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Abstract

Multi-view clustering aims to leverage information
from multiple views to improve clustering. Most
previous works assumed that each view has com-
plete data. However, in real-world datasets, it is of-
ten the case that a view may contain some missing
data, resulting in the incomplete multi-view clus-
tering problem. Previous methods for this prob-
lem have at least one of the following drawbacks:
(1) employing shallow models, which cannot well
handle the dependence and discrepancy among dif-
ferent views; (2) ignoring the hidden information
of the missing data; (3) dedicated to the two-view
case. To eliminate all these drawbacks, in this
work we present an Adversarial Incomplete Multi-
view Clustering (AIMC) method. Unlike most ex-
isting methods which only learn a new represen-
tation with existing views, AIMC seeks the com-
mon latent space of multi-view data and performs
missing data inference simultaneously. In particu-
lar, the element-wise reconstruction and the gen-
erative adversarial network (GAN) are integrated
to infer the missing data. They aim to capture
overall structure and get a deeper semantic under-
standing respectively. Moreover, an aligned clus-
tering loss is designed to obtain a better clustering
structure. Experiments conducted on three datasets
show that AIMC performs well and outperforms
baseline methods.

1 Introduction

Many real-world datasets contain multiple kinds of features.
Such datasets are called multi-view data. For example, photos
shared on an online social network have both visual features
and tag descriptions. Different views exhibit consistency and
complementary properties of the same data, leading to ex-
tensive research on multi-view learning. Synthesizing multi-
view features leads to a more comprehensive description of
the data, which could benefit many tasks such as classifica-
tion [Xu er al., 2018a] and clustering [De Sa et al., 2010].
This work is concerned with multi-view clustering, which
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integrates multiple views to help identify essential grouping
structure in an unsupervised manner.

Most of the previous studies on multi-view clustering al-
ways assume that all of the views are complete. However,
in real-life cases some views could be missing for some data
instances. For instance, in Twitter, tweets can contain text,
images and videos, but only a part of them contain all the
three views. As a result, the lack of partial views makes most
multi-view clustering methods inevitably degenerate or even
fail. In this paper, we are focused on this Incomplete Multi-
view Clustering (IMC) problem.

The prevalent solutions to the IMC problem mainly depend
on Non-negative Matrix Factorization (NMF) [Li ez al., 2014;
Zhao et al., 2016; Xu et al., 2018b]. NMF based methods
learn a common latent space for complete instances and pri-
vate latent representations for incomplete instances. Never-
theless, they cannot be easily extended to handle more than
two incomplete views. Weighted NMF based approaches
[Shao et al., 2015; Hu and Chen, 2018; 2019] first fill in the
missing values by average feature values or matrix comple-
tion methods, and then handle the problem with the help of
weighted NMF by giving filled data lower weights than orig-
inal data. However, such a simple padding scheme is invalid
when the missing ratio is large. Meanwhile, these methods
cannot fully capture the hidden information of the missing
data for consensus representation learning because the miss-
ing data is not well recovered.

Recently, some IMC methods considering missing data in-
ference have been proposed. In [Wen er al., 2019], Wen et
al. proposed to learn the missing views of instances jointly
with the NMF framework. However, this factorization model
corresponds to a shallow projection of the data and may not
well handle the dependence and discrepancy among different
views. Wang et al. proposed a deep IMC method [Wang et
al., 2018] based on Generative Adversarial Network (GAN)
[Goodfellow et al., 2014]. Tt uses one view to generate the
missing data of the other view by Cycle GAN [Zhu et al.,
2017]. This method can only handle two-view data because
the cycle generation framework is dedicated to the two-view
case.

To eliminate the above limitations and drawbacks, we pro-
pose a new IMC framework, named Adversarial Incomplete
Multi-view Clustering (AIMC). As shown in Figure 1, the
encoders learn the aligned subspaces z(*)’s of multiple views,
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Figure 1: Illustration of AIMC. The encoders learn the aligned subspaces z(")’s of multiple views. The common latent subspace z is obtained
via average pooling. The decoders use an element-wise reconstruction loss to capture good high-level features and inference of missing data.
The additional discriminators are used to distinguish the original data x(")s and reconstructed data %(*)’s. The decoders will get a deeper
semantic understanding when the discriminators cannot distinguish them.

where we require the same dimension of the subspaces to rep-
resent the same high-level feature. We use average pooling to
learn common representation z, which synthesizes the con-
sistent and complementary information from all the views.
Then for each view v, both z(*) and z are used separately to
reconstruct x(*) via the same decoder g,. The motivation of
this design is twofold: (1) We need to align the subspaces of
z(¥)’s through z by forcing them to be similar. The naive idea
of minimizing the distance between each z(*) and z would
force one view to exhibit complementary high-level features
in other views. By putting them in the same role for recon-
structing x(*), we implicitly force them to be similar. (2)
When view v is missing, we can still employ z for a good
inference of x(*) using consistent information among views.
To obtain good high-level features and inference of missing
data, we train the framework by three losses: an element-
wise reconstruction loss, an adversarial loss and a Kullback-
Leibler (KL) aligned clustering loss. The reconstruction loss
is standard for high-level subspace learning, but ignores the
correlations between data dimensions. Hence, we train addi-
tional discriminators D,, to distinguish the original data and
reconstructed data. The decoders will get a deeper seman-
tic understanding when the discriminators cannot distinguish
them [Pathak et al., 2016], making decoders good generators
for missing data inference. The KL aligned clustering loss
is imposed on complete data only, which tries to make the
latent distributions for all the views consistent and compact
cluster-wise. After training, we infer missing data and apply
AIMC once more on the generated complete data to obtain
the updated common representation z for clustering.

The major contribution of this work is a novel method for
the IMC problem with the consideration of more accurately
inferring missing information by the adversarial encoder-
decoder pipeline. Meanwhile, the encoders learn high-level

common representation via multi-layer non-linear transfor-
mations. Another contribution is that we extend the KL
aligned clustering loss [Xie ef al., 2016] to the multi-view
case to simultaneously learn aligned high-level subspaces and
capture better clustering structures for all the views. Finally,
we empirically evaluate AIMC on three real world datasets
and show its superiority over state-of-art baseline methods.

2 Related Work

In the section, we briefly review two lines of related work, in-
complete multi-view clustering and unsupervised multi-view
deep learning.

2.1 Incomplete Multi-view Clustering (IMC)

Li et al. [Li et al., 2014] present the first NMF based
IMC method, PVC, which learns common representations
for complete instances and private latent representations for
incomplete instances with the same basis matrices. Then
these common and private representations are used together
for clustering. Inspired by this work, [Zhao et al., 2016] in-
tegrated PVC and manifold learning to learn the global struc-
ture of multi-view data. Nevertheless, these methods can
only deal with two-view data, limiting their application scope.
Weighted NMF based approaches, such as [Shao et al., 2015;
Hu and Chen, 2018; 20191, were proposed to deal with more
than two views by filling in the missing data and giving them
lower weights. However, they still failed to capture the hid-
den distribution of missing data. Wen et al. [Wen et al.,
2019] added an error matrix to compensate the missing data.
The original incomplete data matrix and the error matrix were
combined to form a completed data matrix in a matrix factor-
ization architecture. The common latent representation and
error matrix (i.e. missing data) were jointly optimized. Al-
though this work tried to capture the hidden distribution of
missing data, it was still based on matrix factorization which
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corresponds to a shallow projection. Such a simple model
cannot well handle complex relationships between low-level
features of multi-view data.

2.2 Unsupervised Multi-view Deep Learning

Inspired by deep learning [Hinton and Salakhutdinov, 2006],
different deep models were proposed recently for multi-view
learning. There are three main categories. The first cat-
egory is based on Canonical Correlation Analysis (CCA)
[Hotelling, 1936], which finds linear projections of two views
that are maximally correlated. Andrew et al. [Andrew et al.,
2013] proposed deep extension of CCA (Deep CCA) that si-
multaneously learned two deep nonlinear mappings of two
views. The second one is based on autoencoder. Ngiam et
al. [Ngiam et al., 2011] explored extracting shared represen-
tations by training a two-view deep autoencoder which aimed
to best reconstruct the two-view input. Shahroudy et al
[Shahroudy et al., 2018] introduced autoencoder-based net-
work to analyze the multi-view (RGB+Deep features) videos.
Wang et al. [Wang et al., 2015] found that CCA-based ap-
proaches tended to promote autoencoder-based approaches
and proposed a deep model that combined CCA and autoen-
coder. Recently, there exist several approaches utlizing GAN
[Goodfellow et al., 2014] for multi-view learning such as Cy-
cleGAN [Zhu et al., 2017] and StarGAN [Choi et al., 2018].
However, those methods mainly focused on cross-domain
data generation. Wang [Wang et al., 2018] proposed Con-
sistent GAN for the two-view IMC problem. It uses one view
to generate the missing data of the other view, and then per-
forms clustering on the generated complete data. However,
it is dedicate to the two-view case, while our AIMC can be
applied to IMC problems with an arbitrary number of views.

3 The Method

In this section, we present Adversarial Incomplete Multi-view
Clustering (AIMC) in detail, together with its implementa-
tion.

3.1 Notations and Problem Statement

In the incomplete multi-view clustering setting, an instance
is characterized by multiple views and may have complete or
partial views as shown in Figure 2. Suppose we are given a
dataset with H views, N complete instances, and N incom-
plete instances. We use ng))/i(ﬁ”) ERT(v=1,....,H)to
denote the feature vector for the v-th view of the n-th/n-th
instance in the set of complete/incomplete instances, respec-
tively, where d,, is the dimensionality of the v-th view. An

indicator matrix M € R”*¥ for incomplete instances is de-
fined as:

1 if the n-th instance has the v-th view

M7 = , (1)
0 otherwise

where each column of M encodes the view status

(present/absent) for the corresponding instance. Since there

are missing views, for every n we have Zszl M,z < H.

Our goal is to group all the N + N instances into K clus-
ters.
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Figure 2: Notations for incomplete multi-view data.
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3.2 Adversarial Encoder-Decoder Pipeline

As shown in Figure 1, the overall architecture is an encoder-
decoder pipeline which consists of H encoders {f,}L,, H
decoders {g, }!L | and H discriminators {D,}!_,. The en-
coders aim to obtain high-level latent representations and the
common latent representation. The decoders take these rep-
resentations to reconstruct the original data and also gener-
ate missing views of incomplete instances. The discrimina-
tors are added to assist in training this model for better in-
ferring missing data. After obtaining the predicted missing
data, the encoders use the generated complete data to calcu-
late the common representation, which can capture the hidden
information of the missing data. Details regarding each com-
ponent will be elaborated as below.

Encoder

The v-th encoder f,, is dedicated to learning aligned subspace
z(") € R¢ for all the input data of the v-th view. The same la-
tent space dimensionality c is shared among the H views. The
latent representations {z(*)}/L | need to be aligned. To this
end, we add the average pooling layer, which averages all the
latent representations for different views, to get the common
representation z. One feature in the common subspace will be
activated when it is activated in at least one view. The activa-
tion intensity depends on the number of activated views. Le.,
consistent features tend to have higher intensity than comple-
mentary features. To achieve better subspace alignment and
inference of missing data, we put each z(*) and z in the same
role (i.e. input to the decoder) for reconstructing the corre-
sponding x(*).

Decoder

We now discuss the second half of our pipeline, the decoders
{g,}E |, which reconstruct the original data and generate
the missing views of incomplete instances using the common
latent representations. %) the output of g,, is the recon-
struction of the original data x(*) (or the generated missing
data). The traditional element-wise mean squared error is uti-
lized to evaluate reconstruction. Nevertheless, this objective
does not explicitly try to capture the correlations between data
dimensions which could be important for describing the un-
derlying distribution of a view. To capture such correlations
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for better missing data inference, we employ the discrimina-
tors { D, }L . For each view, the original data x(*) and the
reconstructed data X(*) with their labels (True and False re-
spectively) are used to train the discriminator D,. Each pair
(9w, D,) forms a adversarial relationship, leading to a deeper
semantic understanding of the data, and consequently better
generation of missing data. This framework explicitly sup-
plements the missing data to learn a more complete common
representation for incomplete multi-view data.

3.3 Loss Function
We train our AIMC model by the original complete instances

{x } and incomplete instances {x(”)} The goal is to learn
common representation for multi-view data and to precisely
reconstruct the original data simultaneously. We now de-
scribe different components of our loss function.

Reconstruction Loss
We use Lo distance as our element-wise reconstruction loss
function, Lx:

N
=35 (35 -+ -]

n=1
% - 0@
), + 7" - @),

X 3 (|- e
2)

M,r=1n=1
where z’ )fzv%v) is the latent representation of the v-th view
and the n-th/n-th instance of complete/incomplete instances.
7,/Z7 is the common latent representation of the com-
plete/incomplete instances. These latent vectors are calcu-
lated as in Eq. (3).

H
1
=fu(X5L”))7Zn _EZZS}) (3a)
v=1
H
) = f(&)). B = —— Y Mz, (3b)
Z M _ v=1

The first term of Lx is the reconstruction criterion utilizing
the common latent representation. It aims to learn the bidi-
rectional mapping between the original data space and the
common embedding space. The second term denotes view-
specific reconstruction, which implicitly forces the latent rep-
resentation of each view close to the common representation
by feeding them into the same decoder network. The last
two terms are designed in the same notion for the incomplete
part. However, the Lo loss focuses on each data dimension
separately while ignores the correlations between data dimen-
sions. In the next, we detail the adversarial loss in our model
to alleviate this problem.

Adversarial Loss

The adversarial loss is based on idea of GAN [Goodfellow et
al., 2014]. Traditional GAN consist of two parts, generator
G and discriminator D. G maps the data w from noise distri-
bution Py, to data distribution Py,,. The training procedure
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is a two-player game where D tries to distinguish the ground
truth data and the output of GG, while G tries to confuse D by
generating data as “real” as possible. The objective for GAN
can be formulated as follows:

mén max Ex~p,,..[log D(x)] + Ew~p,[log(l — D(G(w)))]
“)

In our model, the problem of multi-view reconstruction is
modeled in the adversarial setting to learn the conditional dis-
tributions P, ) (X(V)|%), P00 (X(?)]%), where % can be
common latent representations z, z, or view-specific latent
representations z("), z(*). Specifically, we adapt the tradi-
tional GAN framework to multi-view reconstruction by treat-
ing decoders as generators, i.e., g £ @G. The adversarial loss
for reconstructing complete data x(*) by common latent rep-
resentation z is

H

min  max Eiw)n ~[log Dv(x(”))]
{9} (DML, 42 1( P ata 5)

—|—E‘z~pz [1og(1 - Dv (gv (Z)))D

Similarly, we consider the adversarial loss for reconstruct-
ing complete data x(*) by view-specific latent representation
z("), For incomplete data %) the adversarial loss is de-
signed in the same manner. We omit the details due to the
forms are similar to Eq. (5). Hence the overall adversarial
loss for our model, L 4, is the sum of the above four terms.

The decoders are trained to reconstruct the original data
(x(®) and X(*)) through the L, reconstruction loss £ and
the adversarial loss £ 4. The reconstruction loss tries to re-
produce original data as accurately as possible, while the ad-
versarial loss tries to capture the underlying data distribution.
Combining these two loss functions would lead to robust en-
coders and decoders for high-level representation projection
and missing data inference.

KL Aligned Clustering Loss

According to the aforementioned analysis, we use average
pooling to get the common representation of multiple views.
In order to further polish the latent representations for multi-
view data, we propose the KL aligned clustering loss on com-
plete instances, which minimizes KL divergence between the
clustering distributions calculated by z(*)’s and emphasized
target distribution calculated by z. Following [Xie et al.,
2016], we model the probability of a complete data instance n
being assigned to cluster k using the Student’s t-distribution
[Maaten and Hinton, 2008], producing a distribution for each
view:

v v 5+1
o (2 - >||2/5>
nk — S5+1 ( )

S (L4 [z — ) 13/6)- %

where ¢ is the number of degrees of freedom for the Student’s
t-distribution. Following Xie et al., we set J to 1. u,(f) is the
clustering centroid of the k-th cluster in the latent space for
the v-th view. The centroids are initialized by K-means and
updated by Stochastic Gradient Descent (SGD) [Xie er al.,

20161. ¢

can be interpreted as the probability of assigning
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instance n to cluster k (i.e., a soft assignment) for the v-th
view.

Similarly, we calculate the soft assignment distribution g,
for the common latent representation z,,. In order to improve
cluster compactness, we put more emphasis on data points
assigned with high confidence by calculate the emphasized
target distribution p,,;, as follows:

2
an/ fr
Pk = ——2kIE 7)
S Qe | fe
where fi, = > ¢nr are soft cluster frequencies. It first

squares g, and then normalizes it by frequency per cluster.
Hence, high probabilities will be emphasized. We define the

objective function as a KL divergence between the soft as-

signments q( k)

follows:

and the emphasized target distribution p,,; as

Z Pnk log U) 8)

v,n,k

Lp =Y KLPP|QW) =

The distribution gap of different views will be reduced gradu-
ally by optimizing Lp, leading to more compatible latent rep-
resentations across different views. Meanwhile, the clusters
are iteratively refined, which helps obtain a better clustering
structure of the common representation z.

Joint Loss
By synthesizing the above objectives, the overall optimization
problem of AIMC is formulated as

min max L=Lr+als+ BLp )
{fv»gval‘év)} {D }v 1

where a, f > 0 are hyper-parameters.

3.4 Implementation

The whole process of using AIMC for clustering is summa-
rized as below.
Step 1: Training AIMC model. We use the original com-

plete instances {xn } and incomplete instances {x } to
train AIMC by optimizing Eq. (9). We use the adaptive mo-
ment (Adam) optimizer to train our model and set the learn-
ing rate to 0.0001. Our model is implemented by PyTorch
and run on Ubuntu Linux 16.04.

Step 2: Generating missing data. In this step, we put
the common representation zz calculated through Eq.(3) into
the trained decoder network {g, }Z; to generate the missing
views of incomplete instances:

5\(%1)) = Ggv (%ﬁ) (10)

Step 3: Calculating the common representation using the
generated complete data. We combine the original incom—

plete instances {§~v } and the generated missing data {fc v) }

to compute the common representations { Z~
plete part:

H
A(’U Z ( unfv ~(v ) (1 - Mvﬁ)fv(i(ﬁv)))
. (1n

} for the incom-

In this way, the model can capture the hidden information of
the missing data. Finally, we apply K-means on the learned

common representations {{z,}_,, {zn}” 1} to quantita-
tively test AIMC’s performance on data clustering.

4 Experiments

We evaluate the clustering performance of AIMC on three
datasets. Important statistics are summarized in Table 1 and
a brief introduction of the datasets is presented below.

Reuters [Amini et al., 2009] consists of 111740 docu-
ments written in 5 languages of 6 categories represented as
TFIDF vectors. We utilize documents written in English,
French and German as three views. For each category, we
randomly choose 500 documents. Totally 3000 documents
are used. BDGP [Cai et al., 2012] contains 2500 instances
about drosophila embryos of 5 categories. We utilize 1000D
lateral visual vector, 500D dorsal visual vector and 79D tex-
ture feature vector as three views. We use all instances in
our experiment. Youtube [Omid ez al., 2013] contains 92457
instances from 31 categories, each described by 13 feature
types. We sample 500 instances from each category. We se-
lect 512D vision feature, 2000D audio feature and 1000D text
feature as three views.

We compare AIMC with the following baseline algorithms.
Due to the missing data, we cannot directly perform the algo-
rithms that are only applicable on complete data. Following
[Hu and Chen, 2018], we first fill the missing data with the av-
erage feature values for each view, and then perform these al-
gorithms. Best Single View (BSV) clusters on each view, and
reports the best result. Concat concatenates feature vectors of
different views to apply K-means. Deep Multi-view Semi-
NMF (DMSNMF) [Zhao et al., 2017] is an deep method
for complete multi-view data clustering. Doubly Aligned In-
complete Multi-view Clustering (DAIMC) [Hu and Chen,
2018] is a weighted NMF based IMC method. Unified Em-
bedding Alignment Framework (UEAF) [Wen ez al., 2019]
is the state-of-the-art IMC method with missing data infer-
ence.

As in [Hu and Chen, 2018], we randomly select N in-
stances as incomplete data and randomly remove some views
from each of them. The Missing Rate (MR) + — is from 0
to 0.5. The clustering Accuracy and Normalized Mutual In-
formation (NMI) are used to evaluate clustering performance
[Shao er al., 2015]. All of the hyper-parameters of these
methods are selected through grid-search.

4.1 Results

Figure 3, 4, 5 show the clustering performance of AIMC and
baseline methods. First, the performance of IMC methods
drop more slowly than others with the increase of missing

Dataset || Size |# of categories Dimensionality
Reuters || 3000 6 21531/24893/34279
BDGP || 2500 5 79/500/1000

Youtube || 15500 31 512/1000/2000

Table 1: Dataset summary.
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Figure 4: Mean Accuracy and NMI on Youtube dataset

rate. We can see that IMC methods are more effective for the
IMC problem. Second, when the missing rate is 0, deep meth-
ods (AIMC, DMSNMF) outperform shallow ones. This is
intuitive since the deep model could better handle the depen-
dence and discrepancy among different views by hierarchi-
cal modeling. Thirdly, AIMC and UEAF consistently outper-
forms DAIMC on the two datasets, which indicates that cap-
turing the hidden distribution of the missing data can greatly
facilitate the IMC. We use t-test with significance level 0.05 to
test the significance of performance difference. Results show
that AIMC significantly outperforms all the baseline meth-
ods.

4.2 Analysis

In this subsection, we will analyze AIMC from two perspec-
tives, i.e., parameter setting and convergence analysis.

The AIMC method contains two hyper-parameters: « and
(. Here we explore their impact to performance on the BDGP
dataset. We set missing rate as 0.2, and report the accuracy by
varying o and 3 in the set {107%,1073,1072,107},1,10}.
Fig 6(a) shows the results. We find a general pattern: the per-
formance curves first go up and then go down when increas-
ing the hyper-parameters. This indicates the discriminators
and KL aligned clustering term are useful for IMC. Based on
the results, we set « = 0.001, 5 = 0.01 in other experiments.
Note that we follow the experimental methodology employed
by previous works [Li et al., 2014; Zhao et al., 2016] that set
hyper-parameters by looking at performance on the BDGP
test set. The results for BDGP could be overly optimistic.
However, the hyper-parameters of AIMC and all the baselines
are tuned in exactly the same way, so it is a fair comparison.
Moreover, AIMC was run with the same hyper-parameter set-
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Figure 6: Parameter and convergence study on the BDGP dataset

ting on the three datasets and achieved good performance on
all of them, which means AIMC is not very sensitive with
respect to the hyper-parameters.

Fig 6(b) shows the curves of loss value, Accuracy and NMI
against the number of epochs for AIMC. We set the missing
rate as 0.5 on BDGP dataset. We find at the beginning the loss
value drops and the performance increases rapidly. The opti-
mization procedure of AIMC typically converges in around 5
epochs.

5 Conclusion

In this paper, we proposed a Adversarial Incomplete Multi-
view Clustering (AIMC) method for IMC with an arbitrary
number of views. AIMC tries to seek a common high-level
representation for incomplete multi-view data. It also tries
to capture hidden information of the missing data by miss-
ing data inference via the element-wise reconstruction and
the GAN. Experimental results on three real-world datasets
confirmed the effectiveness of AIMC compared to state-of-
the-art incomplete multi-view clustering methods.
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