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Abstract

This paper tackles the problem of providing users
with ranked lists of relevant search results, by in-
corporating contextual features of the users and
search results, and learning how a user values mul-
tiple objectives. For example, to recommend a
ranked list of hotels, an algorithm must learn which
hotels are the right price for users, as well as how
users vary in their weighting of price against the
location. In our paper, we formulate the context-
aware, multi-objective, ranking problem as a Multi-
Objective Contextual Ranked Bandit (MOCR-B).
To solve the MOCR-B problem, we present a
novel algorithm, named Multi-Objective Utility-
Upper Confidence Bound (MOU-UCB). The goal
of MOU-UCB is to learn how to generate a ranked
list of resources that maximizes the rewards in
multiple objectives to give relevant search results.
Our algorithm learns to predict rewards in multiple
objectives based on contextual information (com-
bining the Upper Confidence Bound algorithm for
multi-armed contextual bandits with neural net-
work embeddings), as well as learns how a user
weights the multiple objectives. Our empirical re-
sults reveal that the ranked lists generated by MOU-
UCB lead to better click-through rates, compared
to approaches that do not learn the utility function
over multiple reward objectives.

1 Introduction

There are many learning settings where we want to tease out
the human preferences to provide users with ranked lists of
resources to choose from, such as suggesting hotels on Tri-
pAdvisor, jobs on LinkedIn, or products to buy on Amazon.
In this study, we focus on the problem of actively choos-
ing ranked lists of resources to present to users, and dy-
namically using users’ interactions (e.g., user clicks, ratings,
feedback) to decide which resources to present in the future.
Such problems often rely critically on using contextual in-
formation about the users and resources [Xiang et al., 2010;
Zamani et al., 2017].

For example, consider an online ranking algorithm that

3835
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Figure 1: A user’s overall rating and ratings in different objectives
for a hotel in TripAdvisor

aims to learn which hotels to suggest to users in TripAdvi-
sor. The algorithm can access context information about the
user, such as users’ previous reviews, ratings, location, or the
user’s current activity (e.g., relaxing, jogging). The algorithm
can also access context information about the hotels such as
location, services provided, and stars-level. When suggesting
hotels for a user to stay, in addition to the overall rating, the
algorithm can obtain multiple reward signals (i.e., location
rating, value for money, cleanliness rating, business service
rating) about a hotel as shown in Figure 1. Users may value
these rewards for the multiple objectives differently when de-
ciding to book a hotel. For instance, whether a user reserves
a hotel would reflect the extent to which the user values the
hotel’s location rating, versus the room services ratings. The
algorithm must learn to model how a user’s overall rating of
a hotel depends on the user’s weighting of these multiple ob-
jective rewards. However, learning the users’ utility function
over the multi-objective rewards is a challenging task since
both the utility function and the multi-objective rewards are
often unknown a priori. Therefore, an algorithm must com-
bine multiple capacities: (1) online learning by trading off
exploration and exploitation in suggesting resources, (2) dis-
covery and modeling of how contextual features of users and
resources are mapped to rewards, and (3) discovery and mod-
eling of how an individual’s preferences map multiple objec-
tive or competing rewards to actual behavior. Also, incorpo-
rating high-dimensional and unstructured context information
effectively to the learning process is a non-trivial task.

The extant literature contains efforts to solve this problem
by optimizing a single objective function, such as the click-
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through-rate (CTR) or query relevancy (QR) [Liu, 2009;
Zamani et al., 2017]. We formulate the above context-
aware, multi-objective, ranking problem as a novel Multi-
Armed Bandit (MAB) [Robbins, 1985] problem that con-
siders multi-objective reward vectors, contextual information
and ranking. Our formulated problem is named as the Multi-
Objective Contextual Ranked Bandit (MOCR-B) problem. In
the MOCR-B problem, a learning algorithm observes a con-
text for each objective, based on the querying user and avail-
able resources at the beginning of each trial. Then, it sequen-
tially selects a ranked list of web resources to serve to the
user based on the context of the user and web resources. In
each trial, a user clicks on a relevant web resource from the
ranked list and reveals a reward vector. Based on the user’s
click behavior and the revealed reward vectors, the algorithm
adapts its ranking-strategy to minimize the total number of
poor rankings based on the rewards in each objective.

To tackle the MOCR-B problem, in this paper, we present a
novel algorithm, Multi-Objective Utility-UCB (MOU-UCB),
based on generalized linear contextual bandits [Li er al.,
2017] and neural network embeddings [Mikolov et al., 2013].
In a generalized linear contextual bandit, the stochastic re-
ward is generated from an unknown distribution, where the
expected reward can be a linear, logistic or probit model con-
ditioned on the context and the chosen resource. To maxi-
mize the long-term reward in each objective, MOU-UCB first
models the expected payoff of each objective of a resource
as a linear function of a context feature vector, and it learns
the goodness of the match between the user’s context and a
resource’s expected multi-objective reward. MOU-UCB then
learns an unknown utility function over the multiple objec-
tive rewards for each user based on the user’s click behavior
and ranks the web resources to minimize the total number of
poor rankings. There have been past different lines of work
on contextual bandits, ranking, and weighting the utility re-
ward. Our contribution is on combining these, as discussed
in detail in the Related Work section. To the best of our
knowledge, our work is the first to present a bandit solution
that combines context-awareness, multi-objective optimiza-
tion, and ranking. We summarize the main contributions of
this paper as follows:

e We present a novel problem formulation to handle context
information, user preferences and multi-objective reward
functions in online ranking called Multi-Objective Contex-
tual Ranked Bandits (MOCR-B).

e We develop a novel algorithm, named MOU-UCB, to solve
the MOCR-B problem. MOU-UCB models context infor-
mation in each objective and directly learns the utility over
the multiple objectives for each user to generate ranked
lists that maximizes the number of clicks.

e We demonstrate the effectiveness of our algorithm using
real-world data from TripAdvisor.

2 Problem Definition

In this section, we define the Multi-Objective Contextual
Ranked Bandit (MOCR-B) problem, where the goal is to rank
resources to maximize user satisfaction based on multiple ob-

jective rewards. In the MOCR-B problem setting, users inter-
act with a system over several trials. An algorithm solving
the MOCR-B problem must learn to provide users with a list
of resources (also called arms). The resources are ranked ac-
cording to their utility for the user, where the utility function
is a weighted combination of multiple observed rewards in
different objectives. Also, the rewards in each multiple ob-
jective are a function of contextual features of the user and
the resource.

In this problem setting, there is a set of users denoted as U/,
a set of arms denoted as A, I number of objectives, and K
number of ranks. An algorithm solving the MOCR-B prob-
lem runs over a sequence of trials indexed by ¢ € [T7].

On trial ¢, the algorithm presents a ranked list A(¢, K) to a
user u; € U. Let A(t, K) = {ap(t)|k € [K]} where ay(t) is
the resource displayed in the k" rank. At trial ¢, the algorithm
must choose a set of resources with a high utility for a user.
More precisely the arm chosen by the algorithm at rank &
must maximize the expected binary utility reward f (¢, u;),
which is 1 if the user selects the arm and O otherwise.

In the MOCR-B problem setting, the utility reward is un-
known a priori, but it is known that f (¢, u;) is associated with
multiple objective rewards. Let r,(t) := [rL(¢),...,rL(#)]
be the multiple objective rewards where a € fl(t, K) and
r.(t) € [0,1]%. Then,

fi(tur) = g(ra(t)) + € (1

where ¢(.) is an unknown function and e is the 1-subgaussian
error term. In this problem setting, the multiple objective re-
wards r, () are an unknown a priori too, but they are associ-
ated with the context of users and arms. Suppose the length
of the context vector is [. Formally, let x (¢) € R! be the
context feature vector for an arm a € A in objective i where
i € [I]. Let ri(t) be the corresponding multi-objective re-
ward in r,(¢). Then,

o (t) = h(x}(t)) + € )

where h(.) is an unknown function and €’ is the 1-subgaussian
error term with mean zero. When the algorithm presents the
ranked list A(¢, K) to the user u,, the user selects arms he
found to be useful. Additionally, for useful arms the users
provide multiple objective rewards. Thus, in trial ¢, for each
resource ay(t) € A(t, K) the algorithm observes the corre-
sponding utility reward fy (¢, u;), and the multiple objective
rewards r,,, (4)(t). In the MOCR-B problem setting, the utility
reward function g(.) and the multi-objective reward function
h(.) are an unknown a priori. The key to solving the MOCR-
B problem is to learn ¢(.) and h(.) while offering a minimal
number of sub-optimal arms to users.

3 MOU-UCB Algorithm

To solve the MOCR-B problem, we have chosen generalized
linear contextual bandits. As f(¢t,u;) € {0,1}, we mod-
eled the utility reward function g(.) as a logistic function with
an unknown user-specific coefficient vector ﬁﬁf as given in
Equation 3. Since 7% (¢) € [0, 1] and continuous, we modeled
the multi-objective reward function h(.) as a linear function
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with an unknown arm-specific coefficient vector 8; , as given
in Equation 4.

fr(toug) = 1/1 + exp{-r,(t)TBL} + ¢ 3)
ri(t) = XZ(t)TGZQ +¢ 4

As aresult, the MOCR-B problem introduced in the previous
section can be reduced to a parametric bandit problem where
we need to learn the optimal ﬁﬁf forallu € U, k € [K] and
the optimal 67, for a € A,i € [I] with minimum regret.
The rest of this section describes the MOU-UCB algorithm
we designed to solve this reduced MOCR-B problem.

3.1 Ranking Model

MOU-UCB runs a separate multi-armed bandit instance for
each rank and selects the arm for the respective rank. Let
IT = {My|k € [K]} be the set of these multi-armed bandit
instances. When ranking resources for a user, each M, se-
lects the resource to be shown at rank k. The goal of each M},
is to choose an arm a that has the maximum expected utility
reward g(ra(t)T[)’Zf) at trial ¢. Note that both Bﬁf and r,(¢)
are unknown at the beginning of a trial. Next, we explain how
each of these model parameters is learned.

Modeling the Multi-Objective Reward
First, we explain how r,(t) is estimated. At the beginning
of the trial ¢, the algorithm observes the context of the user
and arm. Let {x(t)|a € A,i € [I]} be this context set. We
assumed in expectation the multi-objective reward to be lin-
ear with the context feature vector and unknown coefficient
vector 0; , as described in Equation 4. Suppose 0; , is the
estimate of 8; , after ¢ trials. MOU-UCB uses ridge regres-
sion [Li et al., 2010] and minimizes the following equation to
calculate 9W.

=, . N2 .

S (rhe) = (b)) A0 )

s=1
where A is the regularization parameter. In our problem set-
ting at trial ¢ an algorithm has access only to the sequential
data that arrived in the previous trials. Unlike in a super-
vised learning setting, this dataset is not a fair sample of the
population. Thus, the expected mean reward h(x’ (t)78; )

calculated based on the é,a has a margin of error. We can
show that this margin of error can be upper bounded as
a|[x; (t)||a, -1 Where « is an exploration parameter that

needs to be tuned and |[x, ()||a,, [i-1 is the weighted lo-norm
of the context vector associated with a positive-definite matrix
A,[i]. The matrix A,[i] = S0_, x4 (s)(x%(s))T. In order
to account for this margin of error, we decided to model the
multi-objective reward in trial ¢, denoted as % (¢), as the sum
of the empirical mean reward and the one sided confidence

interval of the empirical mean as shown below.

Fa(t) = (x4(t))70i,a + allxq ()]| A, - ©)
This model allows us to efficiently estimate multi-objective
rewards when users and arms do not have a lot of historical
data. As the number of trials increases, our algorithm can
discover how contextual features of users and resources are
mapped to the rewards in each objective.
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Modeling the Utility Reward

Now we explain how ﬂﬁf is learned in each M}, € Il instance.
Each M}, instance selects a resource ay(t) that maximizes
the expected utility reward g(r, (t)Tﬂﬁ’:) for rank k. Suppose

ok . I .
B., is our current maximum likelihood estimator of ,Bﬁf after

t trials. We use logistic regression [Li ef al., 2012] and solve

. . ~k
the following equation to calculate 3,,,,

t—1

S (s 16) = 9((Tar (6)(9) B a0 () =0 (D

s=1

Since at the beginning of trial ¢ we do not have access to
the multi-objective rewards to calculate the expected utility
reward, we rely on our estimated multi-objective rewards
{£a(t)|Ea(t) = [FL(t),...,7L(#)],a € A} obtained from
the previous step. Suppose in trial ¢ we provide each multi-
armed bandit instance the set of estimated multiple objective
rewards. Then we calculate the expected utility reward for

eacharm a € A as g(fa(t)Tﬁit).

As explained in the problem setting, we can observe the
utility rewards only for a subset of arms in a given trial.
To account for the uncertainty, we relied on a upper confi-
dence bound based exploration-exploitation technique to se-
lect the best arm for each rank. Each M), instance chooses
the action that maximizes the upper confidence bound of the
empirical mean reward g(f‘a(t)Tﬁit). More formally, let
V. (t) = Zi:o rq(s)(ry(s))T and « be the exploration pa-
rameter. Then we modeled the ranking strategy for each M,
instance as,

~k
ar(t) &« argmax  (g(Ea(07B,) + Bl )
a€ANA(t,k—1)°
(8)
where Hf"a(t)HV;fl(t) is the weighted I norm of the multi-
objective reward vector associated with the matrix V().
The significance of this model is that each multi-armed bandit
instance running in rank k can learn the users preferred trade-
off over the multiple objectives for rank k. Furthermore, it
can learn the users’ preferences over the multiple objectives
in different contexts as we have modeled the contexts with
each objective reward.

3.2 Online Parameter Updates
As explained above MOU-UCB generates the ranked list

A(t, K) based on arms selected by each M}, instance and
displays it to the user. On trial ¢, a user u; considers the
ranked list fl(t, K) in order and selects relevant arms and
reveals multiple objective rewards for some arms. Each M
uses the observed utility reward (selected or not) in rank &

and the rewards in multiple objectives to update its estimated

kA
parameters 3, , 0; , and T4(t). To elaborate, let a} be a se-

lected resource in trial ¢ at rank k and r,; () be the multiple

objective rewards for a;. Based on r,;: (t) we update éi,a,ﬁ
to minimize the objective reward estimation error given in
Equation 5. Based on the observed utility reward, we update
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the maximum likelihood estimator th in each M}, as given
in Equation 7. As ¢ increases we can learn the users utility
function over the multiple objective rewards for each rank si-
multaneously.

4 Experiments

We evaluate the effectiveness of our model in generating rel-
evant ranked lists using data from TripAdvisor [Liu et al.,
2011; Wang et al., 2010; Wang et al., 2011].

TripAdvisor dataset. The dataset contains a list of users
who have rated hotels, giving an overall evaluation, as well as
ratings along dimensions like value and location. Their over-
all rating for the hotel is a function of these multi-objective
ratings as can be seen in Figure 2. The dataset also con-
tains user profiles, hotels profiles, hotel reviews, date, loca-
tion, number of readers for reviews, number of helpful votes
for reviews and overall rating for a hotel and explicit ratings
for 5 different objectives. The objectives are value aspect rat-
ing, rooms aspect rating, location aspect rating, cleanliness
aspect rating, and service aspect rating. Aspect ratings range
from O to 5 stars.

Data analysis. First, we analyzed the above dataset to jus-
tify our claim that rewards on different objectives determine
the overall rating users give for a hotel. We clustered [Liu
et al., 2011] users with similar preferences over the multiple
objective rewards and analyzed the correlation between their
rating for the preferred objective and the overall rating. We
present the correlation between the multi-objective rewards
and the overall rating for two user clusters in Figure 2. The
preferred objective for one cluster was ‘hotel services’ and for
the other cluster, it was ‘value for money’. As can be seen,
in each cluster we can see the overall rating has a high corre-
lation with the respective preferred objective. In our experi-
ments, we demonstrate how this user behaviour is effectively
captured by MOU-UCB to generate ranked lists that maxi-
mize users clicks considering multiple objective rewards.

4.1 Experimental Setup

In our setup, the goal is to generate a ranked list of hotels for
different users in different contexts considering their prefer-
ences for different aspects in hotels. We used our algorithm
to present a ranked list of potential hotels to the users. User
feedback for this list was captured over a number of trials. If
the ranked list contained a hotel rated higher than 2.5 by the
user as per the ground truth, it was considered as a user click.
To create an experimental dataset with adequate user rat-
ings for hotels we filtered out users with less than 10 ho-
tel ratings and hotels with less than 2 ratings. The resul-
tant dataset comprised of 777 users and 1875 hotels result-
ing in a total of 11552 ratings. To evaluate our algorithm,
we compared it to several other baseline algorithms for rank-
ing. These are contextual based (Ranked-LinUCB), multi-
objective based (Ranked-PUCB1) and non-contextual single
objective based (Ranked-epsilon-greedy) algorithms:

e Ranked-LinUCB: LinUCB [Li et al., 2010] selects a sin-
gle item that maximizes the linear contextual payoff with-
out considering multiple objective rewards. We used Lin-
UCSB instances in each rank to generate the ranked list.
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Figure 2: Evidence for the correlation between the overall rating and
a specific objective rating for a hotel for different users. Users in (a)
provide the overall rating based on the services of the hotel where as
users in (b) provide the overall rating based on value for money.

e Ranked-PUCB1: PUCBI [Drugan and Nowé, 2013] se-
lects a single item uniformly from the Pareto-front, which
incorporates multiple rewards, but does not try to learn user
preferences over these. We used PUCBI instances in each
rank to generate the ranked list.

e Ranked-c-greedy: Epsilon-greedy [Watkins, 1989] selects
an item randomly with € probability or the highest payoff
item with 1 — € probability. We used Epsilon-greedy in-
stances in each rank to generate the ranked list.

We implemented the above baselines by using the existing
LinUCB, PUCBI and e-greedy algorithms as the base algo-
rithm in a Ranked Bandits [Radlinski ef al., 2008] algorithm.

We can treat the MOCR-B problem as a sequential deci-
sion making problem. Therefore, to evaluate our algorithm
we measured the click-through-rate (CTR) over the trials as
follows: CTR = & S°7 L S™% T4 1y=1. The CTR is
interpreted as the average ratio of number of clicks received
over the 7' trials for a K sized ranked list. We also calculated
three other measures, precision@k (P@k), recall@k(R@k)
and mean reciprocal rank (MRR) [Liu, 2009] to evaluate
the distribution of the clicks across the ranked list. When
T is the total number of trials and k; is the rank of the
first clicked resource in trial ¢, then MRR was measured as
follows: MRR = % Zthl % MRR helps us to measure
whether our solution can rank relevant items higher compared
to the baselines. P@F represents the accuracy of the model
in retrieving the correct document at the £*" rank and it was

measured as follows: P@k = fofrelevantitems @k __ p@f jg
# of recommended items @k

the proportion of relevant items found in the k' rank and it

was measured as follows: R@} = #ofrclevantitems @k
total # of relevant items

Model parameters. We chose the exploration parameters
that led to the highest click through rates in each baseline
algorithm: (1) For MOU-UCB « and ~ were set to 0.2 and
0.3 respectively, (2) For ranked-e-greedy € was set to 0.5. The
size of the ranked list K was set to 10, although the final
results were not highly sensitive to changes in K. We set the
number of trials 7" to 10, 000.

4.2 Feature Construction

As we mentioned before, we incorporate the context features,
the user features and the hotel features to make an accurate
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Figure 3: The neural network embedding structure with hidden unit
size indicated for each dense layer.

prediction. To specify which hotel is chosen by a certain user,
we also need to consider the hotelID and userID as features.
However, the vocabulary size of the categorical values can be
very large (e.g., there are 1875 hotels and 777 users in our
dataset), and thus it is computationally expensive.

To address this issue, inspired by the success of embedding
methods in different research areas [Mikolov et al., 2013],
we also employ such method to encode the hotelIDs and the
userIDs. Compared to one-hot encoding [Gal and Ghahra-
mani, 2016], the embedding method has two main advan-
tages. First, the embedding method effectively reduces the
input dimension, which makes our algorithm more computa-
tionally efficient. Moreover, it has been shown that the cat-
egorical values with similar semantic meaning are usually
embedded to close locations [Gal and Ghahramani, 2016].
Hence, the embedding method helps to find and share sim-
ilar patterns among different hotels as well as users.

In this study, a supervised learning framework is utilized to
obtain the embedding vectors. We use userID and hotelID as
inputs to predict the overall rating of each transaction. More
specifically, as depicted in Figure 3, we embed userID and
hotelID to R® respectively. The embedding vector is ran-
domly initialized but will be refined during the training phase.
Once we get their embedding vectors, we simply concate-
nate them as the input of a multi-layer perceptron to predict
the overall rating. During the experiments, we adopt Adam
[Kingma and Ba, 2014] optimizer to train the parameters. The
learning rate of Adam is 5e~* and the batch size during train-
ing is 32. Our model is implemented with PyTorch 1.0 on the
GPU server with one Titan V.

We concatenated the learned embedding vectors with nu-
merical context features to obtain the final context feature
vector for each objective. For example, when modeling the
location aspect rating for a user and hotel, we concatenated
the users embedding vector, hotels embedding vector, users
context vector and the hotels context vector. The dimension
of the final context feature vector was 26.

4.3 Discussion

The effectiveness of our approach is validated by comparing
the CTR, MRR, P@Fk and R@Fk measures against other base-
lines. As seen in Figure 4, the CTR curve for each base-
line converges over 10000 trials. As the number of trials in-
creases, MOU-UCB reaches a higher CTR compared to the
baselines. This indicates that users find suitable hotels more
often in the ranked list generated by MOU-UCB compared
to other algorithms. The relatively high CTR for MOU-UCB
compared to Ranked-LinUCB suggests that there is value ad-
dition in optimizing the utility reward based on multiple ob-
jective rewards for online ranking instead of optimizing a sin-

3839

—— MOU-UCB
Ranked-LinUCB

0.03 Ranked-PU§B1
=== Ranked-epsilon-greedy

0 2500 5000 7500
Number of trials

10000

Figure 4: CTR for the ranked lists presented to TripAdvisor users

Method | CTR MRR P@1 P@2 R@1 R@2

MOU-UCB 0.038 0.123 0.060 0.060 0.049 0.049
Ranked-PUCBI1 0.009 0.025 0.009 0.008 0.008 0.006
Ranked-LinUCB 0.029 0.069 0.030 0.033 0.020 0.021
Ranked-e-greedy 0.025 0.064 0.019 0.028 0.015 0.025

Table 1: CTR, MRR, P@Fk and R@k values for the TripAdvisor
dataset.

gle objective reward. The improved results for MOU-UCB
can be attributed to its ability to balance the diverse needs of
users when choosing hotels to stay in different contexts.
Next, we discuss the quality of the ranked lists. Figure 5
plots the number of clicks in the first 10 ranks after 10000
trials. MOU-UCB has significantly more clicks in rank 1
compared to other ranks. On the contrary, the clicks are
distributed more uniformly across the ranks in other base-
line methods. These dissimilarities suggest that by model-
ing context information in multiple objectives and consider-
ing user preferences over the multiple objectives MOU-UCB
has been able to retrieve relevant items in top ranks whereas
baseline methods retrieve items across all the ranking posi-
tions. Additionally, when investigating the P@1 and MRR
values shown in Table 1 we see a significant difference in the
P@1 values for MOU-UCB in comparison to other bench-
mark algorithms. Likewise, the MRR value for MOU-UCB
is significantly higher than the baselines. The results confirm

600 MOU-UCB

Ranked-LinUCB
Ranked-PUCB1
Ranked-epsilon-greedy

400
0IIIII|I||II
2 3 5 6 7 8 9 10

1 4
Ranking Position

1l

Clicks

Figure 5: User-clicks for each rank in the TripAdvisor dataset.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

that MOU-UCB accurately retrieves the relevant hotels in the
top ranks compared to other approaches.

We analyzed the regret of our algorithm based on
the assumptions and conditions presented by Li et
al. [Li et al., 2017] for generalized contextual ban-
dits. Let p(¢) be the maximum instantaneous estima-
tion error of the multi-objective reward in trial ¢, where
p(t) = max;e(r] aca |rh(t)—7%(t)]. Based on existing stud-
ies [Lattimore and Szepesvari, 2018] we can show that p(¢)
is bounded with high probability. When the instantaneous
error in estimating multi-objective rewards is bounded, we
can upper bound the regret of a multi-armed bandit instance

running in a specific rank as O (I\/Tlog(%g(t)]z)) with

probability at least 1 — & where £ € [0, 1]. Therefore, we can
show that the regret is bounded for all K multi-armed bandit
instances running in our algorithm.

5 Related Work

We relate our work to similar bandit approaches that have
focused on context-awareness, multi-objective optimization,
and ranking. Existing contextual bandit approaches such as
LinUCB [Li et al., 2010] are robust against cold start prob-
lems. Despite successful adaptations of linear contextual ban-
dits [Li et al., 2012; Wanigasekara et al., 2016] to recom-
mend single arms, they have not been used for ranking or
multi-objective optimization. PUCBI1 [Drugan and Nowé,
2014], and Pareto Thompson sampling [Yahyaa and Mand-
erick, 2015] algorithms focus on multi-objective optimiza-
tion where similar to our problem setting it is assumed that
a reward vector is observed for selected arms instead of a
scalar reward as in a classical Multi-Armed Bandit (MAB)
setting. PUCBI1 adapts an upper-confidence bound approach
to explore and exploit. Auer at el. [Auer er al., 2016] have
presented two similar algorithms to return all Pareto optimal
points in a stochastic bandit feedback setting based on an
elimination algorithm and upper confidence bounds. How-
ever, these multi-objective multi-armed bandit approaches do
not model context information. Additionally, the above meth-
ods are used to identify a Pareto-front, but in many prac-
tical problems, we need to order the Pareto-front based on
a user/domain specific preference. Our algorithm learns the
preferences over the multiple objectives over time and ranks
the items to match the users utility better.

Ranked Bandits algorithm [Radlinski er al., 2008] is a ban-
dit approach for ranking. In the ranked bandit problem set-
ting, the user sees a list of K items. The user examines the
recommended list from the first item to the last and selects the
first relevant item. The problem is to generate an optimal list
of K items that maximizes the probability that a user finds
a relevant item in the recommended list. The key character-
istic of ranked bandits algorithm is that each position in the
recommended list is an independent bandit problem, which is
solved by some base bandit algorithm. We adopted the no-
tion of using a MAB instance in each rank k based on the
Ranked Bandits [Radlinski et al., 2008]. The value addition
in our setting is that, using our algorithm, we show how the
ranked bandits algorithm can be used to determine the user
preferences over multiple objectives to populate a ranked list.
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A few studies have begun to look into the fusion of con-
textual bandits, multi-objective multi-arm bandits and ranked
bandits. Tekin at el. [Tekin and Turgay, 2017] defined a
multi-objective contextual bandit problem for two objectives
in which they have explicitly defined one objective as the
dominant, and the other as the non-dominant. The MOC-
MAB algorithm presented in their work maximizes the long-
term reward of the non-dominant objective conditioned on
the fact that it maximizes the long-term reward of the domi-
nant objective. They use similarity information in the context
space to recommend a single resource whose reward vector
is optimized for multiple objectives. This work does not fo-
cus on ranking resources. In contrast, our work does not as-
sume that there is a dominant objective. Instead, we learn the
user’s preferences over the multi-objective space. Lacerda
et al. [Lacerda, 2015] combined multi-objective optimization
with ranked bandits for recommendation systems. The study
uses scalarization functions to find the Pareto-front. Otunba
at el. [Otunba et al., 2017] proposed a multi-objective pair-
wise ranking model that provides item recommendation and
audience retrieval simultaneously using a scalarized approach
for multi-objective optimization. An existing work [Roijers
et al., 2017] that studies a problem similar to the MOCR-B
problem uses a utility based view for multi-objective opti-
mization in a bandit setting. However, the algorithms Utility-
MAP UCB and Interactive Thompson Sampling [Roijers et
al., 2017] presented in their work do not discuss returning a
ranked list. Additionally, there is an expensive pairwise re-
ward vector comparison to learn user preferences. In our al-
gorithm, we do not require pairwise comparisons as the users’
preferences are learned independently in an online bandit set-
ting. In summary, the value added by our work is the ro-
bust fusion of context-awareness, multi-objective optimiza-
tion and ranking techniques in a bandit setting.

6 Conclusion

There are important real-world online settings that require al-
gorithms to provide users with ranked lists of relevant web re-
sources based on rewards in multiple objective rewards. Our
work provides insight into how a wide range of future work
can integrate ranking, sequential-decision making, contextual
information, and multiple objective rewards for online rank-
ing. As future work we will validate our algorithm using other
multi-criteria datasets [Tallapally ef al., 2018] and present a
more detail regret analysis.
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