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Abstract
Attributed network embedding plays an important
role in transferring network data into compact vec-
tors for effective network analysis. Existing at-
tributed network embedding models are designed
either in continuous Euclidean spaces which intro-
duce data redundancy or in binary coding spaces
which incur significant loss of representation ac-
curacy. To this end, we present a new Low-Bit
Quantization for Attributed Network Representa-
tion Learning model (LQANR for short) that can
learn compact node representations with low bit-
width values while preserving high representation
accuracy. Specifically, we formulate a new rep-
resentation learning function based on matrix fac-
torization that can jointly learn the low-bit node
representations and the layer aggregation weights
under the low-bit quantization constraint. Because
the new learning function falls into the category of
mixed integer optimization, we propose an efficient
mixed-integer based alternating direction method
of multipliers (ADMM) algorithm as the solution.
Experiments on real-world node classification and
link prediction tasks validate the promising results
of the proposed LQANR model.

1 Introduction
Attributed networks are popularly used to describe a large
body of networks where both node links and attributes are ob-
tainable for analysis [Le and Lauw, 2014]. To discover latent
patterns from attributed networks, attributed network repre-
sentation learning or attributed network embedding models
are proposed to jointly learn node representations from both
node links and attributes. For example, the work [Yang et al.,
2015] uses textual attributes to supervise random walks on
networks and derives the Text-associated DeepWalk (TADW)
model. AANE [Huang et al., 2017a] uses node links to
supervise the factorization of attributed proximity matrices.
LANE [Huang et al., 2017b] mutually uses node links and
attributes as labels to supervise the learning from each other.
However, these attributed network embedding models are de-
veloped in continuous Euclidean spaces, where the learned
representation vectors usually contain redundant information

that degenerates computation efficiency and increases storage
cost, especially when networks are large.

To reduce the size of network representation and speed up
the inference on a big network, considerable efforts have been
put on generating succinct network representation with low-
bit representations. A pioneer work [Shen et al., 2018b] is
to learn binary graph embedding where a short binary code
is learnt for each node through factorizing the graph simi-
larity matrix by imposing the Hamming similarity constraint
on each pair of nodes. Based on this work, a binary at-
tributed network embedding method [Yang et al., 2018] is
proposed that extends the binary network embedding to bi-
nary attributed network embedding, where a new Weisfeiler-
Lehman proximity matrix is used to capture data depen-
dence between node links and attributes and a new Weisfiler-
Lehman matrix factorization learning function is proposed by
adding an extra binary node representation constraint.

Despite the success of reducing network representation
size, the strict binary representation constraint imposed on the
learning function often suffer from uncontrollable accuracy
loss on test sets. For example, the binary attributed network
embedding [Yang et al., 2018] method, by adding the binary
node representation constraint on the Weisfiler-Lehman ma-
trix factorization, the node representation on the test set of
Citeseer drops at least 2% compared with its real-valued vari-
ants without the binary constraint, especially when there are
plenty of training examples. Based on the observation, it is
natural to raise the question: how to design a compact yet
flexible attributed network representation model that can bal-
ance representation accuracy and representation size ?

On the other hand, from the perspective of low-bit quan-
tization for convolutional neural networks, there has been a
series of methods [Wang et al., 2017] proposed to reduce
the size of network parameters while preserving high pre-
diction accuracy. Low-bit compression of deep neural net-
works such as training binary neural networks with weights
constrained to +1 and -1 [Courbariaux et al., 2016], ternary
networks [Zhu et al., 2016] and extremely low-bit neural net-
works [Leng et al., 2017] have been popularly studied re-
cently. Compared to full-precision models, these compressed
models are sparse and much smaller, which can potentially
be accelerated with customized circuits and deployed to mo-
bile devices. In particular, the early work [Denil et al., 2013]
pointed out that network weights have a significant redun-
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dancy, and proposed to reduce the number of parameters by
exploiting the linear structure of network, which motivated a
line of low-rank matrix and tensor factorization based com-
pression algorithms. The achievement in low-rank matrix
and tensor factorization based compression motivates to learn
low-bit quantization for attributed network embedding based
on matrix factorization.

In this paper, we study the problem of flexible and compact
attributed network representation and present a new Low-Bit
Quantization for Attributed Network Representation Learn-
ing model (LQANR for short). Specifically, we use a k-hop
proximity matrix to capture data dependence by propagating
node attribute information from k-layer neighboring nodes to
a given target node. Based on the k-hop proximity matrix,
we formulate a new matrix factorization function to learn the
low-bit node representation, where the weights of different
layers of neighboring nodes are learnable instead of man-
ually setting. The learning function falls into the category
of mixed integer optimization and we propose an efficient
mixed-integer based alternating direction method of multipli-
ers (ADMM) algorithm for solution. Experimental results on
real-world datasets validate the performance of the proposed
LQANR method. The framework of LQANR is illustrated in
Figure 1. The contribution can be summarized as follows,

• We first study the low-bit attributed network embedding
problem and present a new LQANR model as the so-
lution. LQANR can learn compact representation with
stably high accuracy.

• We propose a new mixed-integer based alternating di-
rection method of multipliers (ADMM) algorithm to ef-
ficiently learn the low-bit node representation and the
layer-wise aggregation weights.

• We conduct experiments to validate the performance of
the proposed LQANR model.

2 Related Work
Attributed network embedding. Current network embed-
ding methods can be categorized into plain network embed-
ding [Yan et al., 2007] and attributed network embedding
[Chang et al., 2015]. Different from plain network embed-
ding that independently vectorizes node links without using
auxiliary information from node attributes, attributed network
embedding jointly models their dependence, by using node
attributes as class labels to supervise the learning of node
links, or vice versa. A typical attributed network embed-
ding model is the TADW model [Yang et al., 2015] that uses
textual attributes to supervise random walks on networks.
Similar works include AANE [Huang et al., 2017a], LANE
[Huang et al., 2017b], and DANE model [Li et al., 2017].

Low-bit quantization for compression. Quantization
methods including hashing are used to encode real-valued
data to low-bit discrete data while preserving similarity struc-
ture in the original space [Wang et al., 2017]. The low-bit
codes can facilitate to represent and search of massive data
because it only needs about one hundred bits to represent one
data item, and computation in Hamming space is efficient by

Figure 1. The conceptual framework of Low-Bit Quantization for At-
tributed Network Representation Learning model (LQANR). Given
an attributed network G = {V,E,X}, LQANR first derives the
k-hop proximity matrix Pk = (D̃−1Ã)kX by aggregating informa-
tion from both the structure matrixA and the attribute matrixX . By
learning the layer-wise aggregation weights {α0, α1, · · · , αK} for
matrices {P0, P1, · · · , Pk}, LQANR jointly factorizes the k matri-
ces into a low-bit node representation matrixB and a set of auxiliary
matrices Zk, as shown in Eq.(1).

using the bit operations. Most Hashing methods use one sin-
gle bit −1/+1 to quantize each projected dimension, such as
the spectral hashing [Liu et al., 2014], supervised discrete
hashing [Shen et al., 2015] and deep learning based hashing
methods [Shen et al., 2018a]. There are also works quan-
tizing real-valued data to multiple-bit codes using Hashing
method, such as double bit quantization[Kong and Li, 2012],
q-bit Manhattan quantization [Kong et al., 2012] and Variable
Bit Quantization [Moran et al., 2013]. Recently discrete net-
work embedding approach is proposed to learn binary codes
for plain network [Shen et al., 2018b], and randomized hash-
ing method [Wu et al., 2018] and binarized network embed-
ding [Yang et al., 2018] are proposed for compressing embed-
ding for attributed networks. In this paper, we learn compact
low-bit codes for attributed network embedding.

Graph signal processing. Graph signal processing
[Sandryhaila and Moura, 2013] extends the signals and fil-
ters in traditional time and image based signal processing to
irregular graph domains. In the spatial domain, smooth graph
signals denote that neighboring nodes tend to have similar
values. In the spectral domain, the smoothness of graph sig-
nals are typically called bandlimitedness. To create graph fil-
ters, functions of graph-shift operators or adjacency matrices
are based on either rules or learning functions. The polyno-
mial form of adjacency and the Laplacian matrix are used as
graph filters, due to the capability of capturing local structure
of graphs and ease of implementation [Ortega et al., 2018].

3 Problem Statement
An attributed network can be represented as G = {V,E,X},
where V = {vi}ni=1 denotes nodes, E = {eij}ni,j=1 de-
notes undirected edges, and X = {xi}ni=1 ∈ Rn×f denotes
attribute vectors of the nodes with f the dimension of at-
tribute vectors. In addition, the structure of G can be derived
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from edges in E, denoted as an adjacency matrix A, where
Aij = 1, if eij ∈ E; otherwise, Aij = 0. By adding a self-
loop to each node in the network, we have Ã = A+ I , where
I is an identity matrix. D̃ = diag(d̃1, ..., d̃n) is a degree ma-
trix of Ã, with d̃i =

∑
j ãij being the degree of node vi.

Given an existing attributed network G, we need to em-
bed each node vi ∈ V into a d-dimensional low-bit vector
bi ∈ {−2N , ...,−21,−1, 0, 1, ...,−2N}d, where N is an in-
teger which determines the bit-width. bi is the ith row of
matrix B ∈ Rn×d. matrix B should preserve the structure
information A and the attribute information X in G.

How to design a proximity matrix that can jointly describe
structure A and attribute X is the most important question.
This can be considered as a problem of designing a graph
signal processing filter [Sandryhaila and Moura, 2013]. We
consider attribute X as the graph input signal on each node
and use graph adjacency matrix to create a k-hop graph filter.
Then, a proximity matrix Pk is generated as the output sig-
nal. Different k-hop matrix Pk captures different layer-wise
information from the neighboring nodes. We can learn the
weights of Pk based on the specific applications.

Concretely, given a network G with adjacency matrix A
and attribute matrix X , let D̃ be a degree matrix of Ã, the
k-hop proximity matrix Pk is defined as Pk = (D̃−1Ã)kX ,
where k is the number of aggregation layers.

4 The LQANR Method
In this section, we first formulate the learning function of
Low-Bit Quantization for Attributed Network Representation
Learning model (LQANR) based on matrix factorization un-
der the low-bit quantization constraint. Then, we propose an
efficient mixed-integer based alternating direction method of
multipliers algorithm as the solution.

4.1 Formulation
Given a target node, the k-hop proximity matrix Pk ag-
gregates attribute and structure information from its k-layer
neighboring nodes. Then, Pk can be factorized to generate a
low-dimensional representation of the target node. Moreover,
considering that neighboring nodes located at different layers
contribute differently to the target node, the learning func-
tion needs to capture the aggregation importance weights in a
layer-wise manner.

The representation learning function can be formulated by
simultaneously learning the low-bit node representation and
the layer-wise aggregation weights. Assume that αk is the
importance weight of matrix Pk, matrix B ∈ Rn×d is the
low-bit node representation, matrix Zk ∈ Rd×f is an auxil-
iary matrix with respect to layer k. Then, the learning prob-
lem can be formulated as follows,

min
B,Z0,...,ZK ,α

K∑
k=0

αk‖Pk −BZk‖2F + β

K∑
k=0

‖Zk‖2F , (1)

s.t. : B ∈ {−2N , ...,−21,−20, 0, 20, 21, ..., 2N}n×d,
K∑
i=1

αk = 1, αk ≥ 0, Zk ∈ Rd×f ,

where β is a regularization parameter with respect to aux-
iliary matrices Zk, K is the total number of layers we con-
sider in the model. A large layer number K may cause over-
smoothing when learning node attributes, while a small K
cannot fully take advantage of network information. Due to
the integer constraint over the representation matrixB, Eq.(1)
is hard to solve which requires efficient algorithms.

4.2 Optimization
In this part, we present an efficient algorithm to iteratively
optimize variables Zk, B and α in Eq.(1). The algorithm
updates one parameter at a time and converges very fast.

Zk-step
Given B and α fixed, solve the sub-problem with respect to
Zk in Eq.(1). The loss function becomes,

min
Zk

K∑
k=0

αk‖Pk −BZk‖2F + β

K∑
k=0

‖Zk‖2F (2)

=

K∑
k=0

αktr(Z
T
k B

TBZk)−
K∑
k=0

αktr(P
T
k BZk)+β

K∑
k=0

tr(ZTk Zk)

where tr(.) is a trace norm. By calculating the derivative of
Eq.(2), we derive a closed form solution as follows,

Zk = (αkB
TB + αI)−1αkB

TPk. (3)

B-step
It is difficult to solve B due to the discrete constraint. Given
Zk and α fixed, rewrite the objective function in Eq. (1) with
respect to B as follows,

min
B

K∑
k=0

αk‖Pk −BZk‖2F , (4)

s.t. : B ∈ {−2N , ...,−21,−20, 0, 20, 21, ..., 2N}n×d.

Due to the discrete constraint, the optimization problem
above is NP-hard.

Here, We introduce an auxiliary variable Q to decouple
the parameters in the objective and the discrete constraint.
The idea is largely motivated by the successful application of
ADMM in mixed integer programs [Leng et al., 2017]. Then,
the objective function in Eq.(4) can be written as,

min
B,Q

K∑
k=0

αk‖Pk −BZk‖2F + Ic(Q), (5)

s.t. :B = Q, Q ∈ {−2N , ...,−21,−20, 0, 20, 21, ..., 2N}n×d,

where Ic is defined as an indicator function. IC(Q) = 0
if Q ∈ {−2N , ...,−21,−20, 0, 20, 21, ..., 2N}; otherwisse,
IC(Q) = +∞. The augmented Lagrange of Eq.(5), for pa-
rameter ρ > 0, can be formulated as,

Lρ(B,Q, λ) =

K∑
k=0

αk‖Pk −BZk‖2F + Ic(Q) (6)

+
ρ

2
‖B −Q+ λ‖2F −

ρ

2
‖λ‖2F .
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Eq.(6) can be solved by repeating the following iterations,

Bt+1 := arg minBLρ(B,Q
t, λt), (7)

Qt+1 := arg minQLρ(B
t+1, Q, λt), (8)

λt+1 := λt +Bt+1 −Qt+1. (9)

Benefit from the decoupling of ADMM, Eq.(7) is an uncon-
strained objective function. We can easily calculate the gra-
dient with respect to matrix B,

∂Lρ(B,Q
t, λt)

∂B
=

K∑
k=0

2αkBZkZ
T
k −

K∑
k=0

2αkPkZ
T
k (10)

+ ρ(B −Qt + λt).

The closed form solution is given in Eq.(11), where I is an
identity matrix.

Bt+1 = (

K∑
k=0

αkPkZ
T
k + ρQt − ρλt)−1(

K∑
k=0

αkZkZ
T
k + ρI).

(11)

In order to solve Q, Eq.(6) can be rewritten as,

min
Q
‖Q−Bt+1 − λt‖2F , (12)

s.t. : Q ∈ {−2N , ...,−21,−20, 0, 20, 21, ..., 2N}n×d.
The optimal solution of Q is

Q =
∏

0,±1,±2,..,±N

(Bt+1 + λt), (13)

where
∏

0,±1,±2,..,±N denotes the projection of (Bt+1+λt)
with respect to the discrete set. After either the predefined
iterations or the convergence of ADMM, Q is assigned to B
and the algorithm continues to update α and Zk.

α-Step
Given Zk and B fixed, rewrite the objective function in Eq.
(1) with respect to α as follows,

min
α

K∑
k=0

αk‖Pk −BZk‖2F , (14)

s.t. :

K∑
k=0

αk = 1, αk ≥ 0.

The optimal solution to α in Eq.(14) is αk = 1 corre-
sponding to the minimum ‖Pk − BZk‖2F and αk = 0 other-
wise. This solution means that only one order of Pk is finally
selected. However, the solution of a single order does not
meet our objective on exploring the complementary property
of multiple orders to get a better embedding.

Alternatively, we use a trick based on the work [Xia et al.,
2010] to avoid the single order solution. We set αrk ← αk
with r > 1 and obtain the Lagrange of Eq.(15) as below,

L(α, η) =

K∑
k=0

αrk‖Pk −BZk‖2F − η(
K∑
k=0

αk − 1). (15)

By setting the derivative of L(α, η) with respect to αk and
η to zero, we obtain{

∂L(α,η)
∂αk

= γαr−1
k (Pk −BCi)− η = 0,

∂L(α,η)
∂λ =

∑K
k=0 αk − 1 = 0.

(16)

Algorithm 1 The LQANR model
Input: Structure A, attribute X , dimension d, # of iterations t1

and t2, parameters K, β, ρ, r, N
Output: Low-bit representation matrix B
1: Initialize Zk, B, λ randomly
2: Repeat until converge or reach t1
3: Zk-Step: Calculate Zk using Eq.(3)
4: B-Step: Repeat until converge or reach t2 (ADMM)
5: Update B using Eq.(10)
6: Update Q using Eq.(12)
7: Update λ using Eq.(9)
8: // After ADMM, let B=Q
9: α-Step: Calculate α using Eq.(16)

10: return matrix B

Then, αk can be solved as follows,

αk =
(1/‖Pk −BZk‖2F )1/(r−1)

(
∑K
k=0 1/‖Pk −BZk‖2F )1/(r−1)

. (17)

Because ‖Pk −BZk‖2F ≥ 0, we have αk ≥ 0 naturally.
The details of the algorithm is given in Algorithm 1. Em-

pirical studies show that the algorithm takes a few iterations
to converge. For example, in our experiments B is iteratively
computed and converges around 2− 10 iterations.

5 Experiments
In this section, we evaluate the performance of LQANR on
node classification and link prediction tasks.

5.1 Experimental Setup
Datasets. Three real-world attributed networks are used
as testbed. They are popularly used in many network embed-
ding works such as [Yang et al., 2015; Huang et al., 2017b].
We summarize the statistics of datasets in Table 1.

Baseline methods. We compare our method with several
popular network embedding methods. DeepWalk [Perozzi et
al., 2014] and node2vec [Grover and Leskovec, 2016] use
plain network structure for embedding. TADW [Yang et al.,
2015], HSCA [Zhang et al., 2016] and LANE [Huang et al.,
2017b] use both network structure and attributes. We also
compare with the most recent NetHash [Wu et al., 2018] and
BANE [Yang et al., 2018] which employs the hashing tech-
nique to learn binary network embedding.

Settings and metrics. We set the embedding dimension
d = 100 for all baselines. All the parameters are set to be
the default values. For node classification experiment, we use
SVM [Fan et al., 2008] as the classifier. The training ratios
range from 10% to 90% for all the datasets. We use 10-fold
cross validation. The performance are evaluated in terms of

Datasets # Nodes # Edges # Attributes # Labels

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
BlogCatalog 5,196 171,743 8,189 6

Table 1. Dataset description
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Micro-F1 (%) Macro-F1(%)

Datasets Modes 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Cora

DeepWalk 63.71 73.50 78.83 80.29 81.20 61.02 71.65 77.63 79.08 79.83
Node2vec 67.10 77.30 81.22 82.68 83.52 66.56 76.50 80.14 81.61 82.28
TADW 81.50 84.97 85.78 86.23 86.93 79.71 83.35 84.26 84.44 85.35
HSCA 75.21 81.25 85.10 85.97 86.38 73.42 80.10 84.01 84.41 84.82
LANE 67.21 70.15 73.38 76.91 80.81 66.39 68.49 72.67 75.32 79.95
NetHash 81.24 85.06 86.19 86.56 86.98 79.64 83.43 84.58 84.87 85.82
BANE 81.88 85.32 86.35 87.06 88.30 80.23 84.26 85.19 85.76 87.11
LQANR 83.00 85.91 86.74 87.27 88.21 81.79 84.79 85.57 85.95 86.95

Citeseer

DeepWalk 43.24 49.06 54.41 56.16 56.31 40.57 45.65 49.33 50.32 49.17
Node2vec 48.56 55.77 62.55 63.66 63.69 46.78 53.92 58.09 59.42 60.47
TADW 69.38 71.48 72.18 72.75 72.84 61.80 64.62 65.83 66.54 67.03
HSCA 69.47 71.54 72.61 73.66 73.96 61.62 64.80 65.98 66.70 67.21
LANE 53.81 60.72 61.65 63.58 67.77 50.33 57.05 58.14 60.63 63.60
NetHash 69.63 71.89 72.35 73.16 72.85 61.97 64.47 66.11 67.36 67.90
BANE 70.24 72.55 73.78 74.55 75.08 62.37 65.73 67.63 68.44 69.35
LQANR 70.41 72.73 73.80 74.67 75.20 62.94 66.11 67.80 68.72 69.62

BlogCatalog

DeepWalk 69.58 78.24 79.37 80.78 81.12 68.65 76.85 78.46 80.01 80.54
Node2vec 72.43 79.05 82.36 83.40 84.95 71.54 77.27 80.81 80.95 82.03
TADW 82.50 86.56 87.72 89.20 89.78 82.29 86.35 87.60 89.04 89.53
HSCA 82.10 85.89 87.64 89.01 89.47 81.56 85.36 87.02 88.43 89.11
LANE 85.23 88.56 89.64 89.89 90.08 85.85 88.27 89.03 89.59 89.95
NetHash 81.59 86.43 87.66 88.90 89.25 82.03 86.24 87.14 88.39 89.01
BANE 86.21 89.04 89.55 89.85 89.88 85.71 88.74 89.30 89.55 89.59
LQANR 86.24 89.29 89.95 90.44 90.75 85.91 89.10 89.79 90.31 90.55

Table 2. Node classification results (d=100)

Micro-F1 and Macro-F1. For link prediction task, we ran-
domly sample 90% neighbors of each node for training and
use the rest for testing. We repeat 10 times and evaluate in
terms of AUC [Hanley and McNeil, 1982].

5.2 Node Classification Results
The embedding dimension d is set to 100, the bit-width used
for each node’s representation is {−1, 0,+1}, and the reg-
ularization parameter β is set to 0.001. We summarize the
results in Table 2 as follows:

• First, LQANR outperforms not only DeepWalk and
Node2vec which use pure network structure informa-
tion, but also the methods which use both network struc-
ture and attributes information on Cora, Citeseer and
Blogcatalog in terms of Micro-F1 and Macro-F1 under
different training ratios. The results validate the effec-
tiveness and robustness of LQANR. The reason is that
we use a k-hop proximity matrix to capture data depen-
dence by propagating node attribute information from
k-layer neighboring nodes to a given target node.

• Second, LQANR outperforms real-valued or called con-
tinues representation methods. The results show that
low-bit representation does not necessarily lead to em-
bedding accuracy loss compared to continues embed-
ding. By forcing discrete constraint to the learning func-
tion, we add the non-linear factors to the matrix factor-
ization objective function. This operation may help to
avoid over-fitting problem.

• Third, LQANR outperforms NetHash and BANE which
can only generate binary representation. Our method
can obtain any low-bit embedding not constraint to bi-
nary, which is more flexible and accurate to capture at-
tributed network information.

5.3 Link Prediction Results
Table 3 shows the results of link prediction. The bit-width is
{−1,+1}. We summarize the observations as follows:

• First, LQANR significantly outperforms baselines on
the Cora and Citeseer datasets. The AUC score reaches
as high as 93.85% on Cora and 96.51% on Citeseer.

• Second, LQANR outperforms baselines using real-
valued representations. Converting real-valued numbers
into low-bit discrete representation can improve the link
prediction accuracy because the low-bit representation
can alleviate the over-fitting problem and it is preferable
to deliver Yes or No for recommendation.

5.4 Speedup of LQANR
In addition to the superior performance of LQANR with re-
spect to AUC, low-bit representation also accelerates link pre-
diction speed by replacing the dot-product similarity compu-
tation with bit-wise Hamming distance. The speedup of 100
and 200 dimension nearest search via hamming distance com-
pared to dot-product is shown in Figure 2. The results show
that large-sized networks gain significant speedup.
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Figure 2. Speedup of link prediction

Models Cora Citeseer BlogCatalog

Node2vec 81.59 80.24 60.31
TADW 89.77 93.80 60.4
HSCA 87.01 93.50 60.35
LANE 86.07 77.18 58.97
NetHash 90.35 95.03 61.05
BANE 93.50 95.59 61.44
LQANR 93.85 96.51 61.66

Table 3. Link prediction results on the three datasets

5.5 Parameter Study
In this part, we test four parameters, bit-width decided by N ,
embedding dimension d, proximity matrix maximum order
K and weights of Pk impacted by r .

Bit-width decided by N . We study different kinds of bit-
width for discrete node embedding. We test binary quan-
tization, ternary quantization, one-bit shift quantization and
two-bits shift quantization. The node classification result on
the Cora dataset with respect to different bit-width values is
shown in Table 4. We can observe that the classification ac-
curacy increases with bit-width. For example, the Micro-F1
score increases from 80.16 when B is represented by {-1,1}
to 83.51 when B is represented by {-4,-2,...,2,4}. In our ex-
periments, we set B as {-1,0,1} if not specially mentioned.

Node embedding dimension d. We test the embedding di-
mension d from 20 to 200 with a stepsize of 20. The link
prediction results are shown in Figure 3(a). We can ob-
serve that the performance of network embedding improves
with d increasing from 20 to 100, and then remains stable
when code length continuously increases. On the BlogCat-
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Figure 3. Parameter studies w.r.t. embedding d and αk

Bit-width 10% 30% 50% 70% 90%

(1,-1) 80.16 84.13 84.9 85.38 86.33
(-1,0,1) 83.00 85.91 86.74 87.27 87.70

(-2,-1,0,1,2) 83.40 86.46 87.22 87.68 88.33
(-4, ..., 4) 83.51 86.53 87.34 87.70 88.85

Table 4. Node classification (Micro-F1) w.r.t. bit-width

Order K 10% 30% 50% 70% 90%

K=2 82.29 85.46 85.97 86.12 86.37
K=3 82.69 85.58 86.44 86.90 87.56
K=4 82.67 85.62 86.62 87.36 87.44
K=5 83.00 85.91 86.74 87.27 87.70
K=6 82.63 85.70 86.43 87.03 88.11

Table 5. Node classification (Micro-F1) w.r.t. K on Cora

alog dataset, the link prediction results are the lowest. This
is because BlogCatolog contains more complicated structure
and attribute information than the other datasets.

Proximity matrix order K. We test node classification
with different K. The results on Cora with K arranging from
2 to 6 are shown in Table 5. It shows that K = 5 is the best
choice for Cora in many cases. The reason is that when K
is too large, it can cause over-smoothing for node attributes.
However, small K cannot fully propagate node attribute in-
formation in networks.

Weights of Pk impacted by r. Different k-hop Pk matrices
capture different steps of neighboring node attributes. The
layer-wise weights αk are impacted by r. We test on differ-
ent datasets and find the best node classification results with
the best parameter r. r is usually between 1 and 10 for the
tested datasets. We plot the distribution of αk on Citeseer
with K = 5 and r = 1.6. From Figure 3(b), we can observe
that the higher order Pk contributes heavier weights, which
means combining more layers leads to better results.

6 Conclusions
In this paper we study a new problem of Low-Bit Quan-
tization for Attributed Network Representation Learning
(LQANR). We use a k-hop proximity matrix to jointly encode
data dependence between node links and attributes. Based
on the k-hop proximity matrix, we formulate a new learning
function that simultaneously learns the low-bit node represen-
tation and the layer-wise aggregation weights. Experimental
results validate the performance of the proposed model. In
the future, we will combine graph signal processing methods
with low-bit neural network compression methods so as to
learn more concise network representations.
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