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Abstract
This paper proposes Personalized Diversity-
promoting GAN (PD-GAN), a novel recommen-
dation model to generate diverse, yet relevant
recommendations. Specifically, for each user, a
generator recommends a set of diverse and relevant
items by sequentially sampling from a personalized
Determinantal Point Process (DPP) kernel matrix.
This kernel matrix is constructed by two learnable
components: the general co-occurrence of diverse
items and the user’s personal preference to items.
To learn the first component, we propose a novel
pairwise learning paradigm using training pairs,
and each training pair consists of a set of diverse
items and a set of similar items randomly sampled
from the observed data of all users. The second
component is learnt through adversarial training
against a discriminator which strives to distinguish
between recommended items and the ground-truth
sets randomly sampled from the observed data of
the target user. Experimental results show that
PD-GAN is superior to generate recommendations
that are both diverse and relevant.

1 Introduction
Recommender systems have today become irreplaceable in
online world to help users filter through a vast amount of
information. A typical recommender system usually selects
top items (e.g., products, movies) ranked by their match to
users’ personal preferences and interests [Liu et al., 2013;
Hu et al., 2014; Liu et al., 2014; 2016; 2017]. However, this
strategy may often yield suboptimal recommendations. For
example, collaborative filtering favors popular items and thus
may recommend popular items that are already known to the
user [Ashkan et al., 2015]. Content-based filtering may pro-
duce items matching the user’s interests but covering a very
narrow scope of topics [Qin and Zhu, 2013].

This led researchers to rethink about the ideal recommen-
dation strategy. Some researchers point out that increasing
the diversity of recommendation results to cover a broader
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range of users’ interests can improve user satisfaction [Zhang
and Hurley, 2008]. Moreover, diversifying recommendation
results can play an important role in broadening users’ hori-
zons and helping online service providers to explore users’
potential interests [Cheng et al., 2017].

These thoughts give birth to various diversity-promoting
recommendation models [Kunaver and Požrl, 2017]. A com-
mon strategy adopted by them is to maintain a trade-off be-
tween relevance and diversity of recommendation lists [Zhou
et al., 2010]. However, such a strategy often achieves high
diversity with a huge sacrifice of relevance. We argue that
relevance can be largely preserved or even boosted if person-
alized diversity is considered. Indeed, it is reasonable to di-
versify recommendation results for users with broad interests,
but blindly pursing diversity for users with focused interests
will definitely hurt the relevance of recommendation results.

In light of this, we propose a novel personalized diversity-
promoting recommendation model that considers two aspects
of the user’s personal preference: the personal preference to
individual items, and the personal preference to the diversity
of a set of items. Specifically, we randomly sample multiple
sets of diverse items from each user’s observed data as the
ground-truth. Naturally, the diversity of a ground-truth set
sampled from focused users will be smaller than that from
eclectic users. The beauty of this approach is that each item
in the ground-truth set captures the user’s personal preference
to individual items, while the items as a set capture the user’s
personal preference to the diversity of items.

What we can do next is to fit a trainable model with the
ground-truth and then use the trained model to generate rec-
ommendations that are as diverse and relevant as the ground-
truth. In this work, we build a novel recommendation model
using the GAN framework, called Personalized Diversity-
promoting GAN (PD-GAN), which consists of a generative
network (generator) and a discriminative network (discrimi-
nator) contesting with each other. Specifically, we build the
generator of PD-GAN based on a Determinantal Point Pro-
cess (DPP) model [Chen et al., 2018]. For each user, the
generator maintains a personalized DPP kernel matrix, which
is constructed from two learnable components: (1) the gen-
eral co-occurrence of diverse items, which captures the diver-
sity of items, and (2) the user’s personal preference to items,
which captures the relevance of items.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3870



Firstly, the general co-occurrence of diverse items can be
learnt by fitting a DPP kernel matrix with randomly sampled
diverse sets from all user’s observed data. However, the ker-
nel matrix learnt in this way favors popular items since such
items have greater chance to be sampled in those diverse sets.
To mitigate this problem, we propose a novel pairwise learn-
ing paradigm using training pairs. Specifically, for each ran-
domly sampled diverse set, we also randomly sample a set
of similar items (subsequently referred to as a similar set) as
a negative example. The learning objective is to maximize
the probability of sampling the diverse sets and minimize the
probability of sampling the similar sets. As popular items
also get higher chance to be sampled in the similar sets, the
effect of item popularity can be reduced.

Secondly, the user’s personal preference to items is learnt
through adversarial training against the discriminator which
strives to distinguish between the items recommended by the
generator and the ground-truth sampled from the target user’s
observed data. In this way, the user’s personal preference to
an individual item as well as the diversity of a set of items can
be learnt from the ground-truth. Through adversarial learn-
ing, the generative model will be able to generate diverse
and relevant recommendations resembling the ground-truth
so much that the discriminator will not distinguish easily.

Major contributions are summarized below:

• We propose a novel GAN framework to capture users’
personal preferences to both the individual items and the
diversity of a set of items, which can significantly im-
prove recommendation diversity while largely preserve
or even boost relevance.

• We propose a novel pairwise learning method for captur-
ing the co-occurrence of diverse items with a DPP kernel
matrix, which can largely reduce the negative impact of
item popularity.

• Experimental results show that PD-GAN is superior to
generate items that are both diverse and relevant compar-
ing with several competitive state-of-the-art baselines.

2 Related Works
Diversity of recommendation can be viewed at either an ag-
gregate level or an individual level. The aggregate diversity
refers to the recommendation diversity across all users, which
generally reflect the ability of a recommender system to rec-
ommend long-tail items [Cheng et al., 2017]. Thus, aggre-
gate diversity is usually evaluated by long-tail metrics [Ado-
mavicius and Kwon, 2012]. Individual diversity is targeted
at each individual user, which reflect the ability of a recom-
mender system to generate diversified recommendations for
each target user. The evaluation methods for individual diver-
sity can be generally classified into two categories: pairwise
measures and set-level measures. Pairwise measures usually
define a dissimilarity function between items and use the av-
erage dissimilarity to characterize the diversity of a recom-
mendation list. The dissimilarity can be defined based on at-
tributes [Ashkan et al., 2015], feature space [Qin and Zhu,
2013], clustering [Lee et al., 2017], or explanation [Yu et al.,
2009]. Set-level measures evaluate the diversity of a list as a

whole. Explicit set-level measures model topics and use topic
coverage as the diversity measure [Santos et al., 2010]. Im-
plicit set-level measures define diversity in the feature space
of the entire list of items, which are often used by determi-
nantal point process models [Chen et al., 2018].

A common approach for diversifying recommendation is to
maintain a trade-off between relevance and diversity. Some
approaches directly improve diversity by representing rel-
evance and diversity with independent metrics and maxi-
mizing the marginal relevance which is a convex combi-
nation of the two metrics [Carbonell and Goldstein, 1998;
Santos et al., 2010; Yu et al., 2014]. Another group of ap-
proaches learn a diversified model by maximizing a submod-
ular objective function [Qin and Zhu, 2013; Ashkan et al.,
2015]. However, these approaches usually adopt pairwise
measures to characterize the overall diversity of the recom-
mendation list, which may not capture the complex relation-
ships among items [Chen et al., 2018]. An elegant solution
is brought by the Determinantal Point Process (DPP) model,
which is a probabilistic model for set diversity. The DPP
model has recently become popular to model set-level diver-
sity in recommender systems. It has been used to recommend
complementary products in shopping basket by learning the
kernel matrix of DPP to characterize the relations among
items [Gartrell et al., 2017]. It has also been used to generate
diverse recommendation lists through Maximum A Posteriori
(MAP) inference based on carefully constructed kernel ma-
trixes [Chen et al., 2018]. All above mentioned approaches,
however, usually do not consider the user’s personal prefer-
ence to the diversity of items. Our approach takes this infor-
mation into consideration and strives to generate recommen-
dations that are both diverse and relevant.

3 PD-GAN Model
Without loosing generality, suppose there are M users, N
items and C item categories in the recommender system.
Each item belongs to at least one item category. For each
user, PD-GAN will generate top-K recommendations. The
objective of PD-GAN is to make top-K recommendations as
diverse as possible, and at the same time, as relevant as possi-
ble. Here, diversity is measured by category coverage [Santos
et al., 2010; Wu et al., 2016; 2017].

To achieve this goal, for each user u, we can randomly
sample an observed diverse set T = {i1, i2, · · · } from his/her
user-item interaction history, where items in T belong to dif-
ferent categories. The cardinality of T will naturally be larger
for eclectic users than that for focused users. For example, for
a focused user whose watch history covers 3 categories, the
size of T will be no larger than 3; and for a user with broad
interest whose watch history covers 20 categories, the size of
T will be no larger than 20. As such, for each user u, we can
sample multiple diverse sets, denoted by Tu = {T1, T2, · · · },
which serves as the ground-truth. Each individual item in the
ground-truth sets reflects the user’s personal preference to a
certain item, while each set of items capture the user’s per-
sonal preference to diversity.

To generate diverse and relevant recommendations that re-
semble the ground-truth, PD-GAN adopt an adversarial learn-
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Figure 1: The structure of PD-GAN.

ing framework, as illustrated in Figure 1. For each user, the
generator of PD-GAN first evaluates the relevance of all items
through Matrix Factorization [Koren et al., 2009], and then
incorporate the relevance scores with a pre-learnt DPP model.
The pre-learnt DPP model captures the general co-occurrence
of diverse items, or in other words, item diversity. After that,
top-K items can be sequentially sampled from the modified
DPP model. The discriminator of PD-GAN attempts to dis-
tinguish between top-K items generated by the generator and
the ground-truth. Through adversarial learning, the generator
will be able to generate a set of diverse and relevant items so
similar to the ground-truth that the discriminator will not be
able to distinguish easily.

Next, we will first introduce how to learn the general co-
occurrence of diverse items through a DPP model, and then
detail the adversarial learning framework for capturing users’
personal preferences from the ground-truth.

3.1 Learning Co-occurrence of Diverse Items
Conditional DPP
DPP is an elegant probabilistic model for modeling set di-
versity [Kulesza et al., 2012]. DPP on a discrete set I =
{i1, i2, · · · , iN} is a probability measure P on 2I , the set of
all subsets of I. In the context of item recommendation, I is
all items. When P gives nonzero probability to the empty set,
there exists a kernel matrix L ∈ RN×N such that for every
subset T ⊆ I , the probability of T is P(T ) ∝ det(LT ),
where L is a real, positive semi-definite kernel matrix in-
dexed by the elements of I, and LT is L restricted to only
those rows and columns which are indexed by T , i.e., LT ≡
[Lij ]i,j∈T . Intuitively, the diagonal entry Lii of the kernel
matrix L captures the quality of item i, while the off-diagonal
entry Lij measures the similarity between items i and j. Fol-
lowing the observation that

∑
T ′⊆I det(LT ′) = det(L + I),

where I is the identity matrix, the conditional probability of
observing T is :

P(T ) = det(LT )

det(L+ I)
. (1)

Learning of L-kernel
L-kernel can be learnt from observed diverse sets. However,
when the number of items N is large, learning a nonpara-
metric full-rank L is very computationally expensive. In this
work, we follow [Gartrell et al., 2017]’s approach, and use

low-rank factorization of theN×N L matrix, which is much
more computationally efficient, as follows:

L = AAT , (2)
where A is a N×D matrix and D<<N .

To learn the L-kernel, we can randomly sample a collec-
tion of observed diverse sets from all user-item interaction
history, denoted by T =

⋃M
u=1 Tu = {T1, T2, · · · , TX}, and

fit L by maximizing logP(T |A) through gradient descent.
In this way, L-kernel is optimized towards giving higher con-
ditional probability to those sets of frequently co-occurred di-
verse items. However, a problem with this training method is
that the L-kernel is biased towards popular items, as popu-
lar items have higher chance to be sampled in the observed
diverse sets. As such, popular items that are similar to each
other may be sampled from the trained L-kernel due to high
perceived quality (reflected by the diagonal entries of L).

To mitigate this problem, we propose a novel pairwise
training method for learning the L-kernel. For each ob-
served diverse set T , we also sample a similar set T̃ from
the observation, which consists of items from the same cat-
egory. As such, we can get X training pairs 〈T , T̃ 〉 =

{〈T1, T̃1〉, 〈T2, T̃2〉, · · · , 〈TX , T̃X〉}. Our learning objective
becomes maximizing the probability of sampling T and min-
imizing the probability of sampling T̃ , formally:

max
A
Jdpp = logP(T |A)− logP(T̃ |A)

=

X∑
x=1

logP(Tx|A)− logP(T̃x|A)

=
X∑
x=1

log det(L[Tx])− log det(L[T̃x]
),

(3)

where [TX ] and [T̃X ] index the observations in T and T̃ , re-
spectively. In this way, the effect of popularity will be miti-
gated by minimizing logP(T̃ |A), as popular items also get
higher chance to be sampled in the similar sets.

Sampling
Once the L-kernel is determined, DPP can sequentially sam-
ple top-K diverse items. Here, we adopt the fast greedy MAP
inference [Chen et al., 2018] for sequentially sampling from
the L-kernel, which has been shown to be very computation-
ally efficient. Subsequently in this paper, the sequential sam-
pling process of DPP is denoted by SK−DPP(L).

3.2 Adversarial Learning
Generator
As introduced in the previous section, the L-kernel of the
DPP model captures the general co-occurrence of diverse
items in all user-item interactions, and the log-probability of
sampling any subset of items T ⊆ I is:

logP(T ) ∝ log det(LT ). (4)
However, this kernel does not reflect users’ personal prefer-
ences to items. To incorporate users’ personal preferences,
we modify the log-probability of T to:

logP(T ) ∝ α ·
∑
i∈T
Q(u, i) + (1− α) · log det(LT ), (5)
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where Q(u, i) is a quality-evaluating function that evaluates
the perceived relevance of i from u, and α ∈ [0, 1] is a trade-
off parameter between the user’s personal preference to indi-
vidual items and item diversity.

Equation (5) corresponds to a DPP with the following ker-
nel [Chen et al., 2018]:

Lu = Diag(exp(βQ(u))) · L ·Diag(exp(βQ(u))), (6)

where β = α
2(1−α) . Hence, we can simply re-construct the L-

kernel and do sequential sampling once the quality-evaluating
function is defined.

There are many quality-evaluating methods available in
literature, such as Matrix Factorization (MF) [Koren et al.,
2009], Factorization Machine (FM) [Rendle, 2010], as well
as Deep Neural Network-based methods [He and Chua,
2017]. Without loosing generality, in this work, we adopt
logistic MF [Johnson, 2014] as an example, formally:

Q(u, i) = σ(vuGv
i
G
T
), (7)

where σ(a) = 1
1+exp(−a) is the sigmoid function, and vuG and

viG are 1×D embedding vectors for u and i, respectively.
Now, a diverse set of K items, denoted by TG , can be gen-

erated by the generator Gθ(u) for each user u with Lu, for-
mally:

Gθ(u) ∼ SK−DPP(Lu), (8)

where the trainable parameter θ includes vuG and viG .

Discriminator
The discriminator Dη(u, TG) evaluates the overall relevance
of the generated set TG for user u: it outputs a value in [0,1],
with 1 meaning the highest relevance and 0 meaning the low-
est relevance. To be consistent with the generator, we also
adopt logistic MF as the quality-evaluating method for the
discriminator. Specifically, we formulate Dη(u, TG) as:

Dη(u, TG) = σ(
1

|TG |
∑
i∈TG

vuDv
i
D), (9)

where the trainable parameter η includes vuD and viD.

Optimization
The goal of the generator is to generate top-K items that
could deceive the discriminator. Hence, given Dη , we learn
Gθ by minimizing the following objective:

min
θ

M∑
u=1

log (1−Dη(u,Gθ)). (10)

Due to the discrete sampling process SK−DPP(Lu) in Gθ, it
cannot be directly optimized through gradient descent. Such
problem can be solved with policy gradient method originated
from reinforcement learning. In this work, we adopt the RE-
INFORCE [Wang et al., 2017] method to optimize Gθ. Given
TG , the objective can be reformulated as follows:

max
θ
JG(TG) =

K∑
i=1

R(u, TG)logQ(u, i), (11)

Algorithm 1 Adversarial Training for PD-GAN
Input: generator Gθ; discriminator Dη; pre-trained DPP-
kernel L; training data T

1: Random initialize Gθ, Dη
2: Pre-train Gθ, Dη using T
3: while PD-GAN not converged do
4: for g-steps do
5: for each u do
6: Calculate personalized DPP kernel Lu by (6)
7: Sequentially sample top-K items by (8)
8: Update generator parameters via policy gradient

by (11)
9: end for

10: end for
11: for d-steps do
12: for each u do
13: Generator sequentially sample top-K items by (8)
14: Update discriminator parameters via stochastic

gradient descent by (13)
15: end for
16: end for
17: end while

where Q(u, i) gives the posterior probability, and the reward
function R(u, TG) reflects how much the generator can de-
ceive the discriminator, which is defined as follows:

R(u, TG) = −log (1−Dη(u, TG)). (12)

As such, the more the generator can deceive the discriminator,
the higher relevant score (Dη(u, TG) will be given by the dis-
criminator to TG , and thus higher reward value will be cred-
ited to the generator.

The discriminator D serves as an adversary of G , aiming
to distinguish between the generated set TG from the ground-
truth ones. Hence, given Gθ(u), we learn Dη by maximizing
the following objective:

max
η
JD =

1

|Tu|
∑
T∈Tu

logDη(u, T ) + log (1−Dη(u, TG)).

(13)
We can then compute the gradient of (13) with respect to η
and use stochastic gradient descent to update η.

Following the general adversarial training procedure, we
learn PD-GAN by iterating two steps: (1) fixing the discrim-
inator Dη , and optimizing the generator Gθ using (11); (2)
fixing Gθ and optimizing Dη using (13). The overall training
logic is summarized in Algorithm 1. For each training epoch,
the generator is updated as follows: firstly, calculate person-
alized DPP kernel and sample top-K items. As L can be
pre-trained, according to [Chen et al., 2018], the time com-
plexity of this step is O(K2N). Secondly, update genera-
tor parameters via policy gradient, and the time complexity
is O(TKD). The discriminator is updated as follows: gen-
erator sequentially sample top-K items (O(K2N)) and up-
date discriminator parameter via stochastic gradient descent
(O(TKD)). Hence, the time complexity of one training
epoch is O(K2N + TKD). Through adversarial learning,
both the generator and the discriminator will grow stronger,
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and when the model converges, the generator will be able to
generate diverse and relevant recommendations resembling
the ground-truth so much that the discriminator will not be
able to distinguish easily.

4 Experiments
4.1 Experimental Settings
Datasets
We experiment with two public datasets: Movielens (100k)1

and Anime2. The Movielens dataset consists of 100k rat-
ings (1 to 5) from users to movies. It contains 18 explicit
categories and each movie may belong to more than one cat-
egory. The Anime dataset consists of 1 million ratings (1 to
10) from users to animes. It contains 44 explicit categories
and each anime may belong to more than one category. The
statistics of the two datasets are summarized in Table 1.

Dataset #users #items #interactions #categories
Movielens 943 1,683 100,000 18
Anime 73,516 12,294 1,048,575 44

Table 1: Statistics of the Movielens datasets.

Model Training
In this experiment, we focus on implicit feedback. Fol-
lowing the setting of [Liu et al., 2015; Wang et al., 2017;
Liu et al., 2018], we treat 5-star ratings of Movielens dataset
and 10-star ratings of Anime as positive feedback and all
other ratings as unknown feedback. For Anime dataset, we
exclude users and items with less than 300 ratings. For train-
ing and testing data splitting, we apply a 4:1 random splitting
on the two datasets. Then, we randomly sample ground-truth
diverse sets from each user’s positive examples in the train-
ing data. We do sequential sampling for each diverse set as
follows: add a randomly sampled item if it adds new cate-
gory information to the current set. The number of sampled
ground-truth diverse sets are 80,000 for the movielens dataset
and 1,392,010 for the anime dataset. To do pairwise training
for the L-kernel of DPP, we also randomly sample the same
amount of similar sets (consisting of items belonging to the
same category from each user’s positive examples) to form
training pairs.

Before adversarial training, we first train the L-kernel of
DPP with all sampled diverse-similar training pairs. As
shown in [Wang et al., 2017], GAN performance can be
boosted by initializing generator with a conventional model,
and thus we also initialize the parameters of PD-GAN gen-
erator with MF-BPR [Rendle et al., 2009] or IRGAN [Wang
et al., 2017]. After we initialize the parameters of PD-GAN
generator and the DPP kernel for sampling, we do adversarial
training by fixing either the generator or the discriminator to
train the alternative part. For both datasets, we use embedding
size of 30. The learning rate is set to 0.01. The parameter α
is set to 0.9.

1https://grouplens.org/datasets/movielens/100k/
2https://www.kaggle.com/CooperUnion/anime-

recommendations-database

Evaluation Metrics
After adversarial training, a recommendation list is generated
for each user by PD-GAN generator with the best performing
parameters. To evaluate the relevance of recommended items,
we use Precision (P) and Normalized Discounted Cumula-
tive Gain (NDCG, a position sensitive metric which assigns
higher score to hits at higher positions) as used in [Wang et
al., 2017]. To evaluate the diversity of recommended items,
we use Category Coverage (CC), which is calculated by the
number of categories covered by top-K items divided by the
total number of categories available in the dataset. A higher
category coverage means the top-K items are more diverse.

Baselines
We compare PD-GAN with the following baseline methods:

-MF-BRP [Rendle et al., 2009]. This method optimizes
MF with the BPR objective. It is a highly competitive ap-
proach for implicit feedback problems.

-IRGAN [Wang et al., 2017]. This method combines gen-
erative and discriminative information retrieval via adversar-
ial training. We initialize the parameters of IRGAN generator
with MF-BPR.

-MMR [Carbonell and Goldstein, 1998]. This method is a
canonical baseline for diversified ranking problems.

-DPP [Chen et al., 2018]. This is a state-of-the-art method
for diversified recommendation. We use one-hot encoding of
categories as item features and MF-BRP predicted ratings as
item scores.

4.2 Experimental Results
We report the experimental results from the following three
aspects: performance comparison between PD-GAN and
baselines, impact of α on all diversity-promoting methods,
and impact of adversarial training on PD-GAN.

Comparison with Baselines
The comparison between PD-GAN and four baselines is sum-
marized in Table ??. The performance is compared in terms
of both relevance (P@3, P@5, NDCG@3 and NDCG@5)
and diversity (CC@3 and CC@5). The performance im-
provement of PD-GAN over baselines are highlighted in bold.
Overall, these experimental results indicate that PD-GAN can
achieve superior performance in terms of balancing accuracy
and diversity, comparing with all four baselines.

Comparing with relevance-promoting baselines, i.e., MF-
BPR and IRGAN, PD-GAN achieves a significant improve-
ment in terms of diversity on both datasets. For Anime
dataset, PD-GAN not only outperform the two relevance-
promoting baselines in terms of diversity, but also outperform
them in terms of relevance. For Movielens dataset, although
IRGAN achieves the best performance of relevance, but with
a much inferior performance of diversity comparing to PD-
GAN. For top-5 recommendations, with a small loss of 0.27%
of NDCG, PD-GAN can achieve a much more significant im-
provement of 20.49% of CC than IRGAN.

Comparing with diversity-promoting baselines, i.e., MMR
and DPP, PD-GAN achieves a significant improvement in
terms of both relevance and diversity on Movielens dataset.
For Anime dataset, PD-GAN achieved significantly better rel-
evance than MMR and significantly better diversity than DPP.
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Movielens
Methods P@3 P@5 NDCG@3 NDCG@5 CC@3 CC@5
MF-BPR 0.3290 +10.15% 0.3111 +5.05% 0.3906 +9.93% 0.4484 +7.40% 0.3664 +24.18% 0.4772 +22.76%
IRGAN 0.3776 -4.03% 0.3434 -4.83% 0.4319 -5.79% 0.4829 -0.27% 0.3601 +26.35% 0.4862 +20.49%
MMR 0.1532 +136.55% 0.1486 +119.91% 0.1898 +126.24% 0.2359 +104.15% 0.4216 +7.92% 0.5068 +11.37%
DPP 0.3450 +5.04% 0.3207 +1.90% 0.4058 +5.82% 0.4631 +3.99% 0.3669 +24.01% 0.5068 +15.59%
PD-GAN 0.3624 - 0.3268 - 0.4294 - 0.4816 - 0.4550 - 0.5858 -

Anime
Methods P@3 P@5 NDCG@3 NDCG@5 CC@3 CC@5
MF-BPR 0.4904 +1.90% 0.4539 +0.55% 0.5273 +0.78% 0.5595 +0.29% 0.2593 +6.17% 0.3499 +5.26%
IRGAN 0.4917 +1.63% 0.4537 +0.60% 0.5279 +0.66% 0.5597 +0.25% 0.2601 +5.84% 0.3499 +5.26%
MMR 0.3252 +53.66% 0.3205 +42.40% 0.3594 +47.86% 0.4271 +31.37% 0.3170 -13.15% 0.3973 -7.30%
DPP 0.4947 +1.01% 0.4591 -0.59% 0.5301 +0.25% 0.5629 -0.32% 0.2646 +4.04% 0.3622 +1.68%
PD-GAN 0.4997 - 0.4564 - 0.5314 - 0.5611 - 0.2753 - 0.3683 -

Table 2: Performance comparison with the state-of-the-art methods.

Figure 2: Impact of parameter α on Movielens dataset.

As MMR maintains an explicit trade-off between relevance
and diversity, we can observe that MMR usually achieves
good diversity with a huge sacrifice of relevance. Unlike
MMR, the L-kernel of DPP captures both relevance (diag-
onal elements) and diversity (off-diagonal elements). Hence,
DPP-based models can improve diversity without a signifi-
cant sacrifice of relevance.

Impact of α
PD-GAN and the two diversity-promoting baselines, i.e.,
MMR and DPP, all involve a trade-off parameter α between
relevance and diversity. We illustrate the impact of α with
the performance of P@3 and CC@3 on Movielens dataset
in Figure 2. It can be observed that for all three methods,
the general trend of diversity is decreasing when α increases.
For DPP and PD-GAN, a reverse trend is observed for rele-
vance. For MMR, relevance fluctuates when α increases and
achieves the best performance when α = 0.7. Moreover,
comparing with MMR, PD-GAN has a much superior perfor-
mance of relevance across all α values, and comparing with
DPP, PD-GAN has a much superior performance of diversity
across all α values.

Effect of Adversarial Training
To understand the impact of adversarial training on PD-
GAN’s performance, we illustrate the performance of rel-
evance and diversity with P@3 and CC@3 over training
epochs on Movielens datasets in Figure 3. It can be ob-
served that through adversarial training, diversity increases
monotonously as training epochs grow, while relevance first
increases and then decreases. This trend shows that with the
capability of the generator and the discriminator grow, both
relevance and diversity can be improved as the generated sets
more resemble the ground-truth sets. Moreover, when rele-
vance reaches its full capacity at around 140 epoches, it starts
to degenerate when diversity continues to grow.

Figure 3: The learning curve of PD-GAN on Movielens datasets.

5 Conclusion
In this work, we propose a novel recommendation model
called PD-GAN to learn users’ personal preferences to indi-
vidual items as well as item diversity through an adversarial
learning process. Specifically, in the generator of PD-GAN,
we adopt a DPP model to learn the general co-occurrence of
diverse items and combine it with users’ personal preferences
to items to generate recommendations that are both diverse
and relevant. The discriminator of PD-GAN serves as an ad-
versarial to the generator and strives to distinguish between
the recommended items and the ground-truth sampled from
the target user’s observed data. Through adversarial train-
ing, the generator will be able to generate diverse and rele-
vant recommendations so similar to the ground-truth that the
discriminator will not be able to distinguish easily. We com-
pare PD-GAN with several competitive state-of-the-art meth-
ods on two public datasets. The experimental results show
that PD-GAN has superior performance in terms of generat-
ing recommendations that are both relevant and diverse.
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