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Abstract
Recently, spectral kernels have attracted wide at-
tention in complex dynamic environments. These
advanced kernels mainly focus on breaking through
the crucial limitation on locality, that is, the sta-
tionarity and the monotonicity. But actually, ow-
ing to the inefficiency of shallow models in com-
putational elements, they are more likely unable to
accurately reveal dynamic and potential variations.
In this paper, we propose a novel deep spectral
kernel network (DSKN) to naturally integrate non-
stationary and non-monotonic spectral kernels into
elegant deep architectures in an interpretable way,
which can be further generalized to cover most
kernels. Concretely, we firstly deal with the gen-
eral form of spectral kernels by the inverse Fourier
transform. Secondly, DSKN is constructed by em-
bedding the preeminent spectral kernels into each
layer to boost the efficiency in computational el-
ements, which can effectively reveal the dynamic
input-dependent characteristics and potential long-
range correlations by compactly representing com-
plex advanced concepts. Thirdly, detailed analyses
of DSKN are presented. Owing to its universality,
we propose a unified spectral transform technique
to flexibly extend and reasonably initialize domain-
related DSKN. Furthermore, the representer theo-
rem of DSKN is given. Systematical experiments
demonstrate the superiority of DSKN compared to
state-of-the-art relevant algorithms on varieties of
standard real-world tasks.

1 Introduction
Kernel method is a class of artful statistical learning ap-
proaches. Benefiting from their flexible modeling frame-
works and excellent statistical theories, they have been suc-
cessfully used in many traditional learning applications over
the past few decades. However, with the rapid development of
machine learning in recent years, most classic kernels are no
longer applicable to complex tasks in practical dynamic en-
vironments. In fact, many theoretical and experimental anal-
yses have shown that the most critical and fundamental lim-
itation of these kernels is that they are local, that is, station-

ary and monotonic [Bengio et al., 2006]. For instance, the
most widely-used local Gaussian kernel k(x,x′) only con-
siders the distance ‖x− x′‖ and quickly converges to a con-
stant when ‖x − x′‖ increases. Consequently, it can’t reveal
more essential information over feature spaces except for the
identical similarity [Remes et al., 2017].

In order to solve such a problem, some new kinds of ker-
nels have been presented to break the restriction on local-
ity. They generally fall into three categories [Rasmussen
and Williams, 2006]: (1) non-stationary kernels; (2) non-
monotonic kernels; (3) non-stationary and non-monotonic
kernels. In the first category, these kernels only focus
on non-stationarity, which are constructed by mapping in-
put spaces [Sampson and Guttorp, 1992] or taking input-
dependent parameters [Gibbs, 1998; Heinonen et al., 2016].
However, they can’t adequately reflect pivotal long-range
data correlations due to neglecting the non-monotonicity. On
the contrary, the kernels in the second category only focus on
the non-monotonicity, which are generated by solving the in-
verse Fourier transform based on Bochner’s theorem [Wilson
and Adams, 2013; Lázaro-Gredilla et al., 2010]. But they lose
essential input-dependent characteristics that can be learned
well by non-stationary kernels.

Just recently, several improved spectral kernels are
proposed to acquire the non-stationarity and the non-
monotonicity simultaneously following the generalized
Fourier analysis theory about kernels [Yaglom, 1987]. Remes
et al. [2017] derived a generalized spectral mixture kernel
by defining the spectral density as bivariate Gaussian mix-
ture components. Ton et al. [2018] directly solved the in-
verse Fourier transform using Monte Carlo approximation,
and proposed a generalized sparse spectrum kernel. To some
extent, these innovative spectral kernels make up for the defi-
ciency caused by locality. But, due to the inefficiency of shal-
low models in computational elements, they still can’t effec-
tively and efficiently acquire the appropriate non-stationary
and non-monotonic properties when learning problems be-
come more and more complicated. That likely leads to their
poor performance in real-world tasks.

Although Bochner’s theorem [Gikhman and Skorohod,
1974] and Yaglom’s theorem [Yaglom, 1987] theoretically
guarantee that spectral kernels can availably approximate
most kernels under specific conditions, they actually require
exponential computational elements to represent complex
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kernels [Rahimi and Recht, 2008], which restricts the further
development and application of spectral kernels. Indeed, this
serious problem is ubiquitous in most shallow models, not
only spectral kernels, but also shallow neural networks [De-
lalleau and Bengio, 2011]. In neural networks, deep archi-
tectures have been introduced to obtain the exponential im-
provement in computational elements from hierarchical non-
linear linking structures [Bengio et al., 2007]. Consequently,
in order to break the limitation on locality and improve the
efficiency in computational elements, it is quite necessary to
apply deep architectures to spectral kernels.

In this paper, we focus on effectively and flexibly integrat-
ing the non-stationary and non-monotonic spectral kernels
into well-designed deep architectures in a natural and inter-
pretable manner. Specifically, we firstly deal with the spectral
kernel based on Yaglom’s theorem and derive a more general
spectral form. DSKN is then formulated and constructed by
embedding the distinguished spectral kernels into each layer
to boost the efficiency in computational elements, which ben-
efits a lot from the elegant deep architecture, including uni-
versality, flexibility, efficiency and interpretability. It can be
further generalized to cover most kernels naturally. Detailed
analyses of DSKN are presented later. We propose a unified
spectral transform technique to flexibly extend and reason-
ably initialize DSKN due to the universality of the deep ar-
chitecture, and thus we can dynamically inject some vital pri-
ori information to construct domain-related DSKN. The rep-
resenter theorem and the reproducing kernel Hilbert space of
DSKN are also derived recursively. More importantly, DSKN
strengthens the link between kernel method and deep learn-
ing. It can not only improve spectral kernels by compactly
representing highly non-linear and highly-varying advanced
concepts, but also significantly enhance the performance of
deep learning in medium-scale and small-scale tasks, espe-
cially when the deep architectures can’t be well constructed
from the complex but sparse data distribution. Systematical
experiments demonstrate the superiority of DSKN compared
to state-of-the-art relevant algorithms on varieties of standard
classification and regression tasks, which indicates that the
proposed approach adequately learns from the intrinsic ad-
vantages of spectral kernels and deep architectures.

2 Related Work
Recently, some deep kernel algorithms have been presented
to try to link kernel method with deep learning. Most of them
directly combine frequently-used deep modules as the front-
end or back-end of kernels. Wilson et al. [2016b] placed a
plain deep neural network as the front-end of a spectral mix-
ture kernel to extract features, which is further extended to a
structured kernel interpolation framework [Wilson and Nick-
isch, 2015] and stochastic variational inference [Wilson et al.,
2016a]. Sun et al. [2018] used a sum-product network as the
back-end of multiple kernels to merge the kernel mappings.
However, the deep modules and the kernels are relatively de-
tached in these algorithms and thus they can’t intrinsically
improve the efficiency of kernels in computational elements.

Some other algorithms stack kernel mappings in a hierar-
chical composite way. Cho and Saul [2009] designed a class

of arc-cosine kernels and integrated them into a deep hierar-
chical structure. Zhuang et al. [2011] proposed the 2-layer
multiple kernel structure which further leads to a series of re-
fined algorithms [Rebai et al., 2016]. But these above models
are relatively closed and inflexible, which are only suitable
for the specific kernels and difficult to be optimized.

Moreover, there are some algorithms that aim to introduce
kernels into deep learning and further construct end-to-end
complete deep models. Stacked kernel network is derived by
replacing the non-linear activation functions of deep neural
network with kernel mappings [Zhang et al., 2017]. Deep
Gaussian process combines multiple Gaussian processes hier-
archically [Cutajar et al., 2017]. But, the models derived from
these methods can’t be regarded as kernel functions anymore,
and thus can’t be simply applied to kernel algorithms.

3 Deep Spectral Kernel Learning
In this section, we firstly introduce some brief concepts
about the spectral kernels with the non-stationary and non-
monotonic properties. Subsequently, we explicitly formulate
and construct the novel DSKN by hierarchically stacking the
kernel mappings of the derived spectral kernels in a scalable
manner. Furthermore, we present detailed analyses of DSKN
and propose a unified spectral transform technique to flexibly
extend and reasonably initialize domain-related DSKN. The
representer theorem and the reproducing kernel Hilbert space
of DSKN are also derived recursively.

3.1 Spectral Kernel
Spectral kernels are constructed from the inverse Fourier
transform in frequency domain. Most commonly-used spec-
tral kernels are stationary, such as spectral mixture ker-
nel [Wilson and Adams, 2013] and sparse spectrum ker-
nel [Lázaro-Gredilla et al., 2010]. These stationary kernels
are shift-invariant functions that only depend on the distance
τ = x − x′ of inputs x and x′, and thus can be rewritten
as k(x,x′) = k(x − x′) = k(τ ). A stationary kernel k(τ )
can be uniquely identified by a spectral density s(ω) on the
basis of Bochner’s theorem [Gikhman and Skorohod, 1974;
Stein, 1999]:

k(τ ) =

∫
RD

eiω
T τ s(ω)dω,

s(ω) =

∫
RD

e−iω
T τk(τ )dτ ,

(1)

where s(ω) is the spectral density of a non-negative measure.
Some important stationary kernels and corresponding spec-
tral densities are shown in Table 1 [Rahimi and Recht, 2008].
Spectral kernels k(τ ) = k(x−x′) derived from the theorem
are non-monotonic but stationary, which can learn potential
long-range relationships but neglect the important dynamic
input-dependent characteristics.

Recently, the Fourier analysis theory of kernels have
achieved tremendous improvements. Yaglom’s theorem fur-
ther indicates that a general kernel k(x,x′) is related to a
spectral density s(ω,ω′) in accordance with the following
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Kernel k(τ ) s(ω)

Gaussian e−
‖τ‖22

2 (2π)−
D
2 e−

‖ω‖22
2

Laplacian e−‖τ‖1
∏D
i=1

1
π(1+ω2

i )

Cauchy
∏D
i=1

2
1+τ2

i
e−‖τ‖1

Table 1: Important stationary kernels and spectral densities

Fourier duals:

k(x,x′) =

∫
RD×RD

ei(ω
Tx−ω′Tx′)s(ω,ω′)dωdω′,

s(ω,ω′) =

∫
RD×RD

e−i(ω
Tx−ω′Tx′)k(x,x′)dxdx′,

(2)

where the kernel k(x,x′) is positive semi-definite if and
only if s(ω,ω′) is the positive semi-definite bounded vari-
ation spectral density of a Lebesgue-Stieltjes measure [Ya-
glom, 1987]. As a result, spectral kernels constructed by
Eq. (2) can not only learn long-range relationships but also
important input-dependent characteristics, benefiting from
their non-locality, that is, the non-stationarity and the non-
monotonicity.

3.2 Deep Spectral Kernel Network
Many theoretical and experimental researches have indicated
that deep models have significant efficiency superiority than
shallow counterparts in computational elements [Delalleau
and Bengio, 2011]. Inspired by the intrinsic superiority
of deep learning, we explicitly design and construct DSKN
through two progressive steps. We firstly deal with the non-
stationary and non-monotonic spectral kernels, and derive a
more general spectral form. Then we naturally and flexibly
integrate the solved spectral kernels into elegant deep archi-
tectures in a hierarchical composite way.

Following Eq. (2), we symmetrize the integral to alleviate
the restriction of Yaglom’s theorem. Concretely, the expo-
nential component ei(ω

Tx−ω′Tx′) in Eq. (2) is replaced by an
augmented part Eω,ω′(x,x′):

Eω,ω′(x,x′) =
1

4

[
ei(ω

Tx−ω′Tx′) + ei(ω
′Tx−ωTx′)

+ei(ω
Tx−ωTx′) + ei(ω

′Tx−ω′Tx′)
]
.

(3)

As a result, the spectral surface density s(ω,ω′) and the cor-
responding spectral surface S(ω,ω′) can be further regarded
as a continuous probability density and a corresponding cu-
mulative distribution function, respectively [Ton et al., 2018;
Rahimi and Recht, 2008]. In other words, we can directly
optimize ω,ω′ over the RD × RD Euclidean space.

Subsequently, the inverse Fourier transform of s(ω,ω′) is
solved as follows:

k(x,x′) =

∫
RD×RD

Eω,ω′(x,x′)s(ω,ω′)dωdω′

= Eω,ω′∼S
[
Eω,ω′(x,x′)

]
= Eω,ω′∼S

[
Tω,ω′(x,x′)

]
,

(4)

Figure 1: The structure of the kernel mapping Φ(x)

where Tω,ω′(x,x′) is:

1

4

[
cos(ωTx− ω′Tx′) + cos(ω′Tx− ωTx′)

+ cos(ωTx− ωTx′) + cos(ω′Tx− ω′Tx′)
]
.

(5)

Consequently, we derive the non-stationary and non-
monotonic spectral kernel k(x,x′) by directly approximating
the expectation with Monte Carlo integral:

k(x,x′) = Eω,ω′∼S
[
Tω,ω′(x,x′)

]
≈ 〈Ψ(x),Ψ(x′)〉, (6)

where the spectral kernel mapping Ψ is:

Ψ(x) =

√
1

4M

[
cos(ΩTx) + cos(Ω′Tx)
sin(ΩTx) + sin(Ω′Tx)

]
. (7)

M is the sampling number. The D ×M frequency matrices
Ω,Ω′ are denoted as:

Ω =
[
ω1, · · · ,ωM

]
,Ω′ =

[
ω′1, · · · ,ω′M

]
. (8)

The frequency pairs {(ωi,ω′i)}Mi=1
i.i.d.∼ S [Ton et al., 2018].

In DSKN, we further adopt another more general form Φ
instead of Ψ:

Φ(x) =

√
1

2M

[
cos(ΩTx+ϕ) + cos(Ω′Tx+ϕ′)

]
,

(9)
which is equivalent to Ψ in the sense of expectation that
E[Φ(x)] = E[Ψ(x)]. The phase vectors ϕ and ϕ′ are drawn
uniformly from [0, 2π]M . Compared with Ψ, the adopted
form Φ can halve the computational overhead and alleviate
the difficulty in programming. The detailed structure of the
spectral kernel mapping Φ(x) is illustrated in Figure 1. With-
out losing generality, it can be regarded as a slightly more
complex neural network with only single hidden layer and
using cosine as the activation function.

Therefore, according to Eq. (9), the non-stationary and
non-monotonic spectral kernel k(x,x′) can be identified by
a pair of frequency matrices Ω,Ω′ sampled from the spectral
surface S. It’s worthy to point out that we can not only ap-
proximate almost all kernels by assigning specific Ω,Ω′, but
also derive more powerful spectral kernels by dynamically
optimizing Ω,Ω′.

Although some fundamental theorems guarantee that spec-
tral kernels shown in Eq. (9) and Figure 1 can availably ap-
proximate most kernels under specific conditions [Gikhman
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and Skorohod, 1974; Yaglom, 1987], their learning capa-
bility for representing complex kernels in practical dynamic
environments requires exponential computational elements
Φ1, · · · ,ΦM [Rahimi and Recht, 2008]. Fortunately, consid-
ering the superiority of deep learning in improving the effi-
ciency of computational elements, we further effectively and
flexibly integrate spectral kernels k(x,x′) into well-designed
deep architectures in an interpretable way.

Actually, one of the most serious problems in existing deep
kernels is that they can’t pertinently construct flexible deep
structures for kernels. The reason more likely lies in the form
restrictions of kernels. That is, a kernel function is a bivari-
ate scalar function and its kernel mapping is implicit. How-
ever, benefiting from the general spectral form of the spectral
kernels shown in Eq. (9) and Figure 1, we directly avoid the
above limitations to naturally construct DSKN by stacking Φ
in a deep hierarchical composite way:

K(l)(x,x′) = 〈Φl(Φl−1(· · ·Φ1(x))),Φl(Φl−1(· · ·Φ1(x′)))〉,
(10)

whereK(l) denotes the l-layer DSKN, and Φl denotes the l-th
layer spectral kernel mapping. The parentheses (l) here mean
that the l-th layer and the previous layers are both included.
We further simplify the notation of K(l) as:

K(l)(x,x′) = 〈Ξ(l)(x),Ξ(l)(x′)〉, (11)

where the composite kernel mapping Ξ(l) of DSKN is:

Ξ(l)(x) = Φl(Φl−1(· · ·Φ1(x))). (12)

Based on the structure of Φ illustrated in Figure 1, the com-
plete architecture of the l-layer DSKN K(l) is shown as Fig-
ure 2.

3.3 Analysis of DSKN
The deep architecture of DSKN illustrated in Figure 2 is sig-
nificantly more natural and elegant than those closed struc-
tures of existing deep kernels. DSKN benefits a great deal
from the concise hierarchical architecture, including univer-
sality, flexibility, efficiency and interpretability.

Specifically, DSKN is an unprecedented universal deep
kernel framework that can be directly applied to most pos-
itive semi-definite kernels, without losing any generality, to
construct their composite deep models. In other words, we
can assign all kinds of positive semi-definite kernels as the in-
ternal elements of DSKN with the unified spectral transform
technique. Concretely, given a kernel k̂ to be embedded, we
firstly derive its spectral density ŝ and spectral surface Ŝ by
solving the inverse Fourier transform in Eq. (1) or Eq. (2),
where k̂ is uniquely identified by ŝ and Ŝ. Then, based on
the frequency pairs {(ωi,ω′i)}Mi=1

i.i.d.∼ Ŝ and Eq. (9), we
further construct a spectral kernel k̃ to approximate the ker-
nel k̂. Consequently, we can flexibly embed any positive
semi-definite kernel k̂ by indirectly integrating spectral ker-
nel k̃ ≈ k̂. What’s more, these essentially different kernels
k̂ can be uniformly optimized. Some commonly-used kernels
and corresponding spectral densities have been shown in Ta-
ble 1. By doing so, according to practical applications, we

can naturally assign well-designed kernels as the internal el-
ements of DSKN by the unified spectral transform technique,
and thus more pivotal priori knowledge can be reasonably in-
jected to construct domain-related DSKN.

Furthermore, DSKN can be flexibly adjusted in vertical
and horizontal manners. That is to say, for the vertical ad-
justment, we can increase the depth l of DSKN by directly
integrating more spectral kernels into the network. For the
horizontal adjustment, in addition to directly increasing the
sampling number M , actually, each layer Φi for i = 1, · · · , l
can be further replaced by an augmented heterogeneous mul-
tiple kernel structure including K components {φik}Kk=1:

Φi(·) =
[
φi1(·)T , φi2(·)T , · · · , φiK(·)T

]T
, (13)

where each element φik(·) is essentially a complete spectral
kernel mapping shown in Eq. (9) and Figure 1. Therefore,
DSKN can effectively embed different kernels into any posi-
tion and easily adjust the deep network. Considering that all
parameters in DSKN are represented as frequencies ω, DSKN
can be uniformly optimized by most existing optimization al-
gorithms in deep learning, such as SGD and Adam, in ac-
cordance with the error backpropagation. Furthermore, in Θ
notation, the computational complexity of DSKN is the same
as that of classic deep neural networks with the same archi-
tectures.

Compared with other deep kernels, the architecture of
DSKN is more interpretable by explicitly stacking spectral
kernel mappings in a hierarchical composite way. We derive
the representer theorem and the reproducing kernel Hilbert
space V(i) of the i-layer DSKN K(i) for all i = 1, · · · , l re-
cursively [Bohn et al., 2017]. Concretely, let Hi be the re-
producing kernel Hilbert space of the mapping Φi about the
kernel ki with finite-dimensional domain Di and range Ri
where Ri ⊆ RMi with Mi ∈ N for i = 1, · · · , l. Such that
Ri−1 ⊆ Di for i = 2, · · · , l and D1 ⊆ RD. Let L be an
arbitrary loss function and Θ1, · · · ,Θl be strictly monotoni-
cally increasing functions. The minimization objective J is
defined as:

J (Φ1, · · · ,Φl) =
N∑
n=1

L(Φl(Φl−1(· · ·Φ1(xn))), yn)

+
l∑
i=1

Θi(‖Φi‖2Hi).

(14)

Then, a set of minimizers {Φi}li=1 with Φi ⊆ Hi ful-
fills Ξ(i)(·) = Φi(Φi−1(· · ·Φ1(·))) ∈ V(i) ⊂ Hi for all
i = 1, · · · , l with the spanned reproducing kernel Hilbert
space V(i) of the i-layer DSKN K(i):

V(i) = span
{
ki(Φi−1(Φi−2(· · ·Φ1(xn))), ·)emi

|n = 1, · · ·N ;mi = 1, · · ·Mi

}
,

(15)

where emi
∈ RMi is the mi-th unit vector. Intuitively, ac-

cording to the image spaces of hidden layers, the kernels in
previous layers try to align the intrinsic features of data in
such a way that they can be easily resolved by the posterior
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Figure 2: The deep architecture of DSKN

ones, and thus the output of the last layer in DSKN can rep-
resent more important advanced concepts for tasks at hand.

It is worth noting that DSKN further strengthens the link
between kernel method and deep learning. On the one hand,
it is distinctly superior to shallow spectral kernels in all as-
pects by effectively applying deep architectures to spectral
kernels, which significantly improve the learning capability
of spectral kernels to compactly represent highly non-linear
and highly-varying complex concepts by abstracting the ad-
vanced internal relationships of inputs. On the other hand,
compared with deep learning, it can adapt to medium-scale
and small-scale learning tasks better, by naturally embedding
the powerful non-stationary and non-monotonic spectral ker-
nels into deep networks, which can incisively learn dynamic
input-dependent characteristics and potential long-range cor-
relations across the whole feature spaces.

4 Experiments
In this section, we experimentally evaluate the performance
of DSKN compared with several state-of-the-art algorithms
on varieties of typical tasks, which demonstrates that DSKN
can achieve all-round performance improvements.

4.1 Experimental Setup
As the priori knowledge, the most widely-used classic Gaus-
sian kernels are used as the internal basic kernel elements of
DSKN, whose spectral surfaces S are Gaussian distributions.
Moreover, the scales of all deep architectures in the exper-
iments are uniformly set to 1000 × 500 × 50. Sigmoid is
applied to the activation functions in neural networks. DSKN
and the compared kernels are applied to the same Gaussian
process models for classification and regression, and opti-
mized by Adam. The accuracy and the mean absolute error
(MAE) are chosen as the evaluation criteria for classification
tasks and regression tasks, respectively, which reflect the av-
erage performance better.

Compared Algorithms
DSKN is compared with several state-of-the-art relevant al-
gorithms including:

• 1-SKN [Ton et al., 2018]: 1-layer Spectral Kernel Net-
work is a shallow baseline, and the number of computa-
tional elements is set to be the same as DSKN.

• DNN [LeCun et al., 1998]: Deep Neural Network is the
most classic model in deep learning.

• DKL-GA [Wilson et al., 2016b]: Deep Kernel Learning
with GAussian kernel combines a DNN as the front-end
of a Gaussian kernel.

• DKL-SM [Wilson et al., 2016b]: Deep Kernel Learning
with Spectral Mixture kernel combines a DNN as the
front-end of a spectral mixture kernel.

Datasets
We systematically evaluate the performance of DSKN on
several standard classification and regression tasks. We
firstly conduct classification experiments on four benchmark
datasets, including four, ionosphere, splice and wbdc [Blake
and Merz, 1998]. Secondly, we conduct regression experi-
ments on other four datasets including airfoil, boston, con-
crete and energy [Blake and Merz, 1998]. All these data
are scaled by z-score standardization and randomly divided
into two non-overlapping training and test sets, which are
equal in size. The division, training and test processes are re-
peated ten times to generate ten independent results for each
dataset, and then we assess the average performance with
corresponding evaluation criterion. Furthermore, to evalu-
ate the performance of DSKN on training data with different
scales, we specifically conduct an image classification exper-
iment on MNIST dataset [LeCun et al., 1998]. The division
of training data and test data is consistent with the default
scheme. Specifically, 10,000 images are randomly selected
as test data, and the rest are training data. The training data
are further sampled to different scales from 5% to 100%.

4.2 Experimental Results
We evaluate the performance of DSKN in varieties of stan-
dard classification and regression tasks. Experimental results
are shown in Table 2, where the best results are highlighted
in bold. (↑) indicates the larger the better, while (↓) indicates
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Classification Accuracy (↑) Regression MAE (↓)
four ionosphere splice wbdc airfoil boston concrete energy

1-SKN 0.984±0.021• 0.864±0.065• 0.674±0.064• 0.964±0.023 0.282±0.010• 0.248±0.019 0.269±0.010• 0.121±0.013•
DNN 0.864±0.143• 0.828±0.102• 0.777±0.082• 0.932±0.106 0.198±0.009• 0.290±0.018• 0.237±0.014 0.088±0.008•

DKL-GA 0.896±0.157• 0.743±0.115• 0.682±0.134• 0.902±0.147 0.246±0.033• 0.249±0.016 0.239±0.012 0.099±0.006•
DKL-SM 0.963±0.106 0.787±0.105• 0.748±0.082• 0.940±0.103 0.280±0.020• 0.257±0.024 0.258±0.018• 0.104±0.004•

DSKN 0.999±0.000 0.917±0.033 0.855±0.012 0.974±0.006 0.176±0.012 0.244±0.016 0.233±0.012 0.069±0.003

Table 2: Classification accuracy and regression MAE (mean±std) of each compared algorithm on several real-world datasets. (↑) indicates
the larger the better, while (↓) indicates the smaller the better. The best results are highlighted in bold. In addition, •/◦ indicates whether
DSKN is statistically superior/inferior to the compared algorithms on each dataset (pairwise t-test at 0.05 significance level).

1-SKN DNN DKL-GA DKL-SM DSKN

5% 0.9052 0.9589 0.9498 0.9437 0.9762
10% 0.9312 0.9733 0.9714 0.9595 0.9824
20% 0.9479 0.9817 0.9820 0.9782 0.9881
40% 0.9614 0.9862 0.9858 0.9866 0.9920
70% 0.9726 0.9876 0.9874 0.9865 0.9936

100% 0.9746 0.9891 0.9899 0.9881 0.9945

Table 3: Accuracy on MNIST dataset with different scales.

Figure 3: Accuracy curves on MNIST dataset with different scales.

the smaller the better. In order to measure the significance
of performance difference statistically, pairwise t-test at 0.05
significance level is conducted. Specifically, when DSKN is
significantly superior/inferior to the compared algorithms, a
marker •/◦ is denoted [Xu et al., 2017].

According to the results illustrated in Table 2, 1-SKN with
only single hidden layer performs relatively well on most
easy classification tasks benefiting from the non-stationary
and non-monotonic properties to some extent. But the shal-
low 1-SKN lacks the efficiency in computational elements,
and thus performs poorly on regression tasks which need to
be learned more accurately. As a classic and commonly-
used deep learning algorithms, DNN is still very competitive
on average. The two compared deep kernels, DKL-GA and
DKL-SM, have relatively poor performance. Although addi-
tional kernels are combined as the back-end, these traditional
deep kernels can’t achieve effective performance improve-
ments. By contrast, the proposed DSKN evidently outper-
forms all compared algorithms on all tasks. The experimental
results explicitly demonstrate the excellent performance and
stability of DSKN, which further implicitly indicates the ne-
cessity of effectively construct natural deep architectures for
non-stationary and non-monotonic spectral kernels.

We further conduct an experiment on MNIST dataset with

different scales to demonstrate the excellent learning ability
of DSKN. The results are collected in Table 3 and visualized
as Figure 3. On the relatively complex dataset, 1-SKN per-
forms poorly due to its shallow structure, which needs expo-
nential computational elements to availably represent image
patterns. There is no significant performance gap between
DNN, DKL-GA and DKL-SM. But the deep kernels, DKL-
GA and DKL-SM, still perform a little bit worse than DNN.
The kernels in the last layer are more likely to affect the ad-
equate backpropagation of error information. By contrast,
DSKN can not only stably achieve the best performance on
all scales, but also enlarge the performance superiority over
compared algorithms on medium-scale and small-scale tasks.
In fact, the sparser the data distribution, the more crucial the
appropriate non-stationary and non-monotonic properties are.
DSKN accurately learns the crucial properties and thus per-
forms better, by introducing deep architectures to improve the
non-stationary and non-monotonic spectral kernels.

5 Conclusion
In view of the prominent superiority of deep architectures
over shallow ones, we pay attention to effectively integrate
non-stationary and non-monotonic spectral kernels into ele-
gant deep architectures, and propose the novel DSKN, which
can be further generalized to cover most kernels. Specifically,
we firstly deal with the spectral kernels by inverse Fourier
transform and present a more general spectral form. DSKN
is then derived by naturally embedding the spectral kernels
into each layer to achieve better efficiency in computational
elements. Consequently, DSKN can effectively reveal the
dynamic input-dependent characteristics and potential long-
range correlations by compactly representing complex ad-
vanced concepts. In addition, some intuitive analyses and
the representer theorem of DSKN are also presented. Sys-
tematical experiments demonstrate the superiority of DSKN
compared to state-of-the-art relevant algorithms on varieties
of standard tasks, which implicitly indicates that DSKN can
relatively adopt more strong points of spectral kernels and
deep architectures while overcoming their weak points.
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