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Abstract

Laplacian Embedding (LE) is a powerful method to
reveal the intrinsic geometry of high-dimensional
data by using graphs. Imposing the orthogonal and
nonnegative constraints onto the LE objective has
proved to be effective to avoid degenerate and neg-
ative solutions, which, though, are challenging to
achieve simultaneously because they are nonlinear
and nonconvex. In addition, recent studies have
shown that using the p-th order of the ¢5-norm dis-
tances in LE can find the best solution for cluster-
ing and promote the robustness of the embedding
model against outliers, although this makes the op-
timization objective nonsmooth and difficult to ef-
ficiently solve in general. In this work, we study
LE that uses the p-th order of the ¢/5-norm distances
and satisfies both orthogonal and nonnegative con-
straints. We introduce a novel smoothed iterative
reweighted method to tackle this challenging opti-
mization problem and rigorously analyze its con-
vergence. We demonstrate the effectiveness and
potential of our proposed method by extensive em-
pirical studies on both synthetic and real data sets.

1 Introduction

Data that reside in high-dimensional space are often in-
tractable due to the computational complexity and the lack of
intuition. In traditional Laplacian embedding (LE), the intrin-
sic subspace/manifold in high-dimensional space can be ex-
plored in such a way that the inherent data structures are well
preserved and made more apparent due to the fact that the fea-
tures less related to others will be pruned. LE is a powerful
nonlinear graph based embedding method, which was first
introduced as “quadratic placement” in 1970s [Hall, 1970].
Recently, the real power of LE was revealed as its relation to
graph clustering [Hagen and Kahng, 1992; Chan et al., 1994;
Shi and Malik, 2000]. The eigenvectors of the Laplacian ma-
trix provide the approximation to the Ratio Cut spectral clus-
tering [Chan ef al., 1994] and it has been proved that LE and
ratio cut clustering are mathematically identical [Luo et al.,
2009].

*Equal contribution.
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However, both positive and negative values in the solu-
tion of multi-way clustering tasks make the results hard to
interpret directly, because the clustering indicator vectors re-
quire nonnegative results. In two-way clustering, this is not
a problem, because a linear W-transformation [Ding and He,
2004] of the eigenvectors leads to two genuine indicator vec-
tors (each row has only one nonzero positive entry). Thus,
mixed-sign solution is a generic difficulty for multi-way spec-
tral clustering. To solve this problem, a clustering step usual-
ly has to be performed after the embedding is learned. That
is, in traditional way, the clustering indicator vectors approx-
imated by the eigenvectors of the Laplacian matrix will be
grouped by using K-means clustering [Hartigan and Wong,
1979] in the eigenvector space. Thus, the traditional cluster-
ing solution provided from this process is neither stable nor
intuitive, which may also be very sensitive to data outliers. To
tackle this difficulty, Nonnegative Laplacian Embedding (N-
LE) method [Luo ef al., 2009] was proposed by additionally
imposing the nonnegative constraints on the embeddings.

Despite the fact that the nonnegativity can be achieved in
the NLE method, there are still some difficulties of this mod-
el that are not well addressed. It has been noted that the N-
LE method imposes the nonnegative constraint at the price
of relaxing the orthogonality on the learned approximation-
s [Ding et al., 2006], although the orthogonality constrain-
t (XTX = I)is of significant importance to guarantee a
good performance. The true meaning of the orthogonality
constraint is to prevent degenerate solution (X — 0). For
one dimensional problem, the orthogonality can avoid that the
embedded data collapse into a point. For multi-dimensional
problem, the orthogonality can prevent data points from col-
lapsing into a subspace with dimensions less than desired.

In this paper, we propose a new approach to learn LE
with strictly guaranteed orthogonality and nonnegativity in
the solution. Unlike using the auxiliary function method
[Lee and Seung, 2001] to derive the solution algorithm for
NLE in [Luo ef al., 20091, the orthogonality of our so-
lution is rigorously achieved by using the Alternating Di-
rection Method of Multipliers (ADMM) [Bertsekas, 1996;
Boyd et al., 20111, leading to a more stable solution and a
better performance in the problem of spectral clustering. We
also keep the nonnegativity in the constraint, such that the
clustering membership can be readily read off from the em-
bedded data due to the nonnegative constraint, i.e., we can
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consider each row of the solution X as the posterior cluster-
ing probability. In other words, the values in ¢-th row of the
solution can be viewed as the likelihoods that the i-th data
point belongs to different clusters, which gives our new ap-
proach the soft clustering capability that is crucial in many
real-world applications.

Finally, we recognize that the squared ¢»-norm distance
used in the traditional LE and NLE objectives does not guar-
antee the optimal embedding [Wang et al., 2015] and is also
notoriously known to be sensitive to the outliers [Wang er al.,
2012; Nie et al., 2013; Wang et al., 2013c; Nie et al., 2016;
Liu et al., 2017]. With strict orthogonality and nonnegativi-
ty guaranteed simultaneously in the solution, we are also in-
terested in promoting the robustness of our new NLE model
by using the p-th order (0 < p < 2) of the /3-norm dis-
tance in the objective. As a result, the proposed optimiza-
tion objective is a quadratic function with both orthonormal
and nonnegative constraints, which is highly nonlinear and
nonconvex in its feasible domain. The p-th order term fur-
ther makes the objective nonsmooth and difficult to efficient-
ly optimize in general. To solve this challenging optimization
problem, we propose a novel smoothed iterative reweighted
method. Compared to the iterative reweighted method pro-
posed in [Candes et al., 2008; Nie ef al., 2010] to solve the
¢1-norm or ¢ ;-norm minimization problems, our new opti-
mization framework explicitly adds a smoothness term which
can improve numerical stability. Most importantly, as an im-
portant theoretical contribution, we rigorously prove the con-
vergence of our new iterative algorithm with the smoothness
term, which, though, was not present in [Candes er al., 2008;
Nie et al., 2010] and their following works.

To evaluate the proposed robust NLE objective that uses
the p-th order of the /5-norm distances and our new smoothed
iterative reweighted method, we have performed extensive
empirical studies. The promising experimental results have
validated the effectiveness of our new methods.

2 Strictly Orthogonal p-Order Nonnegative
Laplacian Embedding

Given a set of n data points, we can represent the pairwise
similarities between these data points by a graph G = {V, £},
where the data points are represented by the vertices V and
|[V| = n. Suppose that W € R"*™ denotes the affinity
matrix of the graph G where w;; measures the similarity be-
tween the i-th and the j-th vertices, quadratic placement [Hal-
1, 1970] aims to embed the vertices of the graph into the one-
dimensional space with coordinates (z1, ..., ), such that if
the i-th and the j-th vertices are similar (i.e., w;; is large),
they should be adjacent in embedded space, i.e., (x; — xj)Q

should be small. This can be achieved by the following ob-
jective [Hall, 1970]:

—z;)’=2x"(D-W)x , (1)

where x = [z1,...,2,]" . and D = diag (dy,ds, ...

the degree matrix of the graph with d; = > ; Wi
The one-dimensional quadratic placement in Eq. (1) can be

generalized to r-dimensional LE by minimizing the following

,dp) is
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objective [Luo et al., 2009]:

. 2 T
i, Sl =l = (K7D -W)X) L @

where X = [x1,X2,... ,xn]T € R™*". Obviously, the i-th
row of X, i.e., xiT € R, is the embedding of the i-th data
point in the r-dimensional space. Here, the orthonormal con-
straint of X7 X = I is imposed in Eq. (2) to avoid degenerate
solutions, which is critical as analyzed in [Luo er al., 2009;
Ding et al., 2006].

To decode the clustering membership from X in an eas-
ier way, Luo et al. [Luo et al., 2009] further developed LE
by additionally imposing the nonnegative constraint onto the
embedding matrix X by minimizing the following objective:

min tr (X' (D-W)X), st.X>0X"X=1.(Q3)

The squared ¢2-norm distances used in the both objectives
in Eq. (2) and Eq. (3) do not tolerate large value of distance,
thus making the distances in the embedded space tend to be
even, i.e., not too large but also not too small. Therefore,
solving the objective in Eq. (2) or Eq. (3) may not find the
optimal embedding such that most of the distances of local
data pairs are minimized but a few of them are large [Wang
et al., 2015]. Motivated by recent papers that use not-squared
£o-norm distances [Wang et al., 2012; Nie et al., 2013; Wang
et al., 2013c; Wang et al., 2014; Nie et al., 2016; Liu et al.,
2017] or the p-th order of the f>-norm distances [Wang et
al., 2011; Wang et al., 2013a; Wang et al., 2015] to promote
the robustness of learning models, in this paper we propose
to solve the following problem to find the optimal spectral
embedding from an input graph:

. T
min Zw,;ij,;ijHg , st.X>0,X'X=1, 4
i

where 0 < p < 2. Obviously, the NLE method in Eq. (3)
[Luo et al., 2009] is a special case of our new method when
p = 2. More importantly, by setting p < 1, the method will
focus on minimizing most of the distances of local data pairs.
Thus, we call Eq. (4) as the proposed strictly orthogonal p-
Order Nonnegative Laplacian Embedding (PO-NLE) method.

3 Smoothed Iterative Reweighted Method and
its Convergence

Although the motivation of our new objective in Eq. (4) is
clear, it is nonsmooth and difficult to efficiently solve in
general. To solve this challenging optimization problem, in
this section we will first introduce a novel smoothed iterative
reweighted method.

First, let us consider a general problem as follows:

min () + ) tr ((gf(m)gi(x))%) , 5)

When g;(x) is a vector output function, ¢r ((ng(x) 9i(z)) %)
becomes the following term:

tr (o @g@)*) = @I} - ©)
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Equation (5) is nonsmooth, thus we turn to solve the fol-
lowing smooth problem [Liu ez al., 2017]:

min f(o +Ztr(gl @) +ant)

where 4 > 0 is a small constant. When § — 0, Eq. (7) is
reduced to Eq. (5) since the following equation holds:

lim tr (o (@)gi(2) + oDF) = g:@)E . @®

Before deriving the algorithm for optimizing the problem
in Eq. (7), we need the following lemmas. First, according to
the chain rule in calculus, we have:

Lemma 1 Suppose g(x) is a matrix output function, h(x) is
a scalar output function, x is a scalar, vector or matrix vari-

able, then we have:
Oh(g(x)) Z&“”gmw=(%@mQT%m
dg(x) or
! ©

Ox Ox
According to the chain rule in Lemma 1, we can easily derive
the following two lemmas:

Lemma 2 Suppose g(x) is a scalar, vector or matrix output
function, x is a scalar, vector or matrix variable, then we
have:

otr((g" (z)g(z) + 61)%)
Oz (10)

= plg"(@)g(x) + 1) 7 ¢" () afa(f) '

Lemma 3 Suppose g(x) is a scalar, vector or matrix output
function, x is a scalar, vector or matrix variable, D is a con-
stant and D is symmetrical if D is a matrix, then we have:

otr(g" (x)g(x)D)

ox
Now we derive the algorithm to optimize the problem in
Eq. (7). The Lagrangian function of the problem in Eq. (7) is:
(@) +61)%) = r(z,A)

Ztr gi (
(12)

where r(z, A) is a Lagrangian term for the constraint z € C.
By setting the derivative of Eq.(12) w.r.t. z to zero, we have

= 2DgT(x)a(%7(5) . (11)

Lz, \)

OL(x,\)
ox
otr((gf'( ( )+ 0D)%)  Or(x, \)
)+ Z ox

=0 . (13)

According to Lemma 2, Eq.(13) can be rewritten as

p=2 dgi(x)
T

@)+ ol (@lasa) + 0" o (=52

(14)
8r(a: A) _0
Oz ’

4042

Algorithm 1 The algorithm to solve the problem (7)

Initialize x € C.
while not converge do
1. For each i, calculate

Di = L(gf @)gi(a) + 0D . (18)

2. Update x by solving the problem:

+Ztr (9F (2)gi(x)Dy) . (19)

mln f(z

end while

If we can find a solution x that satisfies the Eq.(14), we
usually find a local or global optimal solution to the prob-
lem in Eq. (7) according to the Karush-Kuhn-Tucker (KK-
T) conditions [Boyd and Vandenberghe, 2004]. However,
directly finding a solution z that satisfies Eq.(14) is not a
easy task. In this paper, following [Candes et al., 2008;
Nie et al., 2010] we propose an iterative algorithm to find
it using the following observation: if

D; = £ (9] (2)gi(x) + 1) 7" (15)
is a constant, Eq.(14) is reduced to:
dgi(x)  Or(z,A)
/ AT o ’ _
®)+ Z 2Dyg] (2) =5, 5o =0, (6

which is equivalent to solving the following problem:

+Ztrgl gi(x)D;) . (17)

mm flx

Based on the observation above, we can first guess a solution
x. Then we calculate D; using the current solution of x and
update x by the optimal solution of the problem in Eq. (17) by
calculating D;. We iteratively perform this procedure until it
converges, which is summarized in Algorithm 1.

The convergence of Algorithm 1 is guaranteed by the fol-
lowing theorem. The proof of Theorem 1 will be supplied in
the extended journal version of this paper due to space limit.

Theorem 1 The Algorithm I will monotonically decrease the
objective of the problem (7) in each iteration until the algo-
rithm converges.

In the convergence, the equality in Eq. (14) will hold, thus
the KKT condition of problem (7) is satisfied. Therefore, the
Algorithm 1 will converge to a local optimum solution to the
problem (7). If the problem (7) is convex, the Algorithm 1
will converge to a global optimum solution.

Here we note that the iterative reweighted method in-
troduced in [Candes et al., 2008; Nie et al., 2010] solves
the nonsmooth ¢;-norm or ¢5 ;-norm minimization problem-
s. However, the method described in [Candes et al., 2008;
Nie et al., 2010] does not explicitly use the smoothness con-
stant (i.e., 01 in Eq. (7)). Without this smoothness term,
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the algorithm is heavily impacted by the singularity prob-
lem due to inverted matrices that divide Os, which routine-
ly leads to inferior learning performances. To improve the
numerical stability, in [Nie et al., 2010] and the following
works by the same group of authors [Wang et al., 2013b;
Nie et al., 2013], a smoothness term was informally added
for empirical purpose. But they only theoretically proved the
convergence of the algorithm that does not use the smooth-
ness term and did not provide any theoretical analysis on the
objectives that use the smoothness term. As an importan-
t theoretical contribution of this paper, we formally introduce
the smoothness term (i.e., 61 in Eq. (7)) into our algorithm
and theoretically prove the convergence of our algorithm in
which the smoothness term leads to much more stable solu-
tions. We call Algorithm 1 as the proposed Smoothed Itera-
tive Reweighted Method, which can be broadly used to solve
a variety of difficult machine learning problems that mini-
mize the objectives using the p-th order of /5-norm distances,
the p-th order of ,-norm distances, or the p-th order of the
Schatten p-norm.

4 Algorithm to Solve the Problem in Eq. (4)

Equipped with Algorithm 1, we can derive the solution algo-
rithm to our new PO-NLE objective in Eq. (4) now. Accord-
ing to Step 2 of Algorithm 1, the key step to solve Eq. (4) is
to solve the following problem:

. 2 T
H;él’l Zwijdij HX7 - Xj”2 5 s.t. X Z O,X X=1I 5
Y
(20)
pT%
where d;; = & (||xz - Xj||§ + 6) and § — 0.

Denote Wij = w;;d;; and let D be the diagonal matrix
with the i-th diagonal entry as ;Wi = Wi d;;. The prob-
lem in Eq. (20) can be written as following:

. ~ 2 T (13 N7
min Zw” llxi — x5 =tr (X (DfW) X) ,
i\j (2D
st.X>0,XTX=1.

Obviously, Eq. (21) is identical to the NLE objective in
Eq. (3), which was proposed in [Luo et al., 2009]. In [Lu-
0 et al., 2009], a solution algorithm was derived using the
auxiliary function method [Lee and Seung, 2001]. However,
as analyzed in [Ding er al., 2005; Ding et al., 2006] the or-
thogonal constraint indeed are not guaranteed, which, though,
is very important to avoid degenerate solutions [Ding et al.,
2006]. Thus, instead of using the solution algorithm provid-
ed in [Luo et al., 2009], we derive the solution algorithm to
solve Eq. (21) using the ADMM method.

Denoting L = D — W for brevity', we can write the ob-
jective in Eq. (21) as following:

min tr (XTLX), st.X"X=LX>0. (22)

'In practice, due to the zero mode of the Laplacian matrix of a

graph [Wang et al., 20101, we compute L = D — W+ %eTG

to ensure that L is positive definite, where W, | = 3. ;Wande
is the vector with all entries to be 1.
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We can solve Eq. (22) by solving the following equivalent
optimization problem:

min tr (Y'LX), st.Y=XY'Y=1LX>0,
XY

(23)
where the constraint of X7 X = I in Eq. (22) is implicitly
enforced by the constraints of Y = X and Y'Y = 1.

Following the ADMM optimization framework, we need
to solve the following optimization problem:

1 2
min tr (YTLX) + £ HY -X+-A
X, Y,A 2 7

P (24)
st. YIY=1X>0,

in which we introduced the Lagrangian multiplier A for the
constraint of Y = X. The detailed procedures to solve E-
q. (24) using the ADMM method will be supplied in the ex-
tended journal version of this paper due to space limit.

5 Experiment and Results

In this section we empirically evaluate our new PO-NLE
method on one synthetic data set, four data sets from the U-
CI Machine Learning Data Repository, and three image data
sets. We will compare our new method against its counter-
parts: NLE, Normalized Cut (NCut) [Shi and Malik, 2000]
and Laplacian Embedding (LE).

In our evaluations, we use clustering accuracy and cluster-
ing purity to measure the performance of the compared meth-
ods. We also study the robustness of our method on the real
world data sets when they are contaminated with noise. The
performance variations when we increase the value of p will
be shown to validate our hypothesis that the optimal solution
is usually obtained when p is less than 2 and close to 1 (it de-
pends on data sets), given that noises are present in the data.
Orthogonality of the solution will be illustrated and compared
against the NLE method in [Luo et al., 2009].

5.1 Experiments on a Synthetic Data Set

To illustrate the effectiveness of our new PO-NLE method,
we create a synthetic data set as follows. We first random-
ly generate 3 data points as centroids in the 30-dimensional
space. Then we generate 3 groups of data points and each
group consists of 39 data points which are randomly distribut-
ed around one of the three centroids. A threshold is set to
make the distance of groups large enough. As shown in Fig-
ure 1, different colors (red, black and blue) and shapes are
used to represent different groups of data points. We random-
ly initialize X (0 < X < 1) and set p = 1.02, p = 0.1
and p = 0.8 in our algorithm. we use K-Nearest Neighbors
with heat kernel to construct our adjacency matrix W. The
variation of the objective value when our algorithm iterates
are shown as the red curve in Figure 1. For visualization pur-
pose, we set r = 3, i.e., we embed the original data into the
3-dimensional space using our new PO-NLE algorithm. The
x, y and z axes of the 3D plots in the figure correspond to the
first, second and third row in matrix X, respectively.

From Figure 1, we observe that the objective function
monotonically decreases in each iteration, which empirically
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Figure 1: The objective function of our PO-NLE method on the syn-
thetic data with the result of 3D plots illustrating the clustering struc-
ture on checkpoints. The z, y and z axis of the 3D plots correspond
to the first, second and third column in matrix X, respectively.

confirms the convergence of the solution algorithm to solve
PO-NLE derived by our new smoothed iterative reweighted
method. Moreover, for each checkpoint shown by the black
circles on the objective curve, the clustering structure of the
experimental data becomes more and more clear in the 3D
plots when the algorithm iterates. The three clusters of data
points gradually find a solution to separate themselves apart
and fall on different axes. Note that, due to the nonnegative
constraints on X, data points will finally converge on the pos-
itive part of each axis. This observation clearly demonstrate
the effectiveness of the proposed new method.

5.2 Studies of the Orthogonality of the Solutions of
Our New Method

An important improvement of our new method over the NLE
method [Luo er al., 2009] is that the orthogonality of our so-
lution is rigorously guaranteed, which, as analyzed in [Ding
et al., 2005; Ding et al., 2006] is very important to avoid de-
generate solutions. Thus, in this subsection we empirically
study the orthogonality of the solutions of our new method
and compare them against the solutions obtained from the N-
LE method. Figure 2 compare the visualizations of X7X
learned from the two compared methods on the Glass data set
by the heatmaps. The heatmap of our new method is on the
top and that of the NLE method is at the bottom. From the re-
sults we can see that the learned embeddings from our method
are strictly orthogonal as shown in Figure 2(a), which will in
return lead to better clustering performances and robustness
after embedding. In contrast, the NLE method failed to guar-
antee the orthogonality, as can be seen in Figure 2(b).

5.3 Experiments on Noiseless Real Data Sets

Now we compare our new method, NLE, NCut and LE on
the seven standard data sets as summarized in Table 1. Each
data set will be tested by different algorithms independently
for 200 times. For NCut and LE algorithms, we run K-means
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1 2 3 4 5 6

(b) Visualization of X7 X learned by the NLE method.

Figure 2: The comparison of orthogonality between our method and
NLE on glass data set.

clustering with random initialization for 50 times and report
the best results.

The performances of the compared methods are reported
in the top half of Table 2, from which we can see that our
method clearly outperforms all other competing methods, es-
pecially on those comparatively noisier data sets. Due to the
nonnegative solutions of our new method, we do not need any
additional clustering step. Instead, the clustering member-
ship can be readily read off directly from the learned embed-
dings. The strictly guaranteed orthogonality constraint avoids
degenerate solution and helps improve the performance com-

Dataset # Size | # Dimension | # Class
MINIST 5000 784 10
AT&T 400 10304 40
Caltech101 332 900 5
Ionosphere 351 34 2
Wine 178 13 3
Iris 150 4 3
Glass 214 9 6

Table 1: Dataset descriptions.
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Clustering accuracy? Clustering Purity T
Data sets Ours NLE NCut LE Ours NLE NCut LE
Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave

MINIST |0.7450 0.5946 0.6700 0.5013 0.6540 0.5909 0.6630 0.5874 | 0.7880 0.6811 0.7140 0.5553 0.6597 0.4933 0.6438 0.5121
AT&T 0.8250 0.7719 0.7825 0.6885 0.7525 0.6383 0.7325 0.6882 | 0.8675 0.8304 0.8325 0.7476 0.7325 0.6782 0.7250 0.6487
Caltech101 | 0.8342 0.7719 0.7131 0.5131 0.5972 0.4965 0.6663 0.5957 | 0.9644 0.8719 0.8383 0.5512 0.5943 0.5625 0.6612 0.5768
Ionosphere | 0.8604 0.8065 0.8120 0.6267 0.7236 0.6449 0.7493 0.6475 | 0.9658 0.8129 0.8462 0.7017 0.7175 0.6255 0.7413 0.6580
Wine 0.7303 0.7088 0.7022 0.6464 0.6910 0.6686 0.6685 0.6585 | 0.8034 0.7092 0.7753 0.6698 0.7058 0.6497 0.7702 0.6259
Iris 0.9667 0.8945 0.9600 0.7591 0.9067 0.7824 0.9000 0.7144 | 0.9600 0.9045 0.9600 0.7962 0.9067 0.8080 0.9000 0.7340
Glass 0.5888 0.4646 0.5748 0.4451 0.4439 0.3703 0.5093 0.4102 | 0.7710 0.6384 0.5935 0.4832 0.6176 0.5037 0.5335 0.4512
MINIST | 0.5460 0.4458 0.4590 0.3625 0.4210 0.3795 0.4430 0.3928 | 0.6520 0.5879 0.5550 0.4369 0.5230 0.4736 0.5070 0.4661
AT&T 0.7275 0.6630 0.6800 0.5797 0.6575 0.5718 0.6550 0.5606 | 0.7800 0.7408 0.7175 0.6529 0.7075 0.6408 0.6975 0.6324
Caltech101 | 0.8199 0.7681 0.5839 0.4291 0.5524 0.4177 0.5025 0.4160 | 0.8993 0.8260 0.5839 0.4465 0.5573 0.4312 0.5036 0.4285
Tonosphere | 0.7692 0.5923 0.6211 0.5250 0.5755 0.5249 0.5783 0.5270 | 0.8889 0.7123 0.6279 0.5305 0.5795 0.5311 0.5848 0.5318
Wine 0.6292 0.5077 0.5506 0.4318 0.5787 0.4308 0.5730 0.4237 | 0.6461 0.5537 0.5506 0.4450 0.5347 0.4400 0.6067 0.4346
Iris 0.7867 0.6679 0.6733 0.4958 0.6200 0.4689 0.6467 0.4755 | 0.8667 0.7078 0.6733 0.5183 0.6800 0.4934 0.6333 0.4953
Glass 0.5421 0.4586 0.4159 0.3249 0.4299 0.3305 0.3738 0.2914 | 0.7383 0.6165 0.4486 0.3565 0.4626 0.3592 0.3832 0.3171

Table 2: Best and average (Ave) clustering accuracy and purity by our method, NLE, NCut and LE over 200 trials. “1“ means that the bigger
number are the better. Top: the results on noiseless data (Section 5.3); bottom: the results on noisy data (Section 5.4).

pared with loosely constrained NLE method which does not
have such desirable property. To illustrate the convergence
of the objective function of our new method, Figure 3(a) and
Figure 3(b) show a typical run of our algorithm on two UCI
benchmark data sets. As can be seen from the figures, when
the algorithm iterates and the objective value decreases, the
accuracy shows a relatively smoothly increasing line.

5.4 Experiments on Noisy Real Data Sets

To study the impacts of the value of p in our new embedding
model, we randomly contaminate 20% of the data points in all
7 data sets and we run our method with increasing p on those
data sets. For each p, we run 200 times for the same contam-
inated data and original data respectively. Other algorithms
are also tested for 200 times on each data set for comparison.
The performances of the clustering methods on contaminat-
ed noisy data sets are reported in the bottom half of Table 2.
Among all the best and the average values of clustering accu-
racy and clustering purity, our method is consistently better
than its counterparts. The results of our approach generally
decreases less than other methods on the contaminated data
sets, especially for those noisier data sets.

6 Conclusion

In this paper, we proposed a new robust Laplacian embed-
ding approach that uses the p-th order of the f5-norm dis-
tances in the objective and strictly satisfies both orthogonality
and nonnegativity constraints at the same time. This result-
s in an objective that is neither convex nor smooth, which
is difficult to efficiently solve in general. We thereby pro-
posed a novel smoothed iterative reweighted method to solve
this challenging optimization problem, in which a smooth-
ness term is formally and explicitly introduced for improved
numerical stability. As an important theoretical contribution
of this paper, we rigorously we proved the convergence of
our new algorithm with the smoothness term. Using this new
and improved optimization framework, our objective can be
elegantly solved. We have performed extensive experiments,
in which the superior performance of our new method has
demonstrated its effectiveness and the potential to give a new
perspective for nonlinear graph based clustering tasks.
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Figure 3: A typical run of our algorithm on two data sets with itera-
tion ranging from 1 to 300 to illustrate the convergence of objective
function and accuracy of the clustering result.
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