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Abstract

Extracting the underlying trend signal is a crucial
step to facilitate time series analysis like forecast-
ing and anomaly detection. Besides noise signal,
time series can contain not only outliers but also
abrupt trend changes in real-world scenarios. To
deal with these challenges, we propose a robust
trend filtering algorithm based on robust statistics
and sparse learning. Specifically, we adopt the Hu-
ber loss to suppress outliers, and utilize a combina-
tion of the first order and second order difference
on the trend component as regularization to cap-
ture both slow and abrupt trend changes. Further-
more, an efficient method is designed to solve the
proposed robust trend filtering based on majoriza-
tion minimization (MM) and alternative direction
method of multipliers (ADMM). We compared our
proposed robust trend filter with other nine state-
of-the-art trend filtering algorithms on both syn-
thetic and real-world datasets. The experiments
demonstrate that our algorithm outperforms exist-
ing methods.

1 Introduction

The explosion of time series data generated by the Internet
of Things (IoT) and many other sources has made the time
series analytics more challenging. Trend filtering, which esti-
mates the underlying trend from the time series, is an impor-
tant task arising in a variety of real-world applications [Kim
et al., 2009; Craigmile and Percival, 2006]. Specifically, we
assume the time series consists of the trend component and a
more rapidly changing random component. The goal of trend
filtering is to extract the trend component accurately and ef-
ficiently. The extracted trend component can reveal certain
traits of a time series and is crucial in many applications such
as time series forecasting and anomaly detection. [?]

Many algorithms have been proposed for trend filter-
ing, including moving average smoother, kernel smoothing,
smoothing splines etc [Wu et al., 2007, Wu and Huang, 2009;
Fried et al., 2018; Afanasyev and Fedorova, 2016]. Among
them, one of the most classical and widely used trend filters
is the Hodrick-Prescott (H-P) filtering [Hodrick and Prescott,
1997] and its variants. In the H-P trend filtering, the trend
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component is obtained by solving an optimization problem
which minimizes the weighted sum of the residual size and
the smoothness of the trend component. On the one hand, the
extracted trend component is expected to close to the original
time series, but meanwhile the smoothness constraint is im-
posed. Specifically, the sum-of-squares loss function is used
to measure the difference between the trend and the origi-
nal time series, and the smoothness of the trend component
is measured using the second order difference of the trend.
The drawback of H-P filtering is that it is not robust to out-
liers. Based on the H-P filtering, the ¢; trend filtering [Kim
et al., 2009] is proposed, which basically substitutes the ¢;-
norm for the ¢5-norm in the regularization term in H-P trend
filtering. Note that the ¢; trend filtering assumes that the un-
derlying trend is piecewise linear, and the kinks, knots, or
changes in slope of the estimated trend can be interpreted as
abrupt changes or events.

Although the sum-of-squares loss function in both the H-P
trend filtering and the ¢; trend filtering enjoys its popularity,
it cannot handle heavy tailed error or outliers. One approach
to deal with these situations is the least absolute deviation
(LAD) loss [Wang et al., 2007] as it mitigates the loss in-
curred by big errors. However, the LAD loss is not adapted
for small errors since it penalizes strongly on the small resid-
uals. In the extreme case where the error is not heavy tailed
or there is no outliers, it is less effective than the sum-of-
squares loss function. In practice, generally we expect the
loss function can adaptively handle these cases. The Huber
loss [Huber and Ronchetti, 2009] is a combination of the sum-
of-squares loss and the LAD loss, which is quadratic on small
errors but grows linearly for large values of errors. As a re-
sult, the Huber loss is not only more robust against outliers
but also more adaptive for different types of data.

In this paper, besides adopting Huber loss, we propose to
use the combination of the first order and the second order
difference regularization of the trend component in trend fil-
tering. The regularization based on the first order difference
encourages to preserve abrupt trend change, but meanwhile it
tends to introduce the staircases for the extracted trend com-
ponent when slow trend change exists. One way to reducing
the staircasing effect is the introduction of higher order dif-
ference in the regularizier. In fact, the second order differ-
ence can effectively eliminates the artifacts (e.g., staircasing)
introduced by the first regularization without smoothing the
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time series strongly. Also, it is proved recently that the in-
troduction of the second order difference can achieve com-
parable results to higher order difference [Papafitsoros and
Schonlieb, 2014]. Thus, we consider the combination of the
first and second order difference for the best trade-off.

To sum up, in this paper we propose a novel trend filtering
method based on the Huber loss and the combination of the
first and second order dynamics of the trend component. The
resulting optimization problem is solved via an efficient MM-
ADMM algorithm. The complexity of the Huber loss makes
it challenging to directly apply the ADMM framework [Boyd
etal., 2011]. Inspired by the majorization minimization [Sun
et al., 2017], we minimize an upper bound of the Huber loss
in the ADMM framework. In the experiments, we compare
ten different trend filtering algorithms and results on both
synthetic and real-world data sets demonstrate the good per-
formance of our trend filtering algorithm. To the best of our
knowledge, our empirical comparisons is one of the most ex-
tensive and comprehensive studies which includes common
popular trend filtering methods, including H-P trend filter, ¢4
trend filter, TV denoising filter [Chan er al., 2001], mixed
trend filter [Tibshirani, 2014], wavelet trend filter [Craigmile
and Percival, 2006], repeated median filter [Siegel, 1982],
robfilter [Fried, 2004], EMD trend filter [Moghtaderi et al.,
2011], and so on.

The rest of the paper is organized as follows. In Section 2,
we briefly review the trend filtering and some related work.
In Section 3, We introduce our robust trend filter and our effi-
cient algorithm. We present the empirical studies of the pro-
posed method in comparison with other state-of-the-art algo-
rithms in Section 4, and conclude the paper in Section 5.

2 Related Work

There are various trend filtering methods proposed in the lit-
erature. As discussed in the previous section, the H-P trend
filtering [Hodrick and Prescott, 1997] and ¢; trend filter-
ing [Kim et al., 2009] extract the trend component by mini-
mizing the weighted sum of the residual size and the smooth-
ness of the trend component using the second order differ-
ence operator. The TV denoising filtering [Chan et al., 2001]
adopts the same loss function as the H-P and ¢; trend filter-
ing, but it utilizes the first order difference as the regulariza-
tion to deal with abrupt trend changes. As a result, the TV
denoising filtering can handle the abrupt trend change suc-
cessfully, but it tends to introduce staircases for slow trend
changes. In contrast, the H-P and ¢; trend filtering generally
prone to trend delay for abrupt trend changes. The mixed
trend filtering [Tibshirani, 2014] adopts two difference orders
as regularization. It is assumed that the observed time series
were drawn from an underlying function possessing different
orders of piecewise polynomial smoothness. However, it is
difficult to test this assumption adaptively. Thus, the selection
of the two order remains a challenging problem, and limits its
usage in practice. Besides, due to the sum-of-squares loss,
all the aforementioned trend filtering methods cannot handle
heavy tailed errors and outliers.

In [Fried, 2004; Fried et al., 2018], a robust trend filtering
called robfilter is proposed. In robfilter, a robust regression
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functional for local approximation of the trend is used in a
moving window. To further improve the robustness of robfil-
ter, outliers in the original time series is removed by trimming
or winsorization based on robust scale estimators. Empirical
mode decomposition (EMD) [Wu et al., 2007] is a popular
method for analyzing non-stationary time series. With iter-
ative process, it finds local maxima and minima, and then
interpolates them into upper and lower envelopes. The mean
of the envelopes yields local trend, while the residual must
comply two requirements to become an intrinsic mode func-
tion (IMF). This method assumes that the trend is “slowly
varying” and the selection of “slowest” IMF sums up to be
the trend. Since the local maxima and minima are sensi-
tive to noise and outliers, the conventional EMD are not ro-
bust. Another variant, Ensemble EMD (EEMD), is a noise-
assisted method. It is an ensemble of white noise-added data
and treats mean of their output as the final true result. It re-
solves the mode mixing issue in original EMD but still suf-
fer from outliers. The wavelet analysis [Afanasyev and Fe-
dorova, 2016] is a transformation of the original time series
into two types of coefficients, wavelet coefficients and scal-
ing coefficients. Note that the wavelet coefficients are related
to changes of average over specific scales, whereas scaling
coefficients can be associated with averages on a specified
scale. Since the scale associated with scaling coefficients is
usually fairly large, the general idea behind the wavelet trend
filter [Craigmile and Percival, 2006] is to associate the scal-
ing coefficients with the trend, and the wavelet coefficients
with the noise component. The benefits of trend filtering via
wavelet transformation is that it can capture the abrupt change
of trend, but how to choose orthogonal basis still remains a
challenge.

In this paper, we focus on trend filtering for time series
without distinguishing periodic and trend components. When
the seasonality/periodic and trend components need to be sep-
arated, the seasonal-trend decomposition method can be uti-
lized, such as STL [Cleveland et al., 1990], RobustSTL [Wen
et al., 2019], and TBATS [De Livera et al., 2011].

3 Proposed Robust Trend Filter
3.1 Model Overview

We consider the time series of length N as y
[yo,y1,- - ,yN,l]T, which can be decomposed into trend
and residual components [Alexandrov ef al., 2012]

Y =T +7¢ O y=7T+Tr, (D

where 7 = [r9, 71, ,7n_1]7 denotes the trend compo-
nent, and r = [rg, 71, ,7n_1)7 denotes the residual com-
ponent. Note that in this paper we consider the time series
faced in real-world applications. Therefore, the trend compo-
nent may contains both slow trend change and abrupt trend
change, while the residual component may contains both
noise and outliers.

3.2 Preliminary

In the H-P trend filtering [Hodrick and Prescott, 19971, where
the trend estimation 7 is chosen to minimize the objective
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function as follows
|-l N-2
B Z(ytfn)2+/\2(n_1 *27t+7t+1)2, )
t=0 t=1

where the loss function (first term) measures the size of the
residual signal after trend extraction while the regulariza-
tion (second term) measures the smoothness of the extracted
trend, and the regularization parameter A > 0 controls the
trade-off between them. The Eq. (2) can be equivalently for-
mulated in the matrix form as

1
Sy =TI+ AIDE 7o, 3)

where D?) is the second-order difference matrix, and its def-
inition is given in Eq. (6) below.

By replacing the ¢s-norm with ¢;-norm in the regulariza-
tion term of H-P trend filtering, we obtain the ¢; trend filter-
ing [Kim et al., 2009] as follows:

1
Sy =73 + AD@ ], “

The ¢; regularization in Eq. (4) promotes sparsity, which indi-
cates ||D®)7||; would have many zero elements. As a result,
the ¢; trend filter leads to a piecewise linear trend component.

As an extension of Eq. (4), piecewise polynomial trend sig-
nal can be obtained by using high-order difference operator in
the regularization term [Kim er al., 2009], i.e.,

1
§|Iy—TII§+AIID(k“)TII1, )

where D1 ¢ R(n—k=1)x7n jg the discrete difference op-
erator of order k + 1, which can be defined recursively as
DU+ = DM . D) and the DM and D) are the first-
order and second-order difference, i.e.,

1 -1 1 -2 1

1 -1 1 -2 1

DM = ,D® =

1- -1 1. -2 1
(6)

When k£ = 0 in Eq. (5), it corresponds to the total variation

(TV) filter [Chan et al., 20011, which is suitable when the

underlying trend signal is approximately piecewise constant.

3.3 Robust Trend Filtering with Sparse Model

All these trend filtering methods discussed in Section 3.2
adopt the sum-of-squares loss, which is appropriate when the
residual part is near to Gaussian noise. However, in real-
world applications, the residual often exhibits long-tailed dis-
tribution due to outliers. In this paper, we adopt the Huber
loss from robust statistics [Huber and Ronchetti, 2009] to deal
with possible long-tailed distributed residual. As discussed in
Section 1, Huber loss combines the advantages of the sum-of-
squares loss and the LAD loss adaptively.

In order to simultaneously capture abrupt and slow trend
changes, we consider two sparse regularization terms like the
fussed LASSO [Tibshirani er al., 20035]. Specifically, we uti-
lize first and second order difference operators in the regular-
ization to deal with abrupt and slow trend changes, respec-
tively. Since it is proved that the combination of the first and
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second order difference regularization can achieve compara-
ble results to higher order difference regularization [Papafit-
soros and Schonlieb, 2014], in this paper we do not consider
other higher order difference operators.

Based on the above discussion, we propose a Huber loss
with a combined first and second order difference regulariza-
tion as a robust trend filtering for time series (named Robust-
Trend in this paper), i.e.,

g,y =) + MDY 7|y + Ao DD 7|, (7)
where D™, D) are the first-order and second-order differ-
ence matrix, respectively. And g,(x) = >, g(z;) is the
summation of elementwise Huber loss function with each el-
ement as

1,.2
5L, “rl‘ S Y
o) = {20 ®
. Vil = 592, ol >y
and its derivative can be obtained as
/ Zi, B
gn (@) = 9
L N

where sgn is the sign function.

3.4 Efficient MM-ADMM Algorithm

In this section, we develop a specialized ADMM algorithm
to solve the minimization problem of RobustTrend in Eq. (7).
ADMM [Boyd er al., 2011] is a powerful framework in op-
timization and also utilized in trend filtering with sum-of-
square loss [Ramdas and Tibshirani, 2016]. However, the
standard ADMM is not efficient in the RobustTrend filter
since no exact solution exists in the updating step with Hu-
ber loss (will be shown later). One may transform Eq. (7)
into a series of ordinary fused lasso problems as in [Polson
and Scott, 2016]. But it is still inefficient since each ordi-
nary fused lasso problem needs to be solved iteratively as
well. To alleviate this problem, we utilize the majorization-
minimization (MM) framework [Sun ef al., 2017] to approx-
imate the Huber loss function in the ADMM updating step to
obtain a closed form for efficient computation.

To simplify the ADMM formulation for Eq. (7), we rewrite
it in an equivalent form as

min g,(y —7) +||z|)1
s.t. Dr=z (10)
where @
MDD
D= |:/\2D(2):| . (11

Then we can obtain the augmented Lagrangian as
P
Ly(7,2,v) = g, (y=7)+|[z|li+v" (DT —2)+ J[[DT—7][

where v is the dual variable, and p is the penalty parameter.
Following the ADMM procedure in [Boyd et al., 2011], we
can obtain the updating steps as

7ETL = argmin (gy(y -T)+ gHD‘r —zF 4+ ukH%)
(12)
z"*! = argmin (||ZH1 + g||D‘rk"'1 —z+ uk||§) (13)

ubtl = ub 4 DR gkt (14)
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where u = (1/p)v is the scaled dual variable to make the for-
mulation more convenient. The above z—minimization step
can be efficiently solved by soft thresholding as

zF T = 5, (DTFT + ) (15)
where the soft thresholding operator S, (a) is defined as
0 la| < p
S,(a) = { ’ (16)
o) =9 psgn(a), |a| > p

The T—minimization step in Eq. (12) is nontrivial since no
exact solution exists. One may use iterative algorithms, like
standard gradient methods or conjugate gradient methods, to
solve the 7—minimization step since it is convex. However,
this would increase the overall computation since the ADMM
itself is an iterative algorithm. Inspired by the work of [Eck-
stein and Bertsekas, 1992] that the ADMM can still con-
verge when the minimization steps are carried out approxi-
mately, we utilize one-iteration MM framework like [Pham
and Venkatesh, 2013] to efficiently solve the 7 —minimization
step in Eq. (12) with closed form solution. Specifically, we
adopt the proved sharpest quadratic majorization for Huber
loss as in [de Leeuw and Lange, 2009] to minimize the dif-
ference between the exact and approximate solution, i.e.,

k gfy(ccf) 2 kN2 k
gy (i) < my(wilzg) = ok (w7 — (27)7) + g4 ()
k
g'/y(xz) 2

where 7, (z;|2¥) denotes the majorization of element z;’s
Huber loss and z¥ is the solution of x; at ADMM’s kth it-
eration. Then, the summation of Huber loss can be obtained
as

1
g+(x) <, (x|xF) = Zn,y(zﬁmf) = ixTAx—F C 17)

where C' represents a constant number and A is a diagonal
matrix as

A = diag (¢, () diag™" (g (27)) - (18)

Next, let define x = y — 7 and replace the Huber loss
in Eq. (12) with the quadratic majorization in Eq. (17), we
can obtain an approximate T—minimization step with one-
iteration MM algorithm as

1
x**1 = arg min <2XTAX + gHDX —(u*—2" + Dy)||§)
(19)
Tk-H —y— XIc+1 (20)

To obtain the closed form of the above approximate
T—minimization step, we take derivative of Eq. (19), set it
to zero to obtain x**1, and put x**! into Eq. (20) to get the
final 7—minimization step as

Tk+1 —y— p(A + pDTD)leT(uk _ Zk + Dy) (21)
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Therefore, to obtain the extracted trend signal of the proposed
RobustTrend filter, our designed MM-ADMM algorithm se-
quentially calculates Eq. (21), Eq. (15), and Eq. (14) in each
ADMM iteration until termination.

For the termination criteria, besides the maximum iteration
number, we also check the primal and dual residuals in each
ADMM iteration until they are small enough. Specifically,
the values of primal residual r* and dual residual r* at kth
iteration are calculated by

[£¥]]2 = [DT* — 2", (22)
Is"]l2 = p|DT (2" — 2"~ 1)||2. (23)

Then, ||r*||2 and |[s*||» are checked if they are smaller than
the corresponding tolerance thresholds as [Boyd er al., 2011]

" = V2N — 3¢"* 4 ! max{||D7F|, |22},
6dual _ \/NGabS + eTEalDTu(k)HQ,

where €?** > ( is an absolute tolerance and €"¢* > 0 is a
relative tolerance. A reasonable choice for the two tolerance
is around 1073 to 10~%.

3.5 Online Extension for Data Streams

In order to support streaming data applications, the proposed
RobustTrend filter is extended to online mode by applying
sliding window scheme like robfilter and repeated median fil-
ter in [Fried, 2004; Fried et al., 2018]. During each sliding
window, the trend signal is extracted using our designed MM-
ADMM algorithm described in Section 3.4. To speed up,
the pDTD and Dy are computed once and cached for the
T—minimization step in Eq. (21). Furthermore, warm start
is adopted in each new sliding window, where the initial val-
ues for T, z, and u are from previous window’s final solution
by removing the first element and copying last element once.
Since the trend signal usually exhibits slow change, this warm
start trick often provides an appropriate approximation to re-
sult in fewer ADMM iterations.

4 Experiments and Comparisons

In this section, we conduct experiments on both synthetic data
and real-world data to demonstrate the effectiveness of the
proposed RobustTrend filtering algorithm.

4.1 Baseline Algorithms

We tested nine state-of-the-art trend filters as baseline algo-
rithms to perform a relative comprehensive evaluation, in-
cluding H-P filter, ¢; trend filter, TV denoising filter, Mixed
trend filter [Tibshirani, 2014], Wavelet trend filter [Craigmile
and Percival, 2006], Repeated median filter [Siegel, 1982],
robfilter [Fried, 2004], EMD trend filter [Moghtaderi et al.,
2011] and its extension EEMD trend filter.

4.2 Dataset

For synthetic data, we first generate the trend signal with 1000
data points, which contains a sin wave, a triangle wave, and
a square wave with 1.0 amplitude to represent smooth slow
trend change as well as abrupt trend change with sharp dis-
continuity. Next, we add Gaussian noise with 0.2 standard
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Metric MSE MAE

Outlier ratio 1% 5% 10% 20% 1% 5% 10% 20%
H-P filter 0.0126  0.0209 0.0263 0.0502 | 0.0656 0.0985 0.1158 0.1730
¢ trend filter 0.0102 0.0170 0.0226 0.0469 | 0.0536 0.0860 0.1029 0.1684
TV denoising filter 0.0184 0.0223 0.0277 0.0473 | 0.0973 0.0983 0.1272 0.1827
Mixed trend filter 0.0070 0.0137 0.0183 0.0451 | 0.0562 0.0772 0.0963 0.1715
Wavelet trend filter 0.0167 0.0293 0.0348 0.0648 | 0.0857 0.1300 0.1400 0.1996
robfilter 0.0047 0.0109 0.0080 0.0110 | 0.0500 0.0569 0.0596 0.0586
Repeated median filter 0.0121 0.0117 0.0129 0.0145 | 0.0615 0.0599 0.0642 0.0724
EMD filter 0.0240 0.0366 0.0401 0.0902 | 0.0999 0.1410 0.1523 0.2293
EEMD filter 0.0200 0.0286 0.0393 0.0595 | 0.0917 0.1189 0.1479 0.1850
Proposed RobustTrend filter | 0.0051  0.0054  0.0058 0.0079 | 0.0434 0.0442 0.0501 0.0638

Table 1: Performance of the proposed algorithm compared with other trend filter algorithms on synthetic data with different ratios of outliers.
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Figure 1: Synthetic and real-world data used for the experiment. 2 trend: Mixed trend filter

deviation. Then, we add 10 to 200 spikes and dips with 2.0 -
amplitude to represent 1% to 20% outlier ratio. As an exam-
ple, the trend signal and trend with noise and 1% outlier are
shown in Figure 1(a).

Note that we generate synthetic data with sin, triangle, and
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—— original_data
trend: Wavelet trend filter

square wave as trend signal to simulate different types of 2 - o o o —
trend changes in real-world data. If the trend signal only con-
tains triangle/rectangle shape, the ¢1/TV filter would be the —— original_data

trend: robfilter

optimal choice (under the case of white noise without out-
liers). However, these specific assumptions are of limited us-

age in practice. As the ground truth of trend is known, the -2
mean squared error (MSE) and mean absolute error (MAE) ° e o o o 1000
are used for the performance evaluation later. —— original_data o

In addition to the synthetic data, we also adopt one real- ’ freng popested medan Tl
world data from Yahoo’s Anomaly Detection Dataset!, i.e., 0
real 31 in AlBenchmark, which is shown in Figure 1(b). It N
can be seen that there is abrupt trend change around point 0 200 400 600 800 1000
1220 and a outlier at point 1306. — original_data

2 trend: EEMD filter

4.3 Experiment Results on Synthetic Data 0
Figure 2 shows the trend filtering results from different algo- =
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rithms when there is 1% outlier ratio. As can be seen in the
figure, ¢; trend filter, wavelet trend filter, and EEMD trend fil-

ter are heavily affected by the abrupt level change around the Figure 2: Trend filtering results on synthetic data.

"https://webscope.sandbox.yahoo.com/catalog.php?datatype=s
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square wave. TV denoising filter captures abrupt level change
but exhibits staircasing around sine and triangle wave. Due to
space limitation, we omit the results of H-P and EMD trend
filters since their performances are worse than ¢; and EEMD
trend filters, respectively. To better evaluate the performance
quantitatively, we calculate MSE and MAE to quantify the
extraction accuracy. In addition to extracting trends on 1%
of outliers, we also increase the ratio of outliers to 5%, 10%,
and 20%. Table 1 summarizes the performance of our pro-
posed algorithm along with other nine state-of-the-art trend-
ing filtering algorithms. The best results for each case are
highlighted in bold fonts. Overall, it can be observed that our
algorithm outperforms others.

The trend recovery near change points is important as it
measures how prompt we can capture the trend change in
time. Thus, we calculate MSE and MAE around 9 change
points and their neighbors (one before and one after each
change point) in the synthetic data (total 27 points) when
outlier ratio is 5%. The results are summarized in Table 2
where the best results are highlighted in bold fonts. Clearly,
our algorithm achieves significantly more accurate trend near
change points.

To evaluate the different components of our RobustTrend
filter, we also compare TV denoising filter with Huber loss
(i.e., RobustTrend filter without second order difference reg-
ularization), /1 trend filter with Huber loss (i.e., RobustTrend
filter without first order difference regularization), and Ro-
bustTrend filter with ¢5-norm regularizations. The results are
summarized in Table 3 with the outlier ratio setting to 5%,
where the best results are highlighted in bold fonts. It can
be seen that the Huber loss and the first order and second
order difference ¢; regularization terms bring significant per-
formance improvements in trend filtering.

4.4 Experiment Results on Real-World Data

We perform experiment on one real-world dataset from Ya-
hoo depicted in Figure 1(b). In this experiment, we apply the
online mode of the trend filtering to investigate how it per-
forms on streaming data. The results of top-3 performance
filters (our RobustTrend, robfilter, and repeated median filter)
and the popular ¢; trend filter are summarized in Figure 3.
Since the beginning of the data is almost constant, we only
show the zoomed-in results after point 1200. It can be ob-
served that our RobustTrend is able to follow the sudden in-
crease of the trend and is not affected by the outlier. The ¢;
filter and robfilter show a delay in capturing the trend change.
The ¢, filter is also sensitive to the outliers in the original sig-
nal, leading to a dip in the trend. The repeated median algo-
rithm overshoots the estimation of the trend and generates a
higher trend than the actual one near the position where trend
abruptly changes.

5 Conclusions

In this paper we propose a robust trend filtering method Ro-
bustTrend based on the Huber loss. The Huber loss can adap-
tively deal with residual outliers and different types of data.
In order to impose the smoothness of the trend and mean-
while capture the abrupt trend change, we propose to use the
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Algorithms [ MSE [ MAE
H-P filter 0.1463 | 0.3036
£y trend filter 0.1404 | 0.2910
TV denoising filter 0.1100 | 0.2488
Mixed trend filter 0.1140 | 0.2526
Wavelet trend filter 0.1467 | 0.3052
robfilter 0.1900 | 0.2939
Repeated median filter 0.1378 | 0.2495
EMD filter 0.1618 | 0.3074
EEMD filter 0.1570 | 0.3004
Proposed RobustTrend filter | 0.0862 | 0.1966

Table 2: Comparison of change points MSE and MAE on synthetic
data of different trend filtering algorithms under 5% outlier ratio.

Algorithms [ MSE | MAE
TV denoising filter 0.0223 | 0.0983
TV denoising filter with Huber loss | 0.0077 | 0.0564
£y trend filter 0.0170 | 0.0860
{1 trend filter with Huber loss 0.0097 | 0.0677
RobustTrend with L2 Reg 0.0093 | 0.0585
Proposed RobustTrend filter 0.0054 | 0.0442

Table 3: Comparison of MSE and MAE on synthetic data of differ-
ent trend filtering algorithms under 5% outlier ratio.
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Figure 3: Zoomed-in version of the trend filtering results from dif-
ferent algorithms using online mode on real data.

combination of the first order and the second order difference
of the trend component as regularization in trend filtering. To
efficiently solve the resulting optimization problem, we de-
sign an MM-ADMM algorithm which applies majorization-
minimization to facilitate the updating step for the Huber loss
effectively.
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