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Abstract

Incomplete view information often results in fail-
ure cases of the conventional multi-view meth-
ods. To address this problem, we propose a
Deep Correlated Predictive Subspace Learning (D-
CPSL) method for incomplete multi-view semi-
supervised classification. Specifically, we integrate
semi-supervised deep matrix factorization, corre-
lated subspace learning, and multi-view label pre-
diction into a unified framework to jointly learn
the deep correlated predictive subspace and multi-
view shared and private label predictors. DCP-
SL is able to learn proper subspace representation
that is suitable for class label prediction, which can
further improve the performance of classification.
Extensive experimental results on various practical
datasets demonstrate that the proposed method per-
forms favorably against the state-of-the-art meth-
ods.

1 Introduction

Data can be represented by multiple views in many real-world
applications. For instance, an image can be described by d-
ifferent types of features such as LBP, SIFT, and color his-
togram. Different views usually provide complementary in-
formation and leveraging multi-view data is beneficial to im-
proving the overall learning performance. However, some
views may not contain complete information in real tasks
(e.g., some Web pages contain both image and text informa-
tion while some may only contain text information). The in-
complete data may lead to performance degradation or even
failure of the conventional multi-view methods.

Up to now, several approaches have been developed for
the incomplete multi-view unsupervised or semi-supervised
learning. For two-view incomplete data clustering, some
methods [Li et al., 2014; Zhao et al., 2016; Xu et al., 2018]
adopt matrix factorization model to seek a common latent
subspace, in which the samples of different views are con-
strained to have the same representation. To conduct clus-
tering with more than two views, MIC [Shao et al., 2015]
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adopts a co-regularized method to push the learned subspace
of all the views into a common consensus. DAIMC [Hu and
Chen, 2018] constructs a consistent data representation with
l2,1-norm to reduce the influence of missing views. A spec-
tral clustering based method is proposed [Wen er al., 2019] to
learn the consensus representation and the similarity graph-
s for all views. In addition to unsupervised learning, semi-
supervised learning methods for incomplete multi-view data
are developed recently. SLIM [Yang et al., 2018] learns the
classifiers by leveraging the intrinsic view consistency and
extrinsic unlabeled information, which is further used to pre-
dict the class of unlabeled samples. To predict multiple label-
s from incomplete views, IMVWL [Tan et al., 2018] learns
a consistent subspace by considering the label correlations
which can reinforce the prediction results.

While some successful incomplete multi-view learning
methods have been proposed, there remains room for prac-
tical improvements and additional theoretical understanding.
First, most of the incomplete multi-view learning methods are
based on shallow models, which cannot learn robust repre-
sentation for data with complex distributions. Second, since
some samples may lack of feature descriptions in some views,
the data correlation is an important clue to make the data
complement each other and improve the discriminating pow-
er of data representation. Third, different views have shared
and independent information, omitting such shared and pri-
vate nature of multi-view data would limit the performance
of classification.

To solve the aforementioned problems, we propose a Deep
Correlated Predictive Subspace Learning (DCPSL) method
for incomplete multi-view semi-supervised classification. We
integrate semi-supervised deep matrix factorization, correlat-
ed subspace learning and multi-view class label prediction in-
to a unified objective function to jointly learn the deep corre-
lated predictive subspace and the shared and private label
predictors. The proposed DCPSL is able to learn the proper
subspace representation that is suitable for class label pre-
diction, which can further improve the classification perfor-
mance. The discriminating power of the learned subspace
representation is guaranteed from three aspects. First, the la-
bel information is incorporated into deep matrix factorization
model which makes the learned representation achieve obvi-
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ous category structure. Second, data correlation is utilized to
make the incomplete multi-view data complement each oth-
er, which further enhances the effectiveness of the subspace.
Third, we introduce the shared and private label predictors for
classification so that the complementarity information of the
learned multi-view subspace can be leveraged and more accu-
rate class labels can be predicted. The experiments conducted
on several multi-view datasets verify the effectiveness of our
method. The main contributions of this work are summarized
as follows:

e We extract abstract and high-level multi-view repre-
sentation by semi-supervised deep matrix factorization
model. By encoding the label information into the rep-
resentation, we can significantly improve the discrimi-
nating power of the subspace representation.

e We learn low-rank subspaces from deep matrix factor-
ization model, where data correlation can be effectively
extracted. Then the data correlation is further used to
enhance the effectiveness of the learned subspace repre-
sentation.

e We propose to divide the label predictor into shared
and private parts, which can effectively utilize multi-
view complementary information and improve the per-
formance of class label prediction.

2 Proposed Method

2.1 Preliminaries

For complete multi-view data with V' views, sample z; is
composed of V' features {xl(-l), x§2), ey xgv)}, where a:l(-v) €
R% and d, is the feature dimension of the v-th view. Due to
the incomplete data problem, the features of some views may
be missing for z;. Let 7 denote the index of views that x;
appears in, then x; is compose of {.TEJ )}jef- Given n sam-
ples, incomplete multi-view data can be denoted by a set of
matrices {X () € R%*n}V_ where X(*) consists of n,
samples appear in the v-th view. We have n,, < n due to
the multi-view data missing problem. In semi-supervised set-
ting, some samples have labels while others do not. We use
Y = [y1,v2, %] € {0,1}*! to represent the label ma-
trix, where [ is the number of labeled samples and c is the
class number. For a labeled sample x;, if it belongs to the
i-th class, Y;; = 1; otherwise Y;; = 0. Our objective is to
predict the class labels of the unlabeled samples based on the
incomplete multi-view feature matrices {X (”)}UV:1 and the
label matrix Y.

To capture complex data distributions, deep Semi-NMF
[Trigeorgis et al., 2014] is proposed to learn the inherent at-
tributes and higher-level feature representation. It decompos-
es data matrix X into m layers as

X =~ Z1H1+7
X =~ leQH;_7

: (1)
X ~ Z1Z2...Z7nH7Jyrp

where Z; € RFi-1*%i and H,,, € R*¥=*" are the loading ma-
trix and coefficient matrix, respectively. k; is the dimension
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of the i-th layer, and (a)™ = max(0,a) corresponds to the
hinge operation.

Subspace clustering [Vidal, 2011; Elhamifar and Vidal,
2013] assumes that data are drawn from different subspaces,
and its goal is to cluster data according to their underlying
subspaces. The low-rank representation (LRR) method [Li-
u et al., 2013] learns a low-rank subspace representation and
achieves promising clustering performance. Given a data ma-
trix X € R%" LRR solves the self-representation problem
by finding the lowest rank representation of all data as

min|[S]|., st X =XS+E, 2)
where S € R™*" is the learned low-rank subspace represen-
tation of data X, E is the error matrix, || - ||. denotes the
nuclear norm of a matrix, which equals to the sum of its sin-
gular values. The learned subspace S is capable of capturing
the correlations of data samples.

2.2 Problem Formulation

There are two main problems in semi-supervised incomplete
multi-view learning: i) how to obtain the proper multi-view
data representation for classification, and ii) how to predic-
t the class label of unlabeled samples. To this end, we first
introduce deep correlated subspace learning to properly rep-
resent multi-view data, and then introduce multi-view shared
and private label prediction. Finally, the ultimate objective
function integrates the two subproblems to obtain both prop-
er subspace representation and accurate classification results.

Deep Correlated Subspace Learning

To learn the proper multi-view representation for semi-
supervised classification, three factors should be considered.
First, the class label information should be used to guide the
representation learning. Second, data correlations contain
abundant descriptions of relations between data, which can
be used to enhance the effectiveness of representation. Third,
data samples may be produced by complex data distribution-
s. Compared to shallow models, deep models can better learn
the inherent attributes and higher-level data representation. In
the light of the above points, we introduce the following deep
correlated subspace learning objective to obtain data repre-
sentation

min J, (2", HY, §®)

1%

- SN - A PP
I H PO = Hy POSOf + ol ]SOl
st HSY > 0,50 >0

where m is the number of layers. Zi(v) and Hﬁ,ff ) are the

learned loading matrix and coefficient matrix for the v-th

view, respectively. Inspired by [Liu et al., 2012], the label
constraint matrix P(") € R("»~le+e)xn jg ysed to guide the

learning of H. 7(,;} ), where c is the class number and [,, is num-
ber of labeled samples in the v-th view. For example, given

() 202} from the v-th view, ("), z{”

v

samples {z
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belong to class 1, xgv), xff) belong to class 2, and the other

samples are unlabeled, then P is defined as

1100 0
P“=[0 011 o0 4)
00 0 0 In 4

where I, _4 € R(mv—4)x(nv—4) g ap identity matrix. The

new data representation becomes H,(,f )P(”) where the label
information can be well preserved. It is easy to check that

if xl(”) and mj(-”) have the same label, then (H,(ﬁ))P(”))(:ﬂ;) =
(HT(Y,LL))P(U))(,j)

Although H,gf ) P(®) achieves high-level feature represen-
tation and preserves the label information, it does not take

advantage of the data correlations, which may affect its dis-
criminating power. We further learn the low-rank subspace

S® e Rroxno from HY P®) to reveal the intrinsic data
correlations. Through self-representation learning, each el-

ement in Si(”) well captures the relations between two sam-

ples. Then we can use Hy(,f )P(”)Si(v) as the enhanced data

subspace representation to achieve better prediction.

Multi-view Shared and Private Label Prediction

Given the enhanced data subspace presentation
H,(QJ)P(”)SZ.(U) € RFm*nv gnd label matrix Y € R*L,
the class labels of unlabeled samples should be predicted.
We adopt linear regression model for label prediction due
to its convenience and effectiveness. It should be noted that
different views share some common information while re-
taining some independent information. Only by considering
the shared and private nature of multi-view data can we
make accurate predictions of data labels. Hence, we propose
multi-view shared and private label prediction as follows

min Jo (W, W, F)
\4
= 2 {[|(Wa + W HE POISE) - FQWIZ (5

v=1
B WS | + Bal W2}
st. Fp, =Y

where F' € R°*™ is the predicted label matrix, 7 is the index
set of the labeled samples. F;, =Y restricts the prediction on
labeled data as same as the ground truth. The label predictor

for the v-th view can be denoted by W = w, + W,EU),
where W, € R*¥m is the shared part that used for all the

views and W, v) € R¢*Fm ig the private part that used onl
P p p y

for the v-th view. We impose /1 -norm regularization on W,SU)
to make it adaptively capture the private components of the
v-th view. Different views adopt different label predictors so
that multi-view complementary information can be leveraged
to generate more accurate results.

To cope with the incomplete multi-view data, the align-
ment matrix Q(*) € R"*™ is introduced which represents
the correspondence between n, samples appear in the v-th
view and all the n samples. For example, if the three sam-
ples from the v-th view, i.e., H,(,ZZ)P(“)SZ-(”) € Rkmx3_corre-
spond to the 2nd, 3rd and 5-th sample in F', respectively, then

Q") € R"*3 is constructed as

QW = (6)

SO OO
SO~ OO
o o000

Our method can flexibly deal with the incomplete multi-view
data, so that all the samples from different views can be lever-
aged for label prediction effectively. After obtaining F', any
unlabeled sample can be assigned to a class, e.g., the class of
the unlabeled sample x; is determined by arg max; I;.

Ultimate Objective Function

The ultimate objective function is formed by combining the
above sub-problems. By jointly conduct deep correlated sub-
space learning and multi-view shared and private label pre-
dictor learning, the ultimate objective function is proposed,
which is

minJ(ZZ-(U),Hr(:)75(v)7WsaWPv)’F)
\%
_ z_:l{||X<v) —ZWz  ZW HY P2,

+||HT(,;’)P(“) _ HSZ)P(”)S(“)H% (7
(W, + WY HE PO SO — QW12
+3(S@ W W)
st. HY > 0,80 >0,F, =,
where,
(S W W) = allS© ||+ Bl [W 1+ Bl [Wel 7. (8)

We introduce A to control the weight of label prediction term.
By solving the ultimate objective function .J, our method can
jointly learn subspace representation, label predictors and the
predicted label matrix F', so that more effective data repre-
sentation and accurate classification results can be obtained.

3 Optimization

In this section, we provide more details on solving the ulti-
mate objective function (7) by the iterative block coordinate
descent algorithm, where only one variable is updated while
the others are fixed in each iteration. Specifically, we pre-

train each layer and obtain initial Zi(”) and H,gf ). Then, each

variable such as Zi(”), Hf,f), S W, WISU) and F' is updat-
ed. The details of pre-training and derivations of update rules
are presented as follows. Algorithm 2 presents the algorithm
for solving problem (7).

3.1 Pre-training of Deep Semi-NMF

The latent factors Zi(“) and H i(”) in Deep Semi-NMF should
be pre-trained before solving the other variables. For each
view v = 1,...,n,, the first layer is learned by X () =~
ZOH®  where Z(") € Révx<k and H") € Rk, Af-

ter that, coefficient matrix Hl(v) is further decomposed by

HY ~ z8H®, where Z{") € RFi*k2 and H{" ¢
R*2X"_This process is continued until all the layers are pre-
trained, i.e., H" ~ Z{"H" ... HY  ~ Z0HY.
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3.2 Updating ZZ.(U)

To solve Zi(”), let the partial derivative 8(J)/8(Zi(”)) =
0, and then the update rule can be obtained by Zi(v) —
UIXOQH where ¢ = 2Z"...z" and 0 =
Zi(i)l .z EM PO, ()T is the Moore-Penrose pseudo-
inverse operator and AT = (AT A)~1AT.

33 Updating H\”

To solve H, ,(,f ), we take the related parts from J and obtain
JHW) =[x — 2 78 28 B P02,
FA|[WO HY p0) 50) — FQM |2,

where we introduce W (") = W, + W,S”). Using the standard
Semi-NMF optimization method, we can derive the following
multiplicative update rule,

(H)ig = (HY)ig (10)
where
r, = [\PTX(’U)P(’U) pos 4. [ZH’,(;,])P(U)S(U>P(’U)T]Z)OS
+[Aw(v)TFQ(U)s(v)Tp(v)T]zws
+[\IJT\IIH7($)P(U)P(U)T}7LEQ + [HS:)P(’U)P(U)T]7LEQ (11
+[H7(,1L’)p(v)s(v)5(v)Tp(v)T]neg
WO W@ g pe) g g p)Tnes
and
Ty = [B7 X ®) pe)T|nes 4 (9 p) g(0) p()T Jneg
+[Aw(v>TFQ(U)S(U)TP(U>T]M§
—&-[\IIT‘I/HT(,I;)P(“)P(”)T]WS + [Hﬁé’)p(v)p(v)T}POS (12)
HH P §0) g0 po) Jpos
+[Aw(v>T W(U)H#’)p(v)S(v)s(v)Tp(v)T]POS'
The notation of [-]P°* and [-]"¢¢ in (11) and (12) denote the

operation that replaces all the negative and positive elements
in the matrix by 0, respectively, and can be defined as

pos __ |Aij| + Aij [A]neg o |Az]| — Aij
wo 2 P 2 '

3.4 Updating S

Keeping the parts that are related to Sl-(v) from ultimate ob-
jective function J, we obtain the following problem

min || P — HY PSSO + ol [SO
S(v

AW HD PO S®) _ pQ®)|12, (13)
st S™ >0,
which can be solved by alternating direction method of mul-

tipliers (ADMM) [Liu et al., 2013]. The augmented La-
grangian function of problem (13) is,

L(S™), By, B, Bs, Ba) = ||HY P®) — Bi||% + o| B2 |«
+A||Bs — FQ®™ |3 + I+ (Ba) + £]|Bs — S — Ru[%
+4]|By — HY PWS®™ — Ry} + &]|B2 — S© — Ra||}
+511Bs = WO HR PGSO — Rl

R

[A]

(14)
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where {B;};®, are the auxiliary variables, {R;};*; are the
Lagrange multipliers. [p+ (+) is defined as

0 ifA>0,
lp+ (A) - { +o0  otherwise.

We set the partial derivative d(L(S"), By, By, B3, By))/
A(S™) =0 to solve S as

SO (€@ g@) 4 T @)@ 4 opy-t

T 5)
(€ m 4 ma + €T WD g 4 ma)

where n; = B; — R;, € = HY P® and T is the identity
matrix. By using the similar updating method, we solve B;
and Bj as

1
Bie g (20 P+ u(H PO 4 Ry)), o (16)

Bs « CAFQ™ + yW W H PMS™ 4 iRy (17)

22+ p

We use Singular Value Thresholding operator [Cai er al.,
2010] to solve By. Let ©,.(A) = UA, V", where A =
UA, VT is the singular value decomposition, and A, (a) =
sgn(a)max(ja] — 7,0) is the shrinkage operator. Then the
update rule for By is By <« @a/u(s(”) + R3). Consider-
ing the non-negative constraint, B4 can be solved by By +
max(S(") + Ry, 0). Furthermore, Lagrangian multipliers R,
Rs, R3 and R4 should also be updated. Algorithm 1 summa-
rizes the ADMM optimization procedure for solving S(*).

3.5 Updating W, and W,."

In this subproblem, we fix the related parts of W and W,E“)

from J and optimize the Wy and W,SU). The optimization
problem becomes

v
ST UWe + WHYHE PO SO — QW 15481 W 11 +B21|Wal[3).-
v=1

(18)

We can update W, and WIS”) by solving ridge regression and
lasso regression problems. W can be updated by the closed

form solution, and WZSU) can be updated by the standard co-
ordinate descent method [Lange, 2008].

3.6 Updating F'

Considering the equality constraint ;, = Y imposed on F/,
we introduce a penalty to arrive at the following equivalent
objective function to solve F/,

<

J(F) =

v

NIWCTHR PSS = FQUWI + | FU = Y[,

19
where U € {0,1}"*! is the correspondence matrix. If the
1-th column in F' corresponds to the j-th column in Y, then
Uyj =1 and Uy, = 0,k # j. n > 0is used to control
the equality constraint, which should be large enough to en-
sure the equality constraint satisfied. Let the partial derivative
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Algorithm 1: The algorithm to solve S(*).
Input: H,(f{), P W F, Q(”), Q, A, b

1 Initialization: Vj, B; = R; =0
2 while not converged do

3 Update SZ-(”) by (15);

4 Update B1, Bs, B3, B4 in Sec. 3.4;

5 Update the Lagrange multipliers:

6 | R+ Ri— (B —HYP®SW),

7 RQ(—RQ—(BQ—S(U));

8 | Ry« Rs— (By— WOHYPWS©):
9 R4(—R4—(B4—S(U));

10 end

Algorithm 2: The learning procedure of our approach.
Inpu': {X(U)7 P(U)7 Q(v)}q‘;/:l, m, )\s Oé, Bla /82-

Initialize Zi(v), Hr(ff ) by pre-training.
while not converged do
forv=1,...,V do

Update {Z{")}™, in Sec. 3.2;
Update H'” by (10);
Update S(*) by Algorithm 1;
Update W, by solving (18);
end
Update W by solving (18);
Update F' by (20);

S e R I NN R W=

11 end

A(J(F))/O(F) = 0, the following update rule can be derived
to solve F’

v
F= (> WOHYPOS®QW" 4 pyyT)

B (20)
(2 QWQW" +quuT)~".

v=1
3.7 Complexity Analysis

Pre-training and fine-tuning are the two stages of our algo-
rithm. The computational complexity for pre-training is of
order O(ndk + nk? + kn?), where n is the number of sam-
ples, d is the maximum dimension of multi-view data, and &
is the maximum dimension of all the layers. All the variables
are updated in the fine-tuning stage. The complexity for fine-
tuning is of order O (ndk + nk* + kn? + n® + ck? + cn?).
The proposed algorithm is efficient and achieves comparative
complexity with NMF and subspace clustering methods.

4 [Experiments

4.1 Experimental Setup

Datasets. Four commonly used multi-view datasets are used
to evaluate the proposed method. NUS [Chua et al., 2009] is
a web image dataset for object recognition. We adopt 31 cat-
egories and choose 100 images for each class. Five features
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Figure 1: Parameter analysis w.r.t. 51, 32 and m.

are extracted to represent images. SUN [Xiao et al., 2016]
contains 899 categories and 130519 images. We randomly
choose 30 classes, and each class has 100 images. Five types
of visual features are adopted as different views. Caltech [Li
et al., 2007] is an object recognition data set containing 101
categories of images. We select the widely used 20 classes
and get 1230 images. Five features are extracted from the im-
ages. Flowers [Nilsback and Zisserman, 2006] is composed
of 17 flower categories, with 80 images for each category.
Each image is described by three views using color, shape,
and texture features. For each dataset, 70% data are random-
ly sampled for training and the remaining 30% data are used
for testing. To create incomplete multi-view data scenarios,
we randomly remove % samples from each view and ensures
that each sample appears in at least one view.

Methods and parameter setting. We compare six state-of-
the-art multi-view learning methods to demonstrate the ef-
fectiveness of our method: AMGL [Nie et al., 2016], M-
LAN [Feiping Nie and Li, 2018], MLHR [Yang et al., 2013],
GLCC [Zhang and Zhang, 2016], MVAR [Tao et al., 20171,
iMVWL [Tan et al., 2018]. The first five methods are conven-
tional multi-view semi-supervised learning methods which
are designed for complete view data. For a fair comparison,
we adopt the matrix completion method [Lin e al., 2010] by
filling the missing information and then conduct classifica-
tion for these methods. The parameters of all the compared
methods are set as suggested in the corresponding papers.
The parameters of our method are determined by five fold
cross-validation. )\ and « are selected from {1073, 1072,...,
10%}. B; and S, are selected from {0.005, 0.01,..., 50}. All
the experiments are repeated ten times and the averaged per-
formance are reported. For the evaluation metric, we follow
[Feiping Nie and Li, 2018] and use accuracy for performance
evaluation, which calculates the proportion of the correctly
classified samples.
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Figure 2: Semi-supervised classification results comparison. The incomplete rate of multi-view data is €% = 50%.
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Figure 3: Semi-supervised classification results for different incomplete rates. The percentage of labeled samples is 0.3.

4.2 Experimental Results

Semi-supervised Classification. To illustrate the semi-
supervised classification performance of DCPSL, we fix the
incomplete rate of the multi-view data as €% = 50%, and
present the classification accuracy of all the methods with d-
ifferent percentages of labeled samples in Figure 2. In can
be observed that DCPSL achieves better classification accu-
racy compared to all the other methods on each dataset. The
largest performance improvements on the four datasets are:
2.9%, 3.3%, 3.7% and 3.4%, respectively. The classification
results clearly verify that the learned deep correlated predic-
tive subspace is helpful to improve the class label prediction
performance for incomplete multi-view data. The conven-
tional multi-view methods such as AMGL, MLAN, MLHR,
GLCC, MVAR fail to achieve good performance due to they
cannot well handle the incomplete multi-view data. Since
DCPSL can jointly learn the proper subspace representation
and discriminative label predictors for incomplete multi-view
data, our method outperforms the other methods with differ-
ent percentages of labeled samples.

Influence of Incomplete Rate. To evaluate the influence of
incomplete rate €% on classification, we conduct classifica-
tion experiments by changing the incomplete rate €% from
{0, 10%, 30%, 50%, 70%} while fixing the percentage of la-
beled samples to 0.3. The classification results are shown in
Figure 3. It clearly shows that DCPSL performs better than
the other methods on each dataset. Due to the influence of
missing views, the performance of all the methods are de-
clined with the increase of €%. In contrast, DCPSL achieves
better performance than the others by effectively leveraging
both data correlation and multi-view complementary infor-
mation of the incomplete data.

Parameter Analysis. We conduct the sensitivity analysis
with several critical parameters (81, B2, and m. &% is set
to 0.5, and the percentage of labeled samples is set to 0.3.
The experimental results of 5; and 5 on NUS dataset are
shown in Figure 1(a). DCPSL obtains competitive perfor-
mance when 1 = {0.05,...,5} and 53 = {0.1,...,10}. The
sensitivity analysis of the number of layers m are shown in
Figure 1(b). Better classification results can be obtained when
m = {2,3} for most of the datasets. The shallow model
(m = 1) fails to learn the discriminative subspace represen-
tation, so its classification performance is limited.

5 Conclusion

In this paper, a deep correlated predictive subspace learn-
ing method (DCPSL) is developed for incomplete multi-
view semi-supervised classification. Our method is capa-
ble of jointly leveraging the data correlations and multi-view
complementary information, which is achieved by integrat-
ing deep correlated predictive subspace learning and multi-
view shared and private label prediction into a unified objec-
tive function. Compared with the state-of-the-art multi-view
semi-supervised learning methods, DCPSL can better han-
dle the incomplete multi-view data and achieves competitive
classification results on various practical datasets.
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