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Abstract
Extrapolation is a well-known technique for solv-
ing convex optimization and variational inequali-
ties and recently attracts some attention for non-
convex optimization. Several recent works have
empirically shown its success in some machine
learning tasks. However, it has not been ana-
lyzed for non-convex minimization and there still
remains a gap between the theory and the prac-
tice. In this paper, we analyze gradient descent and
stochastic gradient descent methods with extrapola-
tion for finding an approximate first-order station-
ary point of smooth non-convex optimization prob-
lems. Our convergence upper bounds show that the
algorithms with extrapolation could be potentially
faster than without extrapolation.

1 Introduction
We are interested in solving the following non-convex opti-
mization problem:

min
x∈Rd

f(x), (1)

where f(x) isL-smooth. When the objective function is writ-
ten as an expectation of a random function, then (1) becomes
a stochastic non-convex optimization problem:

min
x∈Rd

f(x) := Eξ[f(x; ξ)], (2)

where ξ is a random variable. Non-convex optimization has
brought tremendous success in many areas of machine learn-
ing including deep learning and low-rank matrix comple-
tion [Jain et al., 2013]. Many existing works have shown
non-convex losses may yield improved robustness and clas-
sification accuracy [Chapelle et al., 2009; Nguyen and San-
ner, 2013]. It is well known that traditional gradient de-
scent (GD) and its variants such as stochastic gradient de-
scent (SGD) are widely used in solving the problems (1)
and (2), respectively. The convergence results are also well
studied for both GD and SGD methods [Nesterov, 1998;
Ghadimi and Lan, 2013; Yan et al., 2018]. For exam-
ple, [Nesterov, 1998] has shown that GD enjoys an itera-
tion complexity of O(1/ε2) for finding an ε-stationary point

(i.e., x satisfying ‖∇f(x)‖ ≤ ε) of problem (1). [Ghadimi
and Lan, 2013] established an O(1/ε4) iteration complex-
ity of SGD for finding an ε-stationary point in expectation
satisfying E[‖∇f(x)‖] ≤ ε for (2). [Yan et al., 2018;
Ghadimi and Lan, 2016] then extended the result to stochastic
momentum methods and obtained the same order of complex-
ity of SGD. Although SGD has achieved great success, re-
cent works have shown that extragradient-type methods could
perform better or converge faster than SGD in several ma-
chine learning tasks such as training generative adversarial
networks (GANs) [Gidel et al., 2018] and learning Gaus-
sian mixture models [Mertikopoulos et al., 2018]. However,
the theoretical analysis of non-asymptotical convergence of
extragradient-type methods remains under-explored for the
general non-convex minimization problem (1) or the stochas-
tic problem (2).

Extrapolation is an useful technique for optimization that
could yield accelerated convergence for smooth problems. In
the literature, the extrapolation technique is mostly known as
extragradient method [Korpelevich, 1976], which takes the
following update:

xt = zt−1 − ηG(zt−1), zt = zt−1 − ηG(xt),

where G(·) denotes a gradient estimator of f(·). The differ-
ence from the standard GD (resp. SGD) lies at that it main-
tains two sequences of solutions. As a result, it requires com-
puting two (stochastic) gradients for updating the solution
once that is two times slower than each update of GD (resp.
SGD).

In this paper, we analyze efficient variants of GD and SGD
with extrapolation that only need to compute one gradient or
stochastic gradient for each update, and establish their con-
vergence results for finding an approximate first-order sta-
tionary point of non-convex minimization. We refer to these
variants as GDE and SGDE, respectively. The main contribu-
tions of this paper are summarized in the following.
• We analyze a variant of GDE for a general smooth non-

convex problem (1), and shows that it enjoys an iteration
complexity of O(1/ε2) for finding an ε-stationary point
x of problem (1) that satisfies ‖∇f(x)‖ ≤ ε. Our con-
vergence bound also exhibits that it could be faster than
the GD method.
• We then analyze SGDE with a large mini-batch by show-

ing that it enjoys a total gradient complexity of O(1/ε4)
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for finding an ε-stationary solution x of problem (2) in
expectation with a mini-batch size of O(1/ε2). To avoid
the large mini-batch requirement, we also propose an-
other variant of SGDE, which only needs one sample to
calculate a stochastic gradient and enjoys the same gra-
dient complexity of O(1/ε4). Our convergence bounds
also show that they could achieve practical speed-up
compared with SGD.

To the best of our knowledge, this is first work that shows
that GDE and SGDE can achieve potential faster convergence
than GD and SGD for smooth non-convex optimization.

2 Related Work
The extragradient method was first introduced by [Kor-
pelevich, 1976] for solving variational inequality problems
(VIP) [Hartman and Stampacchia, 1966], i.e., finding a point
x∗ ∈ Ω such that 〈G(x),x∗ − x〉 ≤ 0, ∀x ∈ Ω, where Ω is a
nonempty closed convex subset of Rd and G : Rd → Rd is an
operator. It generates a pair of sequences by carrying out two
projections in each iteration: xt = PΩ[zt−1 − ηG(zt−1)] and
zt = PΩ[zt−1−ηG(xt)], where PΩ denotes the projection op-
erator. Most subsequent research works, e.g., [Nemirovski,
2004; Juditsky et al., 2011] have analyzed the convergence
of extragradient method and its variants for solving (stochas-
tic) VIP under the assumptions of L-Lipschtiz continuous
and monotone operator G. If one considers the minimiza-
tion of a function as a VI problem, then Lipschitz continu-
ous and monotone operator means the function is convex and
its gradient is Lipschitz continuous. Recently, (stochastic)
extragradient gradient methods have been analyzed for non-
monotone VI [Dang and Lan, 2015; Lin et al., 2018] under
some pseudo-monotonicity assumption. However, their anal-
ysis is either restricted to deterministic extragradient methods
(e.g., [Dang and Lan, 2015; Lin et al., 2018]) or requires
stronger assumption, i.e., pseudo-monotonicity, which is not
necessarily satisfied for a non-convex minimization problem.
In contrast, we directly analyze GDE and SGDE methods for
smooth non-convex optimization problems with the only Lip-
chitz continuous gradient assumption.

In the context of convex minimization, extragradient
method and its accelerated/extended version were well stud-
ied with the establishments of convergence rate. It has been
shown [Luo and Tseng, 1993] that extragradient method is
a special case of feasible descent method (FDM). Under lo-
cal error bound assumption, [Luo and Tseng, 1993] have
proved linear convergence of extragradient method for solv-
ing convex optimization problems. [Monteiro and Svaiter,
2013] applied hybrid proximal extragradient (HPE) method
to convex optimization by proposing an accelerated HPE,
enjoying the convergence rate of O(1/T 2). Recently, [Di-
akonikolas and Orecchia, 2018] developed an accelerated
extragradient descent (AXGD) method for solving smooth
and convex problems by combining the key ideas from Nes-
terov’s accelerated gradient (NAG) method [Nesterov, 1983]
and Nemirovski’s mirror-prox method [Nemirovski, 2004].
AXGD achieved a convergence rate of O(1/T 2), matching
the order of NAG’s convergence rate. [Chiang et al., 2012;
Yang et al., 2014] have considered the extragradient method

for online convex optimization that repeatedly use an online
gradient for two updates, and showed smaller regret com-
pared with online gradient method for smooth functions.

Very recently, [Nguyen et al., 2018] proposed an extended
extragradient method (EEG) to minimize the sum of two
functions that one is smooth and another is convex. EEG
uses two proximal gradient steps at each iteration, which is
slightly different from two projection steps of classical extra-
gradient method. Like classical extragradient method, EEG
still has the issue of computing two gradients that might seri-
ously affect the efficiency of the algorithm. For non-convex
case, under the Kurdyka-Łojasiewicz (KL) assumption [Bolte
et al., 2017], they have shown that the sequence generating
by EEG converges to a first-order critical point of the con-
sidered problem with finite length. Their convergence rate is
asymptotic and heavily depends on the Łojasiewicz exponent
parameter θ [Bolte et al., 2017]. By contrast, we consider
GDE methods for solving general smooth but non-convex
problems, and estbalish a non-asymptotic convergence re-
sult with an iteration complexity of O(1/ε2) for finding an
ε-stationary point with potential improvement than the GD
method. We also propose two variants of GDE method in
stochastic setting, namely mini-batch SGDE and stagewise
SGDE with both of them achieving an iteration complex-
ity of O(1/ε4) for finding an ε-stationary point in expec-
tation. It is worth mentioning that our GDE and SGDE
methods only need to compute gradient or stochastic gra-
dient once per iteration inspired by [Chiang et al., 2012;
Yang et al., 2014], which however focus on online convex
optimization.

3 Preliminaries
In this section, we will present some notations. Let us
denote by x∗ the global minimum of f(x), i.e., x∗ ∈
arg minx∈Rd f(x). First, we make the following assump-
tions throughout the paper, which are standard assumptions
made in the literature of stochastic non-convex optimiza-
tion [Ghadimi and Lan, 2013; Yan et al., 2018].
Assumption 1. (i).f(x) has L-Lipschitz continuous gradi-
ent, i.e., ∃L > 0 s.t. ‖∇f(x) − ∇f(y)‖ ≤ L‖x − y‖,
∀x,y ∈ Rd; (ii). For an initial solution x0, ∃∆ < ∞ s.t.
f(x0) − f(x∗) ≤ ∆; (iii). every random function f(x; ξ) is
differentiable; (iv). ∃G > 0 s.t. E[‖∇f(x; ξ)−∇f(x)‖2] ≤
G2 holds.

Next, to measure the convergence of non-convex and
smooth optimization problems as in [Nesterov, 1998;
Ghadimi and Lan, 2013; Yan et al., 2018], we use the fol-
lowing definition of first-order stationary point.
Definition 2 (First-order stationary point). For problem (1)
or (2), a point x ∈ Rd is called a first-order stationary point
if ‖∇f(x)‖ = 0. Moreover, if ‖∇f(x)‖ ≤ ε, then the point
x is said to be an ε-stationary point.

To facilitate the analysis of the proposed SGDE algorithm,
we introduce the Moreau envelope function of f(x) and prox-
imal mapping, which are formally stated as follows.
Definition 3. For any γ > 0, the following func-
tion is called a Moreau envelope of f : fγ(x) :=
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Algorithm 1 GDE

Initilization: z0 = x0, g0 = ∇f(x0)
for t = 1, . . . , T do
xt = zt−1 − ηgt−1

gt = ∇f(xt)
zt = zt−1 − ηgt

end for

miny∈Rd
{
f(y) + 1

2γ ‖y − x‖2
}

. Moreover, the optimal so-
lution to the above problem is called a proximal mapping of
f : proxγf (x) := arg miny∈Rd

{
f(y) + 1

2γ ‖y − x‖2
}

.

Let x̂ := proxγf (x), which is well defined when γ ≤ 1/L
due to that the objective function in the above problem is
strongly convex. It has been shown that [Davis and Drusvy-
atskiy, 2018]

∇fγ(x) =
1

γ
(x− x̂), (3)

‖x− x̂‖ = γ‖∇fγ(x)‖, ‖∇f(x̂)‖ ≤ ‖∇fγ(x)‖. (4)

4 Main Results
In this section, we will present the proposed algorithms and
their convergence results. We will first introduce a GDE al-
gorithm for solving the problem (1) and a mini-batch SGDE
algorithm for solving the problem (2). Then we will extend
the mini-batch SGDE algorithm to stagewise SGDE without
using a mini-batch of samples, which is more practical and
user-friendly.

4.1 Gradient Descent with Extrapolation
The detailed updating steps of GDE are described in Algo-
rithm 1, where η > 0 is the step size. Please note that
the updates of our GDE is slightly different from the up-
dates of traditional extragradient method: xt = zt−1 −
η∇f(zt−1), zt = zt−1 − η∇f(xt). One issue of the tra-
ditional extragradient method is that it alternately computes
the gradients at two points {zt} and {xt} for each iteration,
implying that it is twice costly than the GD method that com-
putes one gradient per-iteration. By contrast, our considered
GDE method stores and reuses the previous gradient to up-
date the new extrapolation point. That is to say, our GDE
only requires computing gradient once per-iteration. The sim-
ilar idea was used in the online convex optimization [Yang et
al., 2014; Chiang et al., 2012] and recently by [Gidel et al.,
2018] for training GAN. In this paper, we focus on analyzing
the convergence of GDE for non-convex optimization, and
the result is presented in Theorem 4.

Theorem 4. Under Assumption 1 (i), let η ≤ 1
12L and x1 =

z0 = x0, then GDE ensures that

min
t∈{1,...,T}

‖∇f(xt)‖2

≤8(f(x0)− f(x∗))

ηT
− 1

η2T

T−1∑
t=0

‖xt+1 − xt‖2, (5)

Algorithm 2 Mini-batch SGDE

Initilization: z0 = x0 and g0 = 1
m

∑m
i=1∇f(x0; ξi,0)

for t = 1, . . . , T do
xt = zt−1 − ηgt−1

gt = 1
m

∑m
i=1∇f(xt; ξi,t)

zt = zt−1 − ηgt
end for

where x∗ = arg minx∈Rd f(x). Under Assumption 1 (ii), in
particular in order to have mint∈{1,...,T} ‖∇f(xt)‖ ≤ ε, the
iteration complexity is T = O(1/ε2).

The iteration complexity O(1/ε2) of GDE is at least the
same order of the GD method for smooth non-convex opti-
mization. However, comparing with the convergence upper
bound of GD, the above bound of GDE in (5) has an addi-
tional negative term− 1

η2T

∑T−1
t=0 ‖xt+1−xt‖2, which should

be beneficial for accelearting convergence in practice.

4.2 Stochastic Gradient Descent with
Extrapolation

Next, we study mini-batch SGDE for solving (2) and its con-
vergence. The updates of mini-batch SGDE are presented in
Algorithm 2. The convergence result of mini-batch SGDE is
given in Theorem 5.

Theorem 5. Under Assumption 1, let η ≤ 1
12L and x1 =

z0 = x0, then SGDE ensures that

min
t∈{1,...,T}

E[‖∇f(xt)‖2] ≤ 3LηG2

2T
+

8(f(x0)− f(x∗))

ηT

+
72G2

m
− 1

η2T

T−1∑
t=0

E[‖xt+1 − xt‖2], (6)

where x∗ = arg minx∈Rd f(x). In order to have
mint∈{1,...,T} E[‖∇f(xt)‖] ≤ ε, the iteration complexity is
T = O(1/ε2) with mini-batch size m = O(1/ε2), indicating
that the gradient complexity is O(1/ε4).

The gradient complexity O(1/ε4) of mini-batch SGDE
matches that of mini-batch SGD method for stochastic non-
convex optimization [Ghadimi et al., 2016]. However, com-
paring with the convergence upper bound of SGD, the above
bound of GDE in (6) also has an additional negative term
− 1
η2T

∑T−1
t=0 E[‖xt+1 − xt‖2].

4.3 Stagewise SGDE
In the previous subsection, mini-batch SGDE requires the
mini-batch size in the order of O(1/ε2), which might be not
practical when the target accuracy ε is sufficiently small. In
this subsection, we propose a new variant of SGDE without
requiring a large mini-batch size, which is described in Al-
gorithm 4 with a subroutine SGDE in Algorithm 3. We refer
to this algorithm as stagewise SGDE. For s-th stage, stage-
wise SGDE solves the following subproblem approximately
fs(x) = f(x) + 1

2γ ‖x − xs−1‖2, where xs−1 is the solu-
tion of the last stage, and γ = 1

4L is a constant. It is easy to
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Algorithm 3 SGDE(x0, f, η, T )

Initilization: z0 = x0 and g0 = ∇f(x0; ξ0)
for t = 1, . . . , T do
xt = zt−1 − ηgt−1

gt = ∇f(xt; ξt)
zt = zt−1 − ηgt

end for
return x̂T = 1

T

∑T
t=1 xt

Algorithm 4 Stagewise SGDE

Initilization: x0 = x0

for s = 1, . . . , S do
fs(x) = f(x) + 1

2γ ‖x− xs−1‖2

xs = SGDE(xs−1, fs, ηs, Ts)
end for
Return: xτ , τ is randomly chosen from {1, . . . , S} ac-
cording to probabilities pτ = wτ∑S

s=1 ws
, τ = 1, . . . , S.

show that fs(x) is convex under the Assumption 1 (i), mean-
ing that one may employ SGDE algorithm with convergence
guarantee for convex problems. By using the convexity of
fs, the subroutine SGDE usually returns an average solu-
tion. Besides, stagewise SGDE uses a decreasing sequence
of step size ηs and an increasing sequence of iteration num-
ber Ts. Different from GDE and mini-batch SGDE, the final
solution of stagewise SGDE is selected from the sequence
of stagewise averaged solutions {xs} based on non-uniform
sampling probabilities increasing as the stage number s. It is
notable that this type of stagewise algorithm has been inves-
tigated in existing studies (see [Chen et al., 2019] and refer-
ences therein). However, to the best of our knowledge, the
proposed algorithm is the first work that runs SGDE method
in a stagewise manner with the theoretical guarantee for non-
convex optimization. We present the convergence result of
stagewise SGDE in Theorem 6.
Theorem 6. Under Assumption 1 (i), (iii), (iv) and suppose
there exists ∆ > 0 such that E[f(xs) − f(x∗)] ≤ ∆ for
s = 0, 1, . . ., by running Algorithm 4 with γ = 1

4L , ws = sα

(α > 1), ηs = cγ
3s ≤

1
2L = γ

3 , and Ts = 36s
c , then

E[‖∇f(xτ )‖2]

≤

{
20∆(α+1)
γ(S+1) + 480G2c(α+1)

S+1 −∆S , α ≥ 1,
20∆(α+1)
γ(S+1) + 480G2c(α+1)

α(S+1) −∆S , 0 < α < 1,
(7)

where ∆S =
60

∑S+1
s=1 wsDTs

γ
∑S+1
s=1 ws

withDTs = 1
16Tsηs

∑Ts
t=1 ‖xt−

xt−1‖2. Therefore, in order to have E[‖∇f(xτ )‖2] ≤ ε2,
we can set S = O(1/ε2). The total number of iterations is
O
(

1
ε4

)
.

It is notable that the assumption E[f(xs) − f(x∗)] ≤ ∆
for s = 0, 1, . . . is slightly stronger than Assumption 1 (ii).
However, one can derive a similar convergence result relying
on Assumption 1 (ii) by using uniform-sampling, which is
worse by a logarithmic factor. Although the iteraction com-
plexity of stagewise SGDE mathches that of stagewise SGD

in [Chen et al., 2019], the above bound of stagewise SGDE in
(7) has an additional negative term−∆S , comparing with the
convergence upper bound of stagewise SGD. This negative
term could help improve convergence in practice.

4.4 Proofs
Due to limitation of space, we only include the proof of The-
orem 6 here. The proofs of Theorem 4 and 5 can be found
at https://arxiv.org/abs/1901.10682. Before starting the proof,
we present a key lemma in [Nemirovski, 2004], which will be
used in our analysis.

Lemma 1 (Lemma 3.1, [Nemirovski, 2004]). Let ω(z) be
a α-strongly convex function with respect to the norm ‖ · ‖,
whose dual norm is denoted by ‖ · ‖∗, and D(x, z) =
ω(x) − (ω(z) + (x − z)>ω′(z)) be the Bregman distance
induced by function ω(x). Let Z be a convex compact set,
and U ⊆ Z be convex and closed. Let z ∈ Z, γ > 0,
consider the points, x = arg minu∈U γu

>ξ + D(u, z) and
z+ = arg minu∈U γu

>ζ +D(u, z), then for any u ∈ U , we
have

γζ>(x− u) ≤D(u, z)−D(u, z+) +
γ2

α
‖ξ − ζ‖2∗

− α

2
[‖x− z‖2 + ‖x− z+‖2].

Proof of Theorem 6. For the s-th stage, the following prob-
lem is solved: minx fs(x) = f(x) + 1

2γ ‖x − xs−1‖2,
where xs−1 is the solution from last stage. Let define
ẑs = arg minx fs(x). By applying Lemma 1 with u =
ẑs,x = xt, z = zt−1, z+ = zt, ξ = ∇fs(xt−1; ξt−1), ζ =
∇fs(xt; ξt), γ = ηs, we have

∇fs(xt; ξt)>(xt − ẑs) ≤
‖ẑs − zt−1‖2 − ‖ẑs − zt‖2

2ηs

+ ηs‖∇fs(xt; ξt)−∇fs(xt−1; ξt−1)‖2

− 1

2ηs
(‖xt − zt−1‖2 + ‖xt − zt‖2).

Taking average over t = 1, . . . , Ts for above inequality and
by the convexity of f(x), then rearranging the inequality we
have

1

Ts

Ts∑
t=1

∇fs(xt; ξt)>(xt − ẑs)−
‖ẑs − z0‖2

2ηsTs

+
1

2ηsTs

Ts∑
t=1

(‖xt − zt−1‖2 + ‖xt − zt‖2)

≤ ηs
Ts

Ts∑
t=1

‖∇f(xt; ξt)−∇f(xt−1; ξt−1) +
xt − xt−1

γ
‖2

≤6ηs
Ts

Ts∑
t=1

(‖∆t‖2 + ‖∆t−1‖2 + ‖∇f(xt)−∇f(xt−1)‖2)

+
2ηs
γ2Ts

Ts∑
t=1

‖xt − xt−1‖2,
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where ∆t := ∇f(xt; ξt) − ∇f(xt), and the last inequal-
ity is due to ‖x1 + x2‖22 ≤ 2(‖x1‖22 + ‖x2‖22) and ‖x1 +
x2 + x3‖22 ≤ 3(‖x1‖22 + ‖x2‖22 + ‖x3‖22). By the smooth-
ness of f(x) we have ηs

Ts

∑Ts
t=1 ‖∇f(xt) − ∇f(xt−1)‖2 ≤

ηsL
2

Ts

∑Ts
t=1 ‖xt − xt−1‖2. Note that

∑Ts
t=1(‖xt − zt−1‖2 +

‖xt − zt‖2) ≥ 1
2

∑Ts
t=1 ‖xt − xt−1‖2 + 1

2‖x1 − x0‖2 ≥
1
2

∑Ts
t=1 ‖xt − xt−1‖2. By setting of γ = 1/(4L), then the

above iequality becomes

1

Ts

Ts∑
t=1

∇fs(xt; ξt)>(xt − ẑs)−
‖ẑs − z0‖2

2ηsTs

≤
38ηsL

2 − 1
4ηs

Ts

Ts∑
t=1

‖xt − xt−1‖2

+
6ηs
Ts

Ts∑
t=1

(‖∆t‖2 + ‖∆t−1‖2)

≤6ηs
Ts

Ts∑
t=1

(‖∆t‖2 + ‖∆t−1‖2)−DTs , (8)

where the last inequality is due to ηs ≤ 1
16L so

that 3ηsL
2 − 1

4ηs
≤ − 1

16ηs
and the definition of

DTs . Since E[∇fs(xt; ξt)>(xt − ẑs)|xt,∆t−1, . . . ,∆0] =
∇fs(xt)>(xt − ẑs), and E[‖∆t‖2|xt,∆t−1, . . . ,∆0] ≤ G2,
then by the convexity of fs(x) we have

E

[
fs(x

s)− fs(ẑs)
]
≤ E

[
1

Ts

Ts∑
t=1

fs(xt)− fs(ẑs)
]

≤E

[
1

Ts

Ts∑
t=1

∇fs(xt)>(xt − ẑs)

]

=E

[
1

Ts

Ts∑
t=1

E[∇fs(xt; ξt)>(xt − ẑs)|xt,∆t−1, . . . ,∆0]

]
≤E[‖ẑs − xs−1‖2]

2ηsTs
+ 12ηsG

2 −DTs ,

where the uses the fact that z0 = xs−1 in the last inequality.
Since fs(xs) = f(xs) + 1

2γ ‖x
s − xs−1‖2 and fs(ẑs) ≤

f(xs−1), then

E

[
f(xs) +

1

2γ
‖xs − xs−1‖2 − f(xs−1)

]
≤E[‖ẑs − xs−1‖2]

2ηsTs
+ 12ηsG

2 −DTs .

By Young’s inequality ‖xs − xs−1‖2 ≥ 1
2‖ẑs − xs−1‖2 −

‖xs − ẑs‖2, then

E

[(
1

4γ
− 1

2ηsTs

)
‖ẑs − xs−1‖2

]
≤ 1

2γ
E[‖xs − ẑs‖2] + 12ηsG

2 + E

[
f(xs−1)− f(xs)

]
−DTs

≤ 1

γ(γ−1 − µ)
E[fs(x

s)− fs(ẑs)] + 12ηsG
2

+ E

[
f(xs−1)− f(xs)

]
−DTs

≤ 1

γ(γ−1 − µ)

(
E[‖ẑs − xs−1‖2]

2ηsTs
+ 12ηsG

2 −DTs

)
+ 12ηsG

2 + E

[
f(xs−1)− f(xs)

]
−DTs ,

where the second inequality uses the (γ−1−µ)-strong convex
of fs(x) and the last inequality uses (8). By setting γ−1 =
2µ, then the above inequality will be

E

[(
1

4γ
− 3

2ηsTs

)
‖ẑs − xs−1‖2

]
≤36ηsG

2 + E

[
f(xs−1)− f(xs)

]
− 3DTs ,

As long as ηsTs ≥ 12γ, and by (3), we know ∇fγ(xs−1) =

1
γ (ẑs − xs−1), then γ

8 E

[
‖∇fγ(xs−1)‖2

]
≤ 36ηsG

2 +

E

[
f(xs−1)− f(xs)

]
− 3DTs , which implies

E
[
ws‖∇fγ(xs−1)‖2

]
≤16µE

[
ws(f(xs−1)− f(xs))

]
+ 576µwsηsG

2 − 48µwsDTs .

By summing over s = 1, . . . , S + 1 we get
S+1∑
s=1

E
[
ws‖∇fγ(xs−1)‖2

]
≤
S+1∑
s=1

576µwsηsG
2

+ 16µE
[∑S+1

s=1 ws(f(xs−1)− f(xs))
]
−
S+1∑
s=1

48µwsDTs .

Then taking the expectation over τ , it becomes

E
[
‖∇fγ(xτ )‖2

]
≤ 16µE

[∑S+1
s=1 ws(f(xs−1)− f(xs))∑S+1

s=1 ws

]

+

∑S+1
s=1 576µwsηsG

2∑S+1
s=1 ws

−
∑S+1
s=1 48µwsDTs∑S+1

s=1 ws
.

By using the similar analysis in [Chen et al., 2019], we have∑S+1
s=1 ws(f(xs−1)− f(xs)) ≤ wS+1∆. Then,

E
[
‖∇fγ(xτ )‖2

]
≤16µwS+1∆∑S+1

s=1 ws
+

∑S+1
s=1 576µwsηsG

2∑S+1
s=1 ws

−
∑S+1
s=1 48µwsDTs∑S+1

s=1 ws
.
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Figure 1: Comparisons of Stagewise SGD and Stagewise SGDE for
Regularized Non-linear Least Squared Problem.

We know ws = sα (α > 1), the standard calculus tells∑S
s=1 s

α ≥
∫ S

0
xαdx = Sα+1

α+1 , ∀α > 0,
∑S
s=1 s

α−1 ≤
Sα, ∀α ≥ 1, and

∑S
s=1 s

α−1 ≤
∫ S

0
xα−1dx = Sα

α , ∀0 <

α < 1. Since ηs = c
Ls <

1
2L , (L = 3µ = 3

2γ ) then

E[‖∇fγ(xτ )‖2]

≤

{
8∆(α+1)
γ(S+1) + 192G2c(α+1)

S+1 −∆S α ≥ 1,
8∆(α+1)
γ(S+1) + 192G2c(α+1)

α(S+1) −∆S 0 < α < 1.

By the results in (4), we know for any x ‖∇f(x)‖ ≤
‖∇f(x)−∇f(x̂)‖+ ‖∇f(x̂)‖ ≤ L‖x− x̂‖+ ‖∇fγ(x)‖ =
(1 + Lγ)‖∇fγ(x)‖ = 5

2‖∇fγ(x)‖. Therefore, in order to
have E[‖∇f(xτ )‖2] ≤ ε2, i.e., E[‖∇fγ(xτ )‖2] ≤ 4

25ε
2, we

can set S = O(1/ε2). The total number of iterations is

S∑
s=1

Ts =

S∑
s=1

36s

c
= O

(
1

ε4

)
.

5 Experiments
To justify the theoretical findings, we provide some empir-
ical results of solving two different non-convex minimiza-
tion problems, namely learning regularized non-linear least-
squared (NLLS) model and deep neural network (DNN)
model. We compare the proposed stagewise SGDE with
stagewise SGD proposed in [Chen et al., 2019]. For all exper-
iments, the value of γ is fixed to be 5000. For stagewise SGD,
the initial step size η is tuned in [0.1 ∼ 100] and the initial T0

is tuned in [1000 ∼ 10000], then the results with best perfor-
mance are reported. The step size and initial T0 of stagewise
SGDE are fixed to the same values as that of stagewise SGD.

The objective function of regularized NLLS problem is
given by 1

n

∑k
i=1(bi− σ(xTai))

2 +
∑d
i=1

λx2
i

1+x2
i

, where ai ∈
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Figure 2: Comparisons of Stagewise SGD and Stagewise SGDE for
learning ResNets.

Rd is the feature vector of data, bi ∈ {0, 1} is the label of
data, and σ(s) = 1

1+e−s is sigmoid function. We fix λ = 0.01
and conduct the experiments for binary classification on four
datasets: ijcnn1, a9a, rcv1 and real-sim from libsvm website.
We report the log-scale of objective gap v.s. iteration number
in Figure 1, showing that stagewise SGDE performs consis-
tently better across all datasets.

For DNN model, we evaluate two algorithms for learn-
ing ResNet20 and ResNet56 on two benchmark datasets, i.e.,
CIFAR-10 and CIFAR-100. To be consistent with our as-
sumption, we replace non-smooth activation function ReLU
by a smooth activation function ELU (α = 1). We fixed the
batch-size as 128. We train the deep learning models up to
8 × 104 iterations. We presented the results of training er-
ror v.s. number of iterations in Figure 2. The results show
that stagewise SGDE converges faster than Stagewise-SGD
especially on CIFAR-100 data.

6 Conclusions

In this paper, we have analyzed gradient descent with extrapo-
lation for solving smooth non-convex optimization problems
and two stochastic variants of gradient methods with extrapo-
lation for solving smooth non-convex stochastic optimization
problems. We have established their convergence results in
terms of finding an approximate first-order stationary point.
In particular, the convergence upper bounds of the proposed
algorithms exhibit that they could converge faster than algo-
rithms without extrapolation, which are also supported by our
empirical studies.
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