the confidence model will up-
date the corresponding action source’s confidence value. As
a heuristic, an RL agent should prefer the action source with
higher confidence value: the expected reward would likely be
higher by taking the action from that source.

Our TD confidence model, C(s), updates as follows:

C(s)← (1−F (α))×C(s)+F (α)×[G(r)+γ×C(s′)] (1)

where γ is discount factor, r is original task reward, α is the
update parameter, and F (α) and G(r) are defined below. For
continuous domains, function approximators such as tile cod-
ing [Albus, 1981] should be used — in this work we are using
the same discretization approximator as Q(s, a).

We have two types of C(s): confidence prior knowl-
edge model (CP (s)) and confidence Q knowledge model
(CQ(s)). CP (s) denotes the confidence of following the
prior knowledge and CQ(s) denotes the confidence follow-
ing self-learned policy, given the current state s. CP (s) has 2
update methods: Dynamic Rate Update (DRU) and Dynamic
Confidence Update (DCU). For DRU, we define a dynamic
updating rate based on classification confidence distribution
discussed in Section 3.1: F (α) = α × P . The update rate of
CP (s) will be bounded by the confidence of the correspond-
ing classification. If the confidence is higher, the update step
will be more confident with a higher update rate (and vice
versa). Besides, we use the original task reward: G(r) = r.

For DCU, we use a fixed update rate: F (α) = α, but the re-
ward function leverages the confidence: G(r) = r

r max × P ,
where r

r max is a normalized reward (r max denotes the
maximum absolute reward value) and G(r) re-scales the re-
ward using the confidence distribution.
CQ(s) uses the same update methods with F (α) = α and

G(r) = r. CQ(s) will be updated only if an action is selected
by the agent’s own Q knowledge (from Q(s, a)) and CP (s)
will be updated only if an action is selected from the prior.

3.3 Action Source Selection Method
Given these TD-based confidence models, we define our ac-
tion selection methods to balance an agent’s learned knowl-
edge (CQ(s)) with its prior knowledge (CP (s)).

Intuitively, higher confidence is better and the hard deci-
sion defines action source (AS) as:

AS = arg max[{CQ(s), CP (s)}],

where ties are broken randomly.
However, lower-confidence action might be worth trying

due to the imperfection of the prior model training. The
soft decision decides the action source using a probability
distribution. To calculate the probability, we first normalize
CQ(s) and CP (s): R = max{|CQ(s)|, |CP (s)|}, rCQ =
CQ(s)/R, rCP = CP (s)/R. Then we rescale rCQ and
rCP using the hyperbolic tangent function: tanh(·). The
probability of selecting action source is defined as:
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Algorithm 1: DRoP, Target Learning Bootstrap
Input: Prior knowledge model PM

1 for each episode do
2 Initialize state s to start state
3 for each step of an episode do
4 if rand() ≤ ε then
5 a← random action . Exploration
6 else
7 AS ← Action Decision Model . S-H-ε
8 if AS == Prior Knowledge then
9 a← action from Prior Knowledge

10 else
11 a← action that maximizes Q

12 Execute action a
13 Observe new state s′ and reward r
14 if AS == Prior Knowledge then
15 Update CP as Equation 1
16 else
17 Update CQ as Equation 1
18 Update Q (SARSA, Q-Learning, etc.);

AS =

{
Q P = tanh(rCQ)+1

tanh(rCP )+tanh(rCQ)+2

Prior P = tanh(rCP )+1
tanh(rCP )+tanh(rCQ)+2

(2)

The soft-hard-ε decision (S-H-ε), shown in Algorithm 2,
takes advantage of the above two models by adding an ε-
greedy switch over the hard decision and the soft decision:
S-H-ε can both greedily exploit the confidence value and also
perform probabilistic exploration. S-H-ε is used in the result
section because it outperforms the other two models.

When there are multiple sources of prior knowledge, the
above AS (in Equation 2) can be expanded to multiple cases:

AS =


Prior1 P1 = tanh(rCP 1)+1∑

i
{tanh(rCP i)+1}

... ...

P riori Pi = tanh(rCP i)+1∑
i

{tanh(rCP i)+1}

(3)

3.4 Interactive Demonstration Request
It may be useful to request additional demonstrations where
the agent can most benefit from them. These regions would
be difficult to pre-compute, but they can be identified dur-
ing training as places in the state space where the agent has
low confidence in its policy. We first record demonstrations
from an human expert and use DRoP to assist an RL agent’s
learning. After a short period of training (2% of the baseline
training time), we then use the following steps to request ad-
ditional demonstrations within the same number of episodes
from the same demonstrator at each state s:

1. Calculate average confidence of prior knowledge (i.e.,
CP (s)) at each step of the current episode:

AveC =
1

steps
×
∑
i

CP (si)

Algorithm 2: S-H-ε, Soft-Hard-ε Decision Model
Input: CQ,CP, State s

1 R = max{|CQ(s)|, |PQ(s)|}
2 rCQ = CQ(s)/R
3 rCP = CP (s)/R
4 if rand() ≤ ε then
5 if rand() ≤ tanh(rCQ)+1

tanh(rCP )+tanh(rCQ)+2 then
6 AS = Prior Knowledge
7 else
8 AS = Q Knowledge

9 else
10 AS = arg max[{CQ(s), CP (s)}]
11 return AS . Action source

2. Scan a neighbourhood window of states and calculate
the average “CP (s)” to approximate the local confi-
dence. An average is used to reduce noise.

3. If the averaged CP value is smaller thanAveC, request a
demonstration of 20 actions, starting at the current state.

4. Add the above recorded state-action pairs into the re-
quest demonstration dataset of DRoP.

Section 5.3 will show that the requested demonstrations
would help the learning more than the original recorded data.

4 Experimental Setup
This section details our experimental methodology.

4.1 Experiment Domains
We evaluate our method in two domains: Cartpole and Mario.

The Cartpole simulation is based on the open-source Ope-
nAI Gym [Brockman et al., 2016]. This task has a continuous
state space; the world state is represented as 4-tuple vector:
position of the cart, angle of the pole, and their correspond-
ing velocity variables. The system is controlled by applying a
force of +1 or -1 to the cart. The reward function is designed
as +1 for every surviving step and −500 if the pole falls.

Mario is a benchmark domain [Karakovskiy and Togelius,
2012] based on Nintendo’s Mario Brothers. To guarantee the
diversity and complexity of tasks, our simulation world is
randomly sampled from a group of one million worlds. The
world state is represented as a 27-tuple vector, encoding the
agent’s state/position information, surrounding blocks, and
enemies [Suay et al., 2016]. There are 12 (3× 2× 2) actions
(movement direction × jump button × Run/Fire button).

4.2 Methodology
Demonstrations are collected either from a human participant
(one of the authors of this paper) via a simulation visualizer,
or directly from an agent executing the task.

We use a “4-15-15-2” network (15 nodes in two hidden
layers) network in Cartpole and a “27-50-50-12” network in
Mario. To benchmark against CHAT, we use the same net-
works as the confidence models used by DRoP. To bench-
mark against HAT, J48 [Quinlan, 1993] is used to train de-
cision rules. For both CHAT and HAT, the self-decaying

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3823



reuse probability control parameter Φ was tuned to be 0.999
in Cartpole and 0.9999 in Mario. For Dagger, we use the
best parameters of “D0.5”1. Target agents in both Cartpole
and Mario use the Q-learning algorithm. In Cartpole, we
use α = 0.2, γ = 0.9, and ε = 0.1 . In Mario, we use
α = 1

10×32 , γ = 0.9, and ε = 0.1. These parameters are
set to be consistent with previous research [Brys et al., 2015;
Wang and Taylor, 2017] in these domains.

Experiments are evaluated in terms of learning curves, the
jumpstart, the total reward, and the final reward. Jumpstart is
defined as the initial performance improvement, compared to
an RL agent with no prior knowledge. The total reward ac-
cumulates scores every 5 percent of the whole training time.
Experiments are averaged over 10 learning trials and t-tests
are performed to evaluate the significance. Error bars on the
learning curves show the standard deviation.2

5 Experimental Results
This section will present and discuss our experimental re-
sults. We first show the improvement over existing knowl-
edge reuse algorithms, HAT, Dagger and CHAT, as well as
baseline learning. Then we show DRoP is capable of lever-
aging different quality demonstrations from multiple sources.
Finally we will evaluate how DRoP could be used for inter-
active RL by involving a human demonstrator in the loop.

5.1 Improvement over Baselines
In Cartpole, we first let a trained agent demonstrate 20
episodes (average number of steps: 821 ± 105) and record
those state-action pairs. In Mario, we let a trained agent
demonstrate 20 episodes (average reward: 1512 ± 217).

DRoP is then used with these demonstration datasets. As
benchmarks, we run HAT, CHAT, and Dagger on the same
datasets, and Q-learning is run without prior knowledge.
Learning performance is compared in Table 1. DRoP with
different models outperforms the baselines. The top two
scores for each type of performance metrics are in bold.
DRoP with DRU and S-H-ε model has achieved the best
learning result and further experiments in the next sections
use this setting. DRoP’s improvements are all statistically
significant (p < 10−4) relative to Q-learning and we mark
results with no significant improvement (p > 0.05) of other
benchmark methods in italics. To highlight the improvement,
Figure 1 and 2 show the learning curves of DRoP using neu-
ral network (NN) policy model and DRU method. DRoP
outperforms all baselines and all 4 ways of DRoP work (i.e.
DRU/DCU and NN/Gaussian).

Methods like CHAT have to use a global self-decaying
probabilistic parameter to control the reuse frequency of prior
knowledge. Therefore, it is possible that the target agent will
execute suboptimal actions repeatedly (subject to the decay-
ing probability). From Figure 1 and 3, we can see that as
the reuse probability decays, the performance of CHAT dips,
suggesting the agent must re-explore and re-learn to outper-
form the previously learned (suboptimal) knowledge. In con-
trast, DRoP allows the target agent to always perform online

1For each episode i, the reuse probability is 0.5i−1.
2Our sources are available at zhaodongwang.info
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Figure 1: Comparison of learning rewards in Cartpole.
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Figure 3: Comparison of actual reuse frequency of prior knowledge
using DRoP and CHAT in Cartpole.

confidence-based performance analysis, which would achieve
a better balance between the prior and self-learned policy.

5.2 DRoPping Low-quality Demonstrations
We consider using suboptimal demonstrations to see how
well the online confidence-based analysis mechanism can
handle poor data without harming the optimal convergence.
Here we have five groups of demonstrations (recorded from
different agents), ranging from completely random to high
performing (Rand to L4, shown in Tables 2 and 3).
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Method Cartpole Mario
Jumpstart Total Reward Final Reward jumpstart Total Reward Final Reward

Q-Learning N/A 11653 951 ± 36 N/A 27141 1569 ± 51
HAT 201 20004 1444 ± 52 651 28828 1577 ± 41

CHAT 258 22692 1766 ± 68 1046 30144 1574 ± 46
Dagger 144 25728 1651 ± 62 437 25828 1526 ± 44

DRoP (DCU, Gaussian) 315 34025 2369 ± 72 923 32562 1699 ± 49
DRoP (DRU, Gaussian) 320 35187 2395 ± 64 931 31241 1732 ± 46

DRoP (DCU, NN) 308 35312 2383 ± 71 909 32108 1752 ± 55
DRoP (DRU, NN) 303 35544 2411 ± 56 915 33022 1779 ± 61

Table 1: This table compares baselines (methods 1 to 4) with DRoP using different models (methods 5 to 8). Jumpstart, total reward, and
final reward are shown. The top two scores of each column are in bold and insignificant improvements over Q-learning are in italics.

Demo
Performance

Jump
start

Converged
Performance

Converged
Reuse Frequency

Q-Learning N/A 951 ± 136 N/A
Rand: 15 ± 7 -5 942 ± 142 0.02 ± 0.01
L1: 217 ± 86 153 1453 ± 96 0.12 ± 0.03
L2: 435 ± 83 211 1765 ± 112 0.17 ± 0.04
L3: 613 ± 96 278 2080 ± 86 0.21 ± 0.02

L4: 821 ± 105 303 2411 ± 56 0.32 ± 0.03

Table 2: This table shows the performance of Q-learning and DRoP
(DRU, NN) upon 5 different levels of demonstrations in Cartpole.

Demo
Performance

Jump-
start

Converged
Performance

Converged
Reuse Frequency

Q-Learning N/A 1569 ± 51 N/A
Rand: -245 ± 11 -52 1552 ± 72 0.01 ± 0.01
L1: 315 ± 183 336 1582 ± 67 0.08 ± 0.02
L2: 761 ± 195 512 1601 ± 73 0.15 ± 0.05
L3: 1102 ± 225 784 1695 ± 81 0.19 ± 0.03
L4: 1512 ± 217 906 1779 ± 61 0.28 ± 0.04

Table 3: This table shows the performance of Q-learning and DRoP
(DRU, NN) upon 5 different levels of demonstrations in Mario.

We first evaluate our method individually with the five
demonstration datasets. Cartpole results are shown in Ta-
ble 2 and Mario results are shown in Table 3. As we can see,
the quality of the demonstration does effect performance, and
better demonstrations lead to better performance. However,
what is more important is whether poor demonstrations hurt
learning. If we look at the results of using randomly gen-
erated demonstrations, we find that even if the jumpstart is
negative (i.e., the initial performance is hurt by using poor
demonstrations), the final converged performance is almost
the same as learning without the poor demonstrations, which
means the DRoP agent has learned to ignore the poor demon-
strations (reuse frequency is almost zero).

We then evaluate the multiple-case model (Equation 3) by
simultaneously providing the above demonstrations to DRoP
and results are shown in Table 4. With bad demonstrations
mixed in the data, DRoP is still able to reuse L4 the most,
correctly leveraging the highest-quality data.

5.3 DRoP-in Requests for Demonstrations
This section addresses another challenging problem — can
DRoP’s confidence mechanism productively request addi-

Method Jumpstart
Converged

Performance
Converged

Reuse Frequency
CHAT 191 983 ± 151 0.05 ± 0.02

DRoP 253 2286 ± 91

Rand: 0.02 ± 0.01
L1: 0.05 ± 0.01
L2: 0.06 ± 0.02
L3: 0.11 ± 0.03
L4: 0.23 ± 0.02

Table 4: This table shows the performance of DRoP (DRU, NN) and
CHAT upon multiple sources of demonstrations in Cartpole.

tional demonstrations from a human or agent?
In Mario, we first record 20 episodes of demonstrations

from an human expert with an average score of 1735, and
then use the method in Section 3.4 for active demonstrations
requests. We find that a window of 10 × 10 neighbourhood
positions works well and this could be domain-variant. The
time cost (348 s) of the active demonstration collection (20
episodes) is only 2% of the baseline training time (15325 s),
highlighting the efficiency of DRoP.

Figure 4 shows the performance comparison between the
above two demonstration datasets: 20 episodes of original
human demonstrations and 20 episodes requested by DRoP.
Notice that even though human’s demonstration performance
is higher than the L4 dataset from the previous section, the
actual jumpstart of the former is instead lower. This is po-
tential evidence that the agent could not “digest” the entire
human demonstrator’s knowledge. DRoP would request the
demonstration from human only in states where the knowl-
edge confidence is relatively low. Therefore, we know that
the target agent truly needs these requested demonstrations
and the learning improvement could be better. DRoP im-
proved the overall learning effectiveness by requesting less,
but critical, demonstration data.

6 Conclusion and Future Work
This paper has introduced DRoP and evaluated it in two do-
mains. This work shows that by integrating offline confidence
with online temporal difference analysis, knowledge transfer
from source agents or humans can be successfully achieved.
DRoP outperformed both learning without prior knowledge
and recent state-of-the-art transfer methods.

DRoP works as an action communication protocol between
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Figure 4: Mario learning curves using demonstration requested by
DRoP and original demonstration from human expert.

the transferred offline prior knowledge and online reinforce-
ment learning, leveraging the TD confidence updates. Re-
sults have shown that DRoP can effectively leverage the prior
knowledge of different quality levels from multiple sources.
Besides, demonstrations requested by DRoP can significantly
improve the RL agent’s learning process, leading to a more
efficient collaboration between two very different types of
knowledge entities: humans and agents.

There are a number of interesting future directions, includ-
ing the following. First, we will explore model-based demon-
strations to see if any hierarchical structure could provide bet-
ter confidence measurement than classification equally over
all state-action pairs. Second, we will use DRoP to build a
lifelong online learning system which can automatically re-
fine that knowledge model during learning. Third, consider-
ing the high training cost of deep learning, DRoP could be im-
plemented as a bootstrap leveraging light-weight pre-trained
prior knowledge network from demonstrations.
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