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Abstract

In this work, we tackle the zero-shot metric learn-
ing problem and propose a novel method abbre-
viated as ZSML, with the purpose to learn a dis-
tance metric that measures the similarity of unseen
categories (even unseen datasets). ZSML achieves
strong transferability by capturing multi-nonlinear
yet continuous relation among data. It is moti-
vated by two facts: 1) relations can be essentially
described from various perspectives; and 2) tradi-
tional binary supervision is insufficient to represent
continuous visual similarity. Specifically, we first
reformulate a collection of specific-shaped convo-
lutional kernels to combine data pairs and generate
multiple relation vectors. Furthermore, we design
a new cross-update regression loss to discover con-
tinuous similarity. Extensive experiments including
intra-dataset transfer and inter-dataset transfer on
four benchmark datasets demonstrate that ZSML
can achieve state-of-the-art performance.

1 Introduction
Metric learning aims to find appropriate similarity measure-
ments of data points, whose core intuition is to preserve the
distance between data points in embedding space. This topic
is of important practice due to its wide applications in many
related areas, such as face recognition [Guillaumin et al.,
2009], clustering [Davis et al., 2007; Xing et al., 2003], and
retrieval [Zhou et al., 2004].

Euclidean distance is one of the most common similar-
ity metrics since it does not require priori information and
training process. However, unsatisfactory results may be
yielded as it treats all feature dimensions equally and inde-
pendently, thus fails to capture the idiosyncrasies of data. In
contrast, parametric Mahalanobis distance that can model the
different dimension importance, has been adopted in many
works. Some representative Mahalanobis approaches [Hoi et
al., 2006; Xing et al., 2003] project data linearly and mini-
mize Euclidean distance between positive pairs, while max-
imize it between negative pairs. Alternatively, one may also
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directly optimize the Mahalanobis metric for nearest neigh-
bor classification, among which representative works include,
but are not limited to, Neighborhood Component Analysis
(NCA) [Roweis et al., 2004], Large Margin Nearest Neigh-
bor (LMNN) [Weinberger and Saul, 2009], and Nearest Class
Mean (NCM) [Mensink et al., 2013]. Priori information plays
a pivotal role in the success of these metric learning schemes.
Therefore, unsatisfactory results can be produced when the
priori is not available.

In this paper, we are committed to a more challenging task:
zero-shot metric learning, whose ambition is to learn an effec-
tive metric for unseen categories and datasets. It claims that
the learned metric must measure the similarity without access
to the target data. Powerful transferability can be obtained by
capturing the multi-nonlinear and continuous relations, which
is consistent with the innate character of data. Particularly, we
first reformulates a set of specific-shaped convolutional ker-
nels to discover various kinds of relations. It is well known
that convolutional neural network (CNN) has great power in
feature embedding[Lecun et al., 1998; Donahue et al., 2013;
Toshev and Szegedy, 2014], while in this paper it is employed
to reveal the correlation among data. Then, we design a cross-
update regression loss, which relax the binary supervision
employed on the positive pairs (PPs) and negative pairs (NPs)
to extend generalization capability. Specifically, we initial-
ize a coarse continuous label as a weak supervision of the
predicted similarity, and update the coarse label and the pre-
dicted similarity alternately till convergence. By doing so,
we can learn the similarity order and improve transferability.
To better demonstrate the superiority of ZSML, we present
multi-level transfer tasks, which covers transferring to unseen
category within one dataset (intra-dataset ZSML) and unseen
datasets (inter-dataset ZSML). In a nutshell, the main contri-
butions of our work can be summarized as follows:

• Departing from the traditional single and linear rela-
tion representation, we reformulate a family of specific-
shaped convolutional kernels which can capture the
multi-nonlinear relations among data points.
• We devise a cross-update regression loss for learning

continuous similarity to improve generalization capabil-
ity, which is verified in our empirical study.
• Extensive transfer experiments demonstrate that our

model can better measure the similarity of unseen cate-
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Figure 1: The multi-nonlinear regression metric learning framework of our proposed method. ZSML employs a relation function R and a
similarity function S to project data from the feature space into a scalar similarity space, where the similarity extent of two examples are
measured. Finally, a regression from scalars in the similarity space to the continuous labels is adopted to guide the training process. The
continuous labels are ranged in (0, α) for NPs and (β, 1) for PPs.

gories and unseen dataset compared with the peer meth-
ods.

2 Related Work
The Mahalanobis metric is among the most commonly used
linear metric learning methods, and a majority of methods
have been developed based on the Mahalanobis metric. For
instance, Davis proposed an information theoretical metric
learning (ITML) method [Davis et al., 2007], which es-
sentially minimized the differential relative entropy between
two multi-variate Gaussians. LMNN [Weinberger and Saul,
2009] enforced a large margin of a Support Vector Machine
(SVM) within the triplet data and depicted the relative rela-
tions among three individual examples. Recently, GMML
[Zadeh et al., 2016] revisited the task of learning an Eu-
clidean metric from weakly supervised data, where pairs of
similar and dissimilar points building on geometric intuition
are given. Furthermore, Ye [Ye et al., 2016] proposed a uni-
fied multi-metric learning approach (UM2L) to combine both
spatial connections and rich semantic factors. Xiong [Xiong
et al., 2012] proposed a single adaptive metric termed po-
sition dependence structure, which additionally incorporated
the feature mean vector to encode the distance besides the fea-
ture difference vector. Thereon, Huang [Huang et al., 2016]
proposed to encode the two linear structures of data pairs and
then map the feature pair to a similarity space.

Zero-shot learning aims for the learning of a task with-
out training samples [Huang et al., 2015; Lampert et al.,
2014]. Usually, this involves transferring the knowledge ei-
ther by the model parameters or by shared features. Nu-
merous models have been proposed to focus on descriptive
attributes to represent object classes [Lampert et al., 2014;
Farhadi et al., 2010]. Some other models exploit the hierar-
chical semantics of data [Griffin and Perona, 2008; Marsza-
lek and Schmid, 2007]. The sample space is imposed by a
general-to-specific order either based on an existing hierarchy
[Marszalek and Schmid, 2007] or learned from visual features
[Griffin and Perona, 2008]. Scalability is achieved by associ-

ating classifiers with each hierarchy node. In this paper, we
focus on an analogous yet different issue: a zero-shot metric.
The main purpose of our zero-shot metric learning is to mea-
sure the similarity between instances which are never seen
before.

3 Proposed Approach
Figure 1 shows the framework of our proposed ZSML. The
relation mining function R is first employed to project data
pairs from feature space to relation space, in which each kind
of relation is encoded as an vector. We then employ a simi-
larity function S to map the relation vector into a scalar sim-
ilarity space, where each scalar implies how similar two data
points is. Finally a regression loss guides the whole optimiza-
tion procedure under the supervision of a continuous label.

3.1 Preliminaries
Let χ = {xi|i = 1, 2, · · · , n} be the training set, where xi is
an m-dimensional vector. P is a data pair set, which contains
N pairs randomly built up within χ. Given a random data
pair (xi,xj), (r

ij
1 , r

ij
2 , · · · , r

ij
k ) indicate the corresponding k

relation vectors produced by a relation function R, and sij ∈
s is the predicted similarity generated by a similarity function
S. To achieve continuous supervision, we encode available
binary label information yb ∈ RN into continuous form yc ∈
RN . For PPs (NPs), the binary label yb = 1 (yb = 0) while
the continuous label yc ∈ (β, 1) (yc ∈ (0, α)), where α and
β are two boundaries for NPs and PPs respectively.

3.2 Multi-Nonlinear Relations Mining
Traditional Mahalanobis metric learning algorithms usually
employ a linear projection A to map the original data points
as Ax, and compute a simple Euclidean distance ‖Axi −
Axj‖2 to imply the similarity extent of data pair. However,
it fails to describe inherently complex relations among data,
and we tackle this problem by adopting a family of specific-
shaped convolutional kernels to project data pair from feature
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Figure 2: The multi-nonlinear relations mined by specific-shaped
convolutional kernels, whose width are all 2. The purpose is to com-
bine data pair and generate multiple relation vectors. This figure
shows an example when k = 4.

space into relation space. As illustrated in Figure 2, four dif-
ferent convolutional kernels, whose width are all 2, slide on
them×2 feature matrix vertically, and thus produce four var-
ious relation vectors (distinguished by color). By doing this,
we can unearth multiple relations among data. Taking a data
pair (xj ,xj) as input, k relation vectors are computed by

(rij1 , r
ij
2 , · · · , r

ij
k ) = R(xi, xj), R→ {WC

1 , bC
1 }, (1)

where (rij1 , r
ij
2 , · · · , r

ij
k ) are k relation vectors, R is a relation

function implemented by a convolutional layer (Conv) and
a rectified linear unit layer (ReLU), and

(
WC

1 ,b
C
1

)
are the

parameters of R.
We employ a similarity function S to project the above

relation vectors into a one-dimensional similarity space, in
which the larger value indicates the more similar is. S is im-
plemented by three fully connected (FC) layers, which the
last layer contains one neuron. Therein, the predicted simi-
larity sij of data pair (xi, xj) is computed by

sij = S(rij1 , r
ij
2 , · · · , r

ij
k ),

S→ {WI
1,b

I
1;W

I
2,b

I
2;W

I
3,b

I
3},

(2)

where {WI
1,b

I
1;W

I
2,b

I
2;W

I
3,b

I
3} are the parameters of the

three fully connected layers. All projection parameters are
V = {WC ,bC ,WI ,bI}. Notably, the neural network
serves as a tool for correlation uncovering, which is quite dif-
ferent from the traditional feature extracting.

3.3 Regression Loss
Conventional metric learning algorithms usually adopt a bi-
nary label as supervision, which is prone to be over-fitting
for trying to individually push the similarity in terms of two
single points [Huang et al., 2016]. As depicted in Figure 3,
binary labels consider data points in the same class with the
same similarity extent, and neglect the intra-class data mani-
fold. To better preserve the original data similarities, we pro-
pose a regression loss to learn continuous similarity, which
enables data points from the same category to reside on a
manifold, and also maintain a distance between data points
from different categories. The regression loss is implemented
in two steps: 1) generate an N -dimensional vector according

Binary 
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Figure 3: Comparison between binary supervision and continuous
supervision. The blue edged pairs are negative pairs (NPs) while
the red-edged ones are positive pairs (PPs). Binary supervision only
separates NPs and PPs which ignores the order of similarity, while
continuous supervision shows great priority as it can reveal continu-
ous visual similarity.

to binary label yb, which serves as an initialization of con-
tinuous label yc; 2) a cross-update strategy is employed to
alternately optimize predicted similarity s and yc by forcing
the consistency of them.

The binary essence of yb is a obstacle towards guiding
continuous similarity learning. Therein, we encode yb into
a continuous form yc, which contributes in a certain range.
As shown in Figure 4, the Euclidean distances are mapped
into (β, 1) for PPs and (0, α) for NPs. Concretely, we adopt
the following mapping functions:

ycij = −αd2ij + α, if ybij = 0,

ycij = (β − 1)d2ij + 1, if ybij = 1,
(3)

where dij is the normalized Euclidean distance, α and β are
the boundaries for the continuous labels.

Another problem is that the initialized continuous label is
coarse and needs to be finely tuned. ZSML achieves this goal
by adopting a cross-update strategy to optimize the predicted
similarity s and continuous labels yc alternatively. We design
our objective function to consist of two parts, and the intuition
is to make s and yc close:

• The loss of the similarity Ls is

Ls(s,V) =
1

N

∑
(xi, xj)∈P

(
sij − ycij

)2
,

s.t. β<sij< 1, if ybij=1; 0<sij<α, if ybij=0.

(4)

As similarity s is obtained by our model parameterized by
V, the target optimization variables of Equation (4) are s and
V when yc is fixed.

• The loss of the continuous labels Lyc is

Lyc (yc) =
1

N

∑
(xi, xj)∈P

(
ycij − sij

)2
,

s.t. β<ycij< 1, if ybij=1; 0<ycij<α, if ybij=0,

(5)
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Figure 4: Continuous label generation. We initialize a continuous
label yc into a certain distribution: yc ∈ (0, α) when yb = 0 (the
blue curve ); yc ∈ (β, 1) when yb = 1 (the red curve).

CombiningLs andLyc , we can get the overall objective func-
tion as:

L = Ls + λLyc =
1

N

∑
(xi, xj)∈P

(1 + λ)(sij − ycij)2,

s.t.β< ycij , sij<1, if ybij=1; 0<ycij , sij<α, if y
b
ij=0,

(6)

where λ is the hyper-parameter to balance Ls and Lyc . yc is
the initialized continuous label according to the binary label,
which meets the two constraints: the values range in (β, 1)
for positive pairs and (0, α) for negative pairs. We only finely
tune yc and thus λ is set to a small value (0.1 for our experi-
ments). The continuous supervised regression loss can relax
the binary supervision employed on PPs and NPs and then
extend generalization capability efficiently.

4 Optimization
To optimize this model, we first apply a hinge-loss function
to transform the constrained optimization problem to an un-
constrained one [Hadsell et al., 2006]. For the similarity s in
Equation (4), we have

min
s,V

1

N

( ∑
(xi, xj)∈P

(sij − ycij)2 +
∑

(xi, xj)∈P,yb
ij=1

(
[sij−1]2++

[β−sij ]2+
)
+

∑
(xi, xj)∈P,yb

ij=0

(
[sij−α]2+ + [−sij ]2+

))
,

(7)

where the operator [·]+ indicates the hinge function max(0, ·).
For the continuous label yc in Equation (5), we have

min
yc

1

N

( ∑
(xi, xj)∈P

(ycij − sij)2 +
∑

(xi, xj)∈P,yb
ij=1

(
[ycij−1]2++

[β−ycij ]2+
)
+

∑
(xi, xj)∈P,yb

ij=0

(
[ycij−α]2+ + [−ycij ]2+

))
.

(8)

Algorithm 1 Learning of the proposed ZSML model.

Input: Training set {xi}. Initialized parameters {WC ,bC}
of the convolution layer, {WI ,bI} of the fully con-
nected layers, and yc = {ycij |(xi, xj) ∈ P} of the loss
layer. hyper-parameters λ, α, β and learning rate µt. The
number of iterations t← 0.

Output: The parameters V = {WC ,bC ,WI ,bI}.
1: while not converge do
2: t← t+ 1.
3: Compute the joint loss by Lt = Lt

s + λLt
yc .

4: Fix s. Update yc by yt+1 = yt−µt ·λ · ∂L
t
y

∂yt . Record
yc as y for the conflict of superscripts c and t.

5: Fix y. Compute backpropagation error ∂Lt
s

∂st for all the
data points.

6: Update V by Vt+1 = Vt − µt · ∂L
t
s

∂st ·
∂st

∂Vt .
7: end while

We employ a cross-optimization strategy, fixing s when op-
timize yc and vice versa. The gradients of the loss function
with regard to s, V, and yc are computed by Equation (9) and
(10) as

∂Ls

∂s
=

1

2N

( ∑
(xi, xj)∈P

(sij−ycij) +
∑

(xi, xj)∈P,yb
ij=1

(
[sij−1]++

[β−sij ]+
)
+

∑
(xi, xj)∈P,yb

ij=0

(
[sij − α]+ + [−sij ]+

))
,

∂Ls

∂V
=
∂Ls

∂s
· ∂s
∂V

,

(9)

∂Lyc

∂yc
=

1

2N

( ∑
(xi, xj)∈P

(ycij−sij) +
∑

(xi, xj)∈P,yb
ij=1

(
[ycij−1]++

[β−ycij ]+
)
+

∑
(xi, xj)∈P,yb

ij=0

(
[ycij − α]+ + [−ycij ]+

))
.

(10)

We adopt a quadratic form of the hinge loss to transform
the objective functions (4) and (5) into an unconstrained prob-
lem. It can derive penalty from the original loss with back
propagation, referring to Equation (9) and (10). That is the
further violation of constraints is, the larger gradient is. The
procedure is depicted in Algorithm 1.

5 Experiments
In this section, we evaluate the efficiency of our proposed
ZSML by multi-level transfer setting on four public bench-
mark datasets, transferring to unseen categories (intra-dataset
ZSML) and unseen datasets (inter-dataset ZSML). We eval-
uate the clustering performance of all experiments, by three
metrics: Accuracy (ACC), Normalized Mutual Information
(NMI), and Purity [Cai et al., 2008].
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Type Neurons/
stride

Output size FLOPS

Conv 2× 8 / 10 96× 261× 1 400K
Norm, ReLU 96× 261× 1

FC 1, 000× 1 1, 000× 1 25M
ReLU 1, 000× 1

FC 1, 000× 1 1, 000× 1 1M
FC 1× 1 1× 1 0.1K

Total 26.4M

Table 1: The network architecture of our model.
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Figure 5: The distribution of predicted similarity and continuous
label after training 20, 000 times on Caltech.

5.1 Implementation Details
The Caffe package [Jia et al., 2014] is used throughout the
experiments. The base learning rate is set to 0.002 and it-
eration times are set to 20, 000. It takes about 6 minutes
for training on an NVIDIA TITAN X GPU, since our model
only requires 26.4 million FLOPS, as summarized in Table 1.
There are four hyper-parameters λ, k, α, and β and we set
them to 0.1, 96, 0.3, and 0.7 respectively. β always equals
to 1 − α. As depicted in Figure 5, we randomly pick 400
points in Caltech, and plot the distribution between predicted
similarity and continuous label after training 20, 000 times.
We can observe that the predicted similarity resides on two
smooth manifolds respectively for NPs and PPs.

We conduct our experiments on Caltech-101 [Wah et al.,
2011b], COIL-20 [Nene et al., 1996], ImageNet-201 [Deng
et al., 2009], and MSRC-v1, of which the details are summa-
rized in Table 2. All images are represented by concatenat-
ing three popular descriptors, which are histogram of oriented
gradient (HOG), GIST, and local binary pattern (LBP) respec-
tively. The dimensions of three descriptors are 1152, 512 and
944 separately and then each data point is represented by a
2608-dimensional vectors. In the following parts, we refer to
the four datasets as Caltech, COIL, ImageNet, and MSRC for
brief.

We compare our method with five metric learning algo-
rithms, i.e., 1) The Euclidean metric; 2) Information-theoretic
metric learning (ITML) [Davis et al., 2007]; 3) Distance met-
ric learning for large margin nearest neighbor classification

1We randomly choose 20 categories and 150 images per category
from ImageNet, referred to as ImageNet-20.

DATASET Caltech COIL ImageNet MSRC

#Classes 101 20 17 8

#Images 8, 677 1, 440 2, 550 240

#Feature HOG (1, 152), GIST (512), LBP (944)

Table 2: Datasets descriptions with the details of the feature types,
number of classes, and number of images.

(LMNN) [Weinberger and Saul, 2009]; 4) Geometric mean
metric learning (GMML) [Zadeh et al., 2016]; 5) Closed-
form training of Mahalanobis distance for supervised clus-
tering (MLCA) [Law et al., 2016].

5.2 Result Analysis
In this part, we will demonstrate our quantitative results and
give some analysis about the figures. In all of the tables, we
underline the best performance, and bold the second best.

In intra-dataset ZSML task, we train our model on some
categories and test the learned metric on the other categories
which belong to the same dataset. We conduct two group
of experiments, including Caltech → Caltech and ImageNet
→ ImageNet. For both of them, we randomly pick 7 classes
(more than 1, 000 data points) for testing and the remaining
for training. Table 3 reports the ACC, NMI and purity met-
rics, and we can see that our approach outperforms peer meth-
ods by a large margin for all the three metrics. In inter-dataset
ZSML task, we train our model on source dataset, and mea-
sure the similarity of target dataset. We conduct four groups
of experiments, which are Caltech→ COIL, Caltech→ Ima-
geNet, Caltech→ MSRC, and ImageNet→ Caltech respec-
tively. When Caltech and ImageNet serve as source datasets,
we pick all examples of them for training. When Caltech
and ImageNet serve as target datasets, we pick the categories
used in the testing phase of intra-dataset ZSML for testing.
We use all examples in COIL and MSRC for testing, when
COIL and MSRC are the target datasets. Table 4 and 5 re-
ports the ACC, NMI and purity metrics. We can see that our
method achieves strong transferability, although the great gap
exists in different datasets. Furthermore, the Euclidean dis-
tance performances moderately in most cases, as it requires
no training phase and the over-fitting problem will not occur.

We further concatenate our model after the Lifted algo-
rithm [Oh Song et al., 2016] to verify the effectiveness on
large scale image dataset CUB 200 2011 [Wah et al., 2011a].
Following the experiment protocol and evaluation metrics
used in Lifted, we conduct the experiment and Table 6 reports
the results, from which we can see that our model can sig-
nificantly improve the representation power under zero-shot
setting.

5.3 Ablation Study
We fix α = 0.3 (β = 1 − α = 0.7), and change the number
of convolution kernels k to 16, 64, 96, and 128 respectively.
On the other hand, parameter α varies in four values: {0.1,
0.2, 0.3, 0.4} when fix k = 96. As illustrated in Table 7 and
Table 8, k and α shows a positive tendency until k = 96 and
α = 0.3. Hence, we fix α to 0.3 and k to 96 throughout our
experiments.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4000



METHOD
Caltech→ Caltech ImageNet→ ImageNet

ACC NMI Purity ACC NMI Purity

Euclidean 53.66 43.76 83.65 39.43 19.68 39.52
ITML 42.74 5.76 54.14 21.02 13.26 25.38
LMNN 52.37 44.54 83.58 45.81 29.56 33.22
GMML 66.28 54.03 86.77 43.12 27.58 31.92
MLCA 52.51 14.98 56.72 38.46 22.34 34.11
Ours 66.28 58.11 90.57 51.81 33.79 51.81

Table 3: Clustering results of intra-dataset transferability analysis.
We train on some categories and measure the similarity of other cat-
egories in Caltech (ImageNet).

METHOD
Caltech→ COIL Caltech→ ImageNet

ACC NMI Purity ACC NMI Purity

Euclidean 61.81 75.86 67.22 39.43 19.68 39.52
ITML 12.92 10.21 13.89 18.38 3.24 18.95
LMNN 58.33 79.01 69.10 46.00 31.93 49.62
GMML 71.94 89.75 80.00 36.00 21.27 39.62
MLCA 9.86 8.85 1.97 20.00 3.82 20.67
Ours 75.97 88.63 83.13 57.72 40.24 58.29

Table 4: Clustering results of inter-dataset transferability analysis.
We train our model on Caltech and measure the similarity of COIL
and ImageNet.

METHOD
Caltech→MSRC ImageNet→ Caltech

ACC NMI Purity ACC NMI Purity

Euclidean 63.75 63.41 68.75 53.66 43.76 83.65
ITML 16.25 4.68 17.08 11.13 2.08 7.88
LMNN 75.00 74.96 80.83 45.00 43.66 40.62
GMML 63.75 63.41 68.75 43.25 43.41 40.29
MLCA 16.67 6.45 18.75 21.61 13.42 20.75
Ours 84.58 78.49 84.58 55.32 46.36 85.89

Table 5: Clustering results of inter-dataset transferability analysis.
We train our model on Caltech (ImageNet) and measure the similar-
ity of MSRC (Caltech).

To verify the priority of our proposed regression loss
(Reloss), we switch the multi-nonlinear relations (MR) to lin-
ear relation (LR). For LR, we first minus two feature vectors
of two data points, and employ S to project into similarity
space. Table 9 reports the ACC, NMI and Purity metrics of
LR + Reloss compared to LMNN and GMML. We can ob-
serve that Reloss based optimization is significant for improv-
ing the performance, mainly because of it relaxes the binary
constraint employed on data pairs and the generalization ca-
pability is enhanced.

6 Conclusion
In this paper, we investigated zero-shot metric learning issue,
which aims at measuring the similarity of data points from
unseen categories or even unseen datasets. We reformulated
a family of specific-shaped convolutional kernels to combine
the data pair, which is capable capturing the multi-nonlinear

METHOD
CUB→ CUB

R@1 R2@1 R@4 R@8

Lifted 47.2 58.9 70.2 80.2
Lifted+Ours 48.9 59.3 72.1 83.9

Table 6: Comparison of the clustering performance, which proves
the effectiveness of our model when cooperating with Lifted algo-
rithm.

k
Caltech→ ImageNet Caltech→MSRC

ACC NMI Purity ACC NMI Purity

k = 16 49.71 35.00 52.59 81.22 76.56 77.33
k = 64 51.88 38.48 54.47 81.36 72.11 79.13
k = 96 57.72 40.24 58.29 84.58 78.49 84.58
k = 128 52.14 40.72 55.29 84.50 77.29 83.23

Table 7: Comparison of the classification accuracy in % of varying
k on inter-dataset ZSML task

α
Caltech→ImageNet Caltech→MSRC

ACC NMI Purity ACC NMI Purity

α = 0.1 52.48 35.69 52.57 66.25 64.27 66.25
α = 0.2 52.61 38.47 48.94 78.96 77.26 78.90
α = 0.3 57.72 40.24 58.29 84.58 78.49 84.58
α = 0.4 54.88 38.48 54.47 83.53 76.84 84.02

Table 8: Comparison of the classification accuracy in % of varying
α on inter-dataset ZSML task.

METHOD
Caltech→ COIL Caltech→ ImageNet

ACC NMI Purity ACC NMI Purity

LMNN 58.33 79.01 69.10 46.00 31.93 49.62
GMML 71.94 89.75 80.00 36.00 21.27 39.62

LR+Reloss 77.57 91.46 84.44 49.62 32.95 49.62

Table 9: Comparison of the clustering performance when deprecat-
ing the multi-nonlinear module, which purposes to verify the effec-
tiveness of regression loss.

relations. Furthermore, we designed a novel continuous-
supervised regression loss, which can effectively preserve the
continuous intra-data manifold. To sum up, our model greatly
extends the transferability by learning the multi-nonlinear yet
continuous relations. Extensive experiments, including intra-
dataset ZSML and inter-dataset ZSML, verified the rational-
ity and effectiveness of our proposed method.
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