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Abstract
Social recommendation could address the data
sparsity and cold-start problems for collaborative
filtering by leveraging user trust relationships as
auxiliary information for recommendation. How-
ever, most existing methods tend to consider the
trust relationship as preference similarity in a static
way and model the representations for user prefer-
ence and social trust via a common feature space.
In this paper, we propose TrustEV and take the
view of multi-task learning to unite collaborative
filtering for recommendation and network embed-
ding for user trust. We design a special feature evo-
lution unit that enables the embedding vectors for
two tasks to exchange their features in a probabilis-
tic manner, and further harness a meta-controller
to globally explore proper settings for the feature
evolution units. The training process contains two
nested loops, where in the outer loop, we optimize
the meta-controller by Bayesian optimization, and
in the inner loop, we train the feedforward model
with given feature evolution units. Experiment re-
sults show that TrustEV could make better use of
social information and greatly improve recommen-
dation MAE over state-of-the-art approaches.

1 Introduction
Collaborative filtering (CF), as a powerful method for recom-
mender systems, aims at modeling user preference and item
attribute as latent factors, and use the multiplication of the
two factors to estimate the probability of new user-item in-
teraction. The approach often suffers from data sparsity and
cold-start problems due to the information poverty given only
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user-item interaction matrix. Then social recommendation is
proposed to deal with this problem by incorporating social
network information into CF. Such method is based on one
common knowledge that user’s decisions and behaviors are
often influenced by one’s trust friends [Marsden and Fried-
kin, 1994; Mcpherson et al., 2001]. Hence, one can believe
that the preferences of users linked as friends share some sim-
ilarities, which paves the way for using social relationships to
enhance the recommendation.

Previous researches attempt to capture the social infor-
mation in recommender systems from different aspects. In
classical schools of thinking, researchers leverage trust prop-
agation approaches [Massa and Avesani, 2007] to estimate
user’s preference via her friends’ features or adopt random
walk [Jamali and Ester, 2009] on user-item bipartite graph
and user social graph to predict future interactions. Such
approaches are called similarity-based method. By contrast,
in modern schools of thinking, researches use different mod-
els to merge social information into recommendation, which
are called ensemble method. They adopt matrix factoriza-
tion [Ma et al., 2009; Yang et al., 2013; Guo et al., 2015],
graph regularization [Ma et al., 2011; Wang et al., 2017],
probabilistic model [Liang et al., 2016; Wang et al., 2018;
Meng et al., 2018], network embedding [Wen et al., 2018;
Liu et al., 2018], and graph neural network [Ying et al., 2018;
Song et al., 2019; Wu et al., 2019] to encode the high-
dimensional network information as accessible features.

However, the above-mentioned methods share some com-
mon limitations: i) assume a common feature space for user
preference and social trust, and directly equate the friendship
as preference similarity, ii) model the social influence as static
weights or fixed constraints. Due to these limitations, the in-
corporation of social networks could to some extent limit the
accuracy of recommendation model. Firstly, in fact, for mod-
ern social network services, the relationships between friends
are complicated and dynamic, and some users who possess
different interests but share a common goal or mutual depen-
dence may also connect as friends, which violates the first
assumption. Secondly, the influences from friends tend to
vary with different strengths in terms of distinct contexts, in-
stead of staying unchanged as static weights. To accommo-
date these two facts, the model needs to make better use of
the social information to exactly compensate the CF task.
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In this paper, we propose TrustEV which takes the view
of multi-task learning to combine network embedding (NE)
for social network and CF for recommendation in an elegant
way. In TrustEV, for one user, we consider two independent
latent factors that encode one’s preference on items and trust
information from social network, respectively. Then the two
factors will go through a chain of feature evolution units that
are specially designed to let two input vectors share their fea-
tures in terms of a certain probability distribution. The fea-
ture evolution units, inspired by the independent assortment
in biogenetics, possess several advantages: 1) make the two
tasks achieve partial communication and model the social in-
fluence in a stochastic manner, 2) the NE feature could in-
corporate social information and enhance recommendation,
while the CF feature could lead the NE task to capture more
effective social features, 3) the probabilistic feature sharing
adds enough random noises to the training and can help each
task to get out of the local optimums.

Furthermore, in order to explore a proper balance for the
cross-feature operation, we harness a meta-controller to effi-
ciently search for optimal parameters for the feature evolution
units. Such meta-controller would be trained by Gaussian
Process (GP) based Bayesian optimization, a popular hyper-
parameter searching approach in AutoML [Mockus, 1974;
Wang et al., 2013; Kawaguchi et al., 2015]. The whole train-
ing process contains two nested loops. In the inner loop, we
fix the parameters for feature evolution units and train the
feedforward model for CF and NE tasks. In the outer loop,
we use the recommendation loss generated by the feedfor-
ward model to construct a GP and update the feature evolu-
tion units. To verify the proposed model, we conduct exper-
iments on three benchmark datasets for social recommenda-
tion. The results show that TrustEV could improve recom-
mendation MAE by 1.52% over several state-of-the-art ap-
proaches. Also, ablation studies manifest the effectiveness of
our feature evolution unit and meta-controller.

2 Background
In this section, we review the general collaborative filtering
approach and some popular social recommendation models
to well point out the limitations of prior studies and the dif-
ferences of our present work.

2.1 General Collaborative Filtering
Collaborative filtering deals with user-item interactions and
assumes latent factors for user preference and item attribute.
Use pu to denote the latent factor for user u, and qi to denote
the latent factor for item i. Then the predicted probability that
user u will click on item i (or the predicted rating that user u
will give on item i) would be r̂ui = pT

uqi. Such multipli-
cation could quantify the similarity between user preference
and item attribute. Then the loss function can be defined as

L =
∑
u,i

(rui − pT
uqi)

2 + λU
∑
u

‖pu‖F + λI
∑
i

‖qi‖F ,

where rui is the ground-truth rating value, and λU , λI are
regularization weights. This approach is called latent factor
(LF) model or matrix factorization.

2.2 Collaborative Filtering with Social Trust
The CF method suffers from data sparsity and cold-start prob-
lems due to the sparsity of user-item interaction matrix. To
tackle this issue, social recommendation is proposed and
leverages social trust information to improve the recommen-
dation accuracy. One thinking paradigm is matrix factoriza-
tion, like TrustMF [Yang et al., 2013] and TrustSVD [Guo et
al., 2015]. In TrustSVD, the predicted rating is given by

r̂ui = qT
i (pu + |Iu|−

1
2

∑
i∈Iu

yi + |Fu|−
1
2

∑
v∈Fu

wv),

where Iu denotes the set of items rated by user u, yi is the
latent vector for item i, Fu denotes the set of friends for user
u, and wv is the user-specific latent factor for friend user v.
The summation

∑
v∈Fu

qT
i wv linearly aggregate the rating by

user u’s friends, i.e., the influence from social networks.
Another thinking paradigm is by regularization, which

constrains the preference factor of a user to be similar to those
of one’s friends. One early study [Ma et al., 2011] proposes
an individual-based regularization and add a constaint term to
original loss function:

L =
∑
u,i

(rui − pT
uqi)

2 +
∑
u

∑
v∈Fu

suv · ‖pu − pv‖F

+ λU
∑
u

‖pu‖F + λI
∑
i

‖qi‖F ,

where suv denotes the similarity between user u and v. Then
a recent study adopts graph regularization technique to im-
prove such model [Wang et al., 2017].

Some recent works also leverage network embedding tech-
niques to encode the social network and achieve the state-of-
the-art results [Wen et al., 2018; Liu et al., 2018; Wu et al.,
2018]. Some of them are to merge the NE loss into the CF
loss, while others incorporate the representations given by NE
into the predicted rating [Wu et al., 2019].

Nevertheless, the above methods are limited by two ma-
jor concerns: 1) assume a common feature space for CF and
NE representations and directly equate the friendship as pref-
erence similarity, which may limit model expressiveness for
complicated social relationships, 2) model the social influ-
ence by the forms of constant weights or fixed constraints,
which ignores the variant contexts and random patterns ex-
isting in social interactions and user’s decisions. Differently,
in our model TrustEV, we let the two tasks, CF and NE em-
bedding, to achieve probabilistic feature sharing via a special
feature evolution unit. Such mechanism can be seen as an ex-
act compromise between general collaborative filtering and
previous social recommendation methods, overcoming their
respectively drawbacks and making better use of social infor-
mation to enhance the recommendation accuracy.

3 Proposed Model: TrustEV
We consider a user-item interaction matrix R = {rui}M×N ,
whereM andN are numbers of users and items, respectively.
If user u has rated item i, rui would be a value ranging from
1 to 5; otherwise, rui = 0. Also, there is a social network
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Figure 1: The framework of TrustEV model. The raw input includes
user-item interactions and social network. Firstly, for user u, we
consider two different embedding vectors: preference factor pu and
trust factor tu. The preference factor aims at capturing user prefer-
ence on items via collaborative filtering, while the trust factor is to
encode the topology information from social network. Then these
two factors will go through a special feature evolution unit that lets
the input vectors element-wise exchange the features in a stochas-
tic way. The new representations will be used as input of network
embedding model, which is to estimate the links between users, and
collaborative filtering model, which is to predict the rating. More-
over, the above process as well as its training consists of one inner
loop, and the loss generated by the current version of model would
be transferred to a meta-controller that will output the updated pa-
rameter setting for the feature evolution units based on Bayesian
optimization. The Bayesian optimization plays as an outer loop that
aims to search for a proper balance between social network embed-
ding and collaborative filtering

matrix S = {suv}M×M , where suv = 1 if user u and v are
friends, and suv = 0 otherwise. The problem is to predict fu-
ture user-item interactions given some observed interactions
and the social network. Fig. 1 presents the model framework
of TrustEV, and we will go into the details in the following.

3.1 Embedding Layer
We encode each user as one preference factor and one trust
factor. The preference factor is to capture user’s interest based
on user-item interaction records. We first denote user u as a
one-hot vector xu ∈ R1×M , where xuk = 1 and the other
elements are zeros if user u is the k-th user. Assume PM×D
(D is the embedding size) as the embedding matrix, and the
preference factor for user u would be pu = PxT

u . Besides,
the trust factor is to encode the topology information from
social network. Similarly, we consider another embedding
matrix TM×D, and the trust factor for user u would be tu =
TxT

u . We also represent each item as an embedding vector to
model the item attributes. For item i, we denote it as a one-hot

vector yi ∈ R1×N . Consider an embedding matrix QN×D,
and the embedding factor for item i would be qi = QyT

i .

3.2 Collaborative Filtering and Network
Embedding Models

The collaborative filtering (CF) model leverages user factor
and item factor to predict the user-item interaction. Here,
in order to incorporate social information, we averaged ag-
gregate the preference factors of user’s friends and obtain
wu = 1√

|Fu|

∑
v∈Fu

pv. Then we concatenate user preference

factor, item factor and friends’ representations and use a two-
layer neuron network to give the predicted rating value of user
u on item i:

r̂ui = Wr
2 tanh(Wr

1[wu,pu,qi] + br
1) + br

2,

where Wr
1, Wr

2 are weight matrices, and br
1, br

2 are bias vec-
tors.

The network embedding (NE) model aims to encode the
social network topology into low-dimensional representa-
tions. To achieve this goal, we use the trust factors of users to
retrieve the social network matrix S. Also, we adopt a two-
layer neuron model, which could capture enough non-linear
relations, to estimate the link between user u and v:

ŝuv = Wn
2 tanh(Wn

1 [tu, tv] + bn
1 ) + bn

2 ,

where Wn
1 , Wn

2 are weight matrices, and bn
1 , bn

2 are bias
vectors. Then we merge the losses for two tasks as the final
objective function:

L =
∑
u,i

(r̂ui − rui)2 +
∑
u

∑
v∈Fu

(ŝuv − suv)2

+ λR(
∑
u

‖pu‖F +
∑
i

‖qi‖F ) + λS
∑
u

‖tu‖F ,
(1)

where λR and λS are hyper-parameters that control the
balance between optimization and regularization. We use
stochastic gradient descendant (SGD) algorithm to optimize
the objective function.

3.3 Feature Evolution Layer
To achieve enough communication between CF and NE mod-
els, we design a special feature evolution unit. Such unit takes
the preference factor and the trust factor of a user as input,
lets them randomly exchange their features element-wise, and
outputs two new representations. In Fig. 1, we firstly use pu

and tu as input, and obtain p
(1)
u and t

(1)
u . Then we further get

p
(2)
u and t

(2)
u based on p

(1)
u and t

(1)
u . The new representations

p
(2)
u and t

(2)
u would replace the original factors pu and tu as

the input of CF and NE models.
The details for one feature evolution unit are illustrated

in Fig. 2. Without loss of generality, we consider x1, x2

as the input vectors and y1, y2 as the output representa-
tions. First, we assume two Bernoulli distributions param-
eterized with p1 and p2, respectively, and construct two vec-
tors e1 ∈ R1×D, e2 ∈ R1×D whose elements are i.i.d. sam-
pled from two Bernoulli distributions. Specifically, we have
e1k ∼ Bernoulli(p1) (resp. e2k ∼ Bernoulli(p2)), where
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Figure 2: The details for a feature evolution unit with the input vec-
tors x1, x2 and the output vectors y1, y2. ⊗ and ⊕ denote element-
wise product and add operations, respectively

e1k (resp. e2k) is the k-th element of e1 (resp. e2), and
k = 1, · · · , D. Then we let two input vectors partially ex-
change their features as follows:

m1 = (1− e1)⊗ x1 + e1 ⊗ x2,

m2 = (1− e2)⊗ x2 + e2 ⊗ x1,

where 1 ∈ R1×D denotes a vector whose elements are all
1, and ⊗ denotes the element-wise product. We further let
the cross-feature representations ml (l = 1, 2) go through a
fully-connected neuron layer to get a more condensed vector,

m′l = tanh(We
lml + be

l ),

where We
l and be

l are weight matrix and bias vector, respec-
tively. The output vector would be the weighted summation
of the cross-feature representation and the original input vec-
tor:

yl = (1− al) ·m′l + al · xl.

Such mechanism is to avoid the gradient vanishing issue [He
et al., 2016].

The feature evolution unit is inspired by the independent
assortment in biogenetics, where the descendants will inher-
ent partial genetic traits from their parents. Once two vectors
go through a feature evolution unit, the new representations
would carry partial information from both vectors. To achieve
a deeper feature sharing, one can concatenate K feature evo-
lution units one behind another. The new mechanism pos-
sesses several advantages: 1) the NE feature could help to
incorporate trust information into recommendation, while the
CF feature could lead the NE task to select effective social
information, 2) the partial communication between two tasks
enable them to exactly compensate each other instead of lim-
iting the expressiveness of the other model, 3) the probabilis-
tic cross-feature operation adds random noises to the training
and can help each task to get out of the local optimums.

3.4 Meta-Controller with Bayesian Optimization
In the feature evolution unit, there are four hyper-parameters
that need to determine: p1, p2, a1, a2. They control the im-
pact of dual cross-feature operations. One straightforward

Algorithm 1: Training Algorithm for TrustEV
1 for h = 1, 2, · · · do
2 Update θ by optimizing (1) given ωh;
3 Apply the new model to Dvalid;
4 Augment observed entities Eh = {Eh−1, (ωh, f(ωh))};
5 Find ωh+1 by optimizing (2);
6 end

way is to manually tune these parameters based on the per-
formance on a validation dataset. Such method would be
cumbersome and could get stuck in a sub-optimal setting
since the feasible region is infinite. In this paper, we lever-
age Bayesian optimization [Mockus, 1974; Wang et al., 2013;
Kawaguchi et al., 2015] to automatically search for an opti-
mal setting for the parameters in an efficient way.

The objective of parameter searching problem is to solve
ω = arg maxω f(ω), where ω ∈ Ω denotes a hyper-
parameter set, Ω is the feasible region and f : Ω → R is
a non-convex black-box function. Here, one cannot derive
the explicit form of f , and can only obtain the value of f(θ)
given θ as a query. In our case, ω = [p1, p2, a1, a2], and
f(ω) = −L(Dvalid; θ|ω), where L(Dvalid; θ|ω) denotes the
loss on validation dataset given the model parameter θ op-
timized by SGD conditioned on the hyper-parameter ω for
feature evolution units.

We model the hyper-parameter searching as a Gaussian
Process (GP)1. Assume a finite set of points that we have
explored, the GP model is a joint Gaussian: f(ω1:h) ∼
N (m(ω1:h),K), where m(·) is the mean function (usually
set to be zero), Ki,j = κ(ωi, ωj) is the covariance, and
h is the number of data points. Here, κ(·, ·) is a kernel
function, and one common specification is the Gaussian ker-
nel, κ(x, y) = exp(− 1

2 (x − y)T Σ−1(x − y)), where Σ−1

is the kernel parameter matrix which can be estimated by
empirical Bayesian method [Murphy, 2012]. Then, given a
new data point ωh+1, one can predict the value of f by the
conditional distribution, conditioned on the observed entities
Eh = {ω1:h, f(ω1:h)} and ωh+1:

f(ωh+1)|Eh, ωh+1 ∼ N (µh+1, σ
2
h+1),

where,
µh+1 = κ(ωh+1, ω1:h)K−1f(ω1:h),

σ2
h+1 = κ(ωh+1, ωh+1)− κ(ωh+1, ω1:h)K−1κ(ω1:h, ωh+1).

To select the next query point, we can optimize the UCB ac-
quisition function generated by GP:

ω∗h+1 = arg max
ω

µ(ω|Eh) + ησ(ω|Eh), (2)

where η is a tuning parameter in the algorithm. The above
objective function in our task is a convex function, so one can
use a simple algorithm like gradient descendant to solve it.

We present the training algorithm for our model TrustEV
with an outer meta-controller in Alg. 1.

1The advantage of the GP prior is the simplicity of analysis and
implementation. [Rasmussen and Williams, 2006]
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4 Experiments
In this section, we conduct experiments on three benchmark
datasets for social recommendation to verify the effectiveness
of proposed model TrustEV. The statistics for three datasets
are given in Table 1.

Dataset #users #items #ratings #relationships

Epinions 49,290 139,738 664,824 487,181
Ciao 7,375 99,746 280,391 111,781

FilmTrust 1,508 2,071 35,497 1,853

Table 1: Statistics of three datasets for social recommendation

We compare our method with nine baselines: PMF
[Salakhutdinov and Mnih, 2007], SVD++ [Koren, 2008],
NCF [He et al., 2017; He et al., 2018], TrustPro [Ye et al.,
2011], SoReg [Ma et al., 2011], TrustMF [Yang et al., 2013],
TrustSVD [Guo et al., 2015], NSCR [Wang et al., 2017],
SREPS [Liu et al., 2018]. PMF, SVD++ and NCF are three
CF methods that only leverage user-item interaction infor-
mation to predict future interaction. Differently, PMF and
SVD++ are two linear models, while NCF adopts neural net-
work to capture more complicated features. NCF is a state-
of-the-art CF method. The other six competitors are social
recommendation models that use both user-item interaction
as well as social network to conduct recommendation. Trust-
Pro is one similarity-based model that directly uses friends’
rating to predict the rating of a user. TrustMF and TrustSVD
are two matrix factorization models that introduce latent fac-
tors to retrieve the social network matrix. SoReg and NSCR
are regularization-based models. The difference is that SoReg
is a linear model and NSCR is a deep model. SREPS is a re-
cent work that leverages network embedding techniques to
incorporate the social information. NSCR and SREPS are
two powerful baselines for social recommendation.

We use mean absolute error (MAE) and root mean square
error (RMSE) to evaluate the performance. The smaller value
indicates the better performance for recommendation. Fol-
lowed by previous work [Guo et al., 2015], for each dataset,
we consider two different data split ways. Firstly, we take
a All view and randomly split the whole dataset into three
parts: 70% for training, 20% for validation, and 10% for test-
ing. Secondly, we take a Cold-Start view and only consider
the users with less than five rated items for testing. For each
model, we independently run the experiment five times and
report the average results.

We implement the model by Tensorflow. Here are the spe-
cific settings for some hyper-parameters in our model: em-
bedding size D = 10, regularization weights λR = 0.0001,
λS = 0.0001, learning rate 0.1. We use mini-batch training
to conduct model learning, and the batch size is 64. Also, for
the network embedding model, we need to sample enough
negative examples for training. For each link relationship, we
uniformly sample n = 5 negative examples from all users.
The parameter settings for other models are according to the
reports in the previous paper.

4.1 Comparative Results
We present the comparative results on three datasets with the
data split from All view and Cold-Start (CS) view in Ta-

ble 2. As we can see, compared with other competitors, our
model TrustEV achieves the best recommendation accuracy
on three datasets, and improve the MAE by 1.63% and RMSE
by 0.47% on Epinions. The results manifest that TrustEV
could make better use of social information to enhance the
recommendation. Besides, comparing the results of other six
social recommendation models, we find that the ensemble
methods outperform the similarity-based method. Also, the
network embedding based model SREPS gives the best re-
sults among all baselines. That is possibly because the NE
technique could capture deeper features from the social net-
work. Furthermore, while NCF does not use any social infor-
mation, its performance is still better than other simple social
recommendation methods, like TrustPro, TrustMF, TrustSVD
and SoReg. One possible reason is that these social recom-
mendation models all assume fix and determined influence
from user’s friends, and such consideration makes the incor-
poration of social network limit the expressiveness of recom-
mendation model. By constrast, in our model TrustEV, the
latent factors for network embedding and recommendation
tasks would partially exchange their features in a stochastic
way, which enables them to exactly compensate each other.

4.2 Ablation Study

In order to verify the necessities of some key components in
our model, like feature evolution units and meta-controller,
we design ablation studies for TrustEV. Here we consider
two simplified models: TrustEV-COMM and TrustEV-FIX.
Specifically, TrustEV-FIX removes the Bayesian optimiza-
tion based meta-controller, and fix the hyper-parameters for
feature evolution units with p1 = p2 = a1 = a2 = 0.5. In,
TrustEV-COMM, we set p1 = 1 and p2 = a1 = a2 = 0, in
which situation, there is no cross-feature operation, and the
CF and NE models share a common feature space. We show
MAEs for users with different numbers of friends in Fig. 3.

As shown in Fig. 3, the performance of TrustEV-FIX is
better than TrustEV-COMM, which verifies the effectiveness
of feature evolution unit and shows that the cross-feature op-
eration could indeed unite the CF and NE tasks. Moreover,
we find that, as the number of friends increases, the perfor-
mance of TrustEV-FIX becomes better while the performance
of TrustEV-COMM becomes worse. Such phenomenon is
possibly due to the fact that in TrustEV-COMM, the NE
model constrains the preference factors of friend users to be
similar, which to some extent limits the expressiveness of CF
model (like previous social recommendation models).

Comparing TrustEV-FIX with TrustEV, we can find that
the meta-controller could indeed help to search for a proper
balance of cross-feature operation and improve the perfor-
mance. As the number of friends increases, the MAE of
TrustEV goes down, which indicates that TrustEV is able to
select more effective NE features for CF given more trust in-
formation. Also, the meta-controller requires an outer loop
for global optimization of hyper-parameters, which increases
the computational costs. Hence, for practical application,
there would be a trade-off between accuracy and complexity.
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Epinions-All Ciao-All FilmTrust-All Epinions-CS Ciao-CS FilmTrust-CS
Methods MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

PMF 0.8662 1.1089 0.9883 1.2793 0.6751 0.8112 0.9223 1.1633 0.9991 1.2894 0.7380 0.8736
SVD++ 0.8482 1.0828 0.9689 1.2598 0.6419 0.8001 0.8991 1.1374 0.9795 1.2699 0.7078 0.8640

NCF 0.8411 1.0833 0.9615 1.2546 0.6338 0.7901 0.8994 1.1333 0.9716 1.2651 0.6985 0.8601
TrustPro 0.8873 1.1445 1.0089 1.3181 0.7124 0.8326 0.9463 1.1956 1.0192 1.3284 0.7788 0.8995

SocialReg 0.8499 1.0985 0.9720 1.2757 0.6317 0.8045 0.9013 1.1576 0.9828 1.2866 0.6948 0.8651
TrustMF 0.8485 1.0902 0.9696 1.2634 0.6345 0.8012 0.9075 1.1454 0.9803 1.2740 0.7020 0.8667

TrutsSVD 0.8393 1.0933 0.9614 1.2675 0.6221 0.7910 0.8938 1.1510 0.9721 1.2776 0.6904 0.8523
NSCR 0.8374 1.0881 0.9501 1.2666 0.6198 0.7834 0.8945 1.1421 0.9695 1.2775 0.6891 0.8522
SREPS 0.8284 1.0806 0.9520 1.2555 0.6182 0.7882 0.8873 1.1378 0.9605 1.2660 0.6821 0.8555
TrustEV 0.8151 1.0755 0.9388 1.2491 0.6089 0.7801 0.8654 1.1319 0.9490 1.2599 0.6754 0.8405

Impr. 1.63% 0.47% 1.21% 0.43% 1.53% 0.42% 2.53% 0.12% 1.21% 0.41% 1.00% 1.40%

Table 2: The experiment results for proposed model TrustEV and nine competitors on three datasets with data split from two views. The
orange cells mark the best values in one column, and the purple cells mark the best values among all competitors

(a) Epinions (b) Ciao (c) FilmTrust

Figure 3: Ablation studies for feature evolution units and meta-controller in TrustEV on three datasets. In TrustEV-FIX, we remove the
meta-controller and fix the parameter settings for feature evolution units, while in TrustEV-COMM, we remove the feature evolution units
and consider one common feature space for CF and NE models

(a) D (b) λR (c) λS (d) n

Figure 4: Performance variation w.r.t hyper-parameters in TrustEV, including embedding sizeD, regularization weights λR, λS , and negative
sample size n. The vertical dotted line marks the value set in this paper

4.3 Parameter Sensitivity
We also discuss the performance variation w.r.t some model
parameters, including the embedding size D, the regulariza-
tion weights λR, λS , and the negative sample size n. The re-
sults are shown in Fig. 4. With the embedding size increasing
from 5 to 25, the model performance firstly becomes better
and then gets worse, This is because a larger embedding space
could improve the model expressiveness ,but if it is too large,
the representation would become sparse, which leads to per-
formance decline. Secondly, two regularization weights have
a great impact on both MAE and RMSE. Such phenomenon
shows that the model requires a proper trade-off between op-
timization and regularization. Thirdly, we test the model with
different negative sample sizes. We find that when we sample
a few or a lot of negative links, the performance is not that
good, and n = 5 is a relatively nice setting.

5 Conclusion
In this paper, we propose a new feature evolution based
multi-task learning framework for social recommendation.

The new model contains a special feature evolution unit
that makes the latent factors for CF and NE tasks element-
wise exchange their features in a random way. Such mech-
anism can be seen as a compromise between general CF
method, where no social information is considered, and pre-
vious social recommendation methods, which imposes hard
constraints on similarities of preference factors among friend
users. Moreover, we design a meta-controller that is based on
Bayesian optimization to automatically search for a proper
hyper-parameter setting for the feature evolution unit, which
controls the impact of cross-feature operation. The experi-
ments on three benchmark datasets show that 1) the feature
evolution unit helps to make better use of social information
and enhance the recommendation accuracy, and 2) the meta-
controller could find an optimal balance where the NE task
could exactly compensate the CF. The feature evolution units
can be easily generalized to other multi-task learning scenar-
ios where two different models need to be trained and share
some relations. We leave such exploration for future works.
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