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Abstract

Crime prediction has always been a crucial issue
for public safety, and recent works have shown
the effectiveness of taking spatial correlation, such
as region similarity or interaction, for fine-grained
crime modeling. In our work, we seek to reveal
the relationship across regions for crime predic-
tion using Continuous Conditional Random Field
(CCRF). However, conventional CCRF would be-
come impractical when facing a dense graph con-
sidering all relationship between regions. To deal
with it, in this paper, we propose a Neural Network
based CCRF (NN-CCRF) model that formulates
CCREF into an end-to-end neural network frame-
work, which could reduce the complexity in model
training and improve the overall performance. We
integrate CCRF with NN by introducing a Long
Short-Term Memory (LSTM) component to learn
the non-linear mapping from inputs to outputs of
each region, and a modified Stacked Denoising Au-
toEncoder (SDAE) component for pairwise interac-
tions modeling between regions. Experiments con-
ducted on two different real-world datasets demon-
strate the superiority of our proposed model over
the state-of-the-art methods.

1 Introduction

Works on smart city applications related to mobile comput-
ing [Wang et al., 2017; Liu et al., 2019; Yu et al., 2015],
social economics [Yu et al., 2016; Liu et al., 2016; Fu et
al., 2014] and public safety [Yu er al., 2018; Yi et al., 2018]
have inspired the implementation of advanced technologies
in crime prevention [Wang er al., 2013; Du et al., 2016].
Specifically, the consideration of spatial correlation among
different regions has been proved effective, where [Wang et
al., 2016] studied the taxi trajectory-based region relationship
and [Zhao and Tang, 2017] modeled a distance-based region
similarity for spatial-temporal crime prediction. However, the
complexity of different type of spatial correlation between re-
gions would eventually make the fine-grained crime predic-
tion a difficult problem.

As discussed in [Qin er al., 2009], CCRF is a powerful
model that is typically designed to model effects of interac-
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tions among instances. And we could leverage this advan-
tage in modeling region relationship for crime prediction by
regarding each region in a city as an instance. However, tra-
ditional CCRF would face problems like complex gradient
derivation and capacity for large-scale dataset when pairwise
interactions across instances are all considered [Ristovski er
al., 2013]. To solve these problems, we take advantages from
back-propagation algorithm in model training by introducing
neural network components into CCRF model. Specifically,
mean-field theory [Koller and Friedman, 2009] has proved
that the inference process of CCRF model could be trans-
ferred into an iterative procedure, and we further reformulate
it into neural network layers and propose a Neural Network
based CCRF model (NN-CCRF) in our work.

Inspired by recent works [Zheng et al., 2015; Xu et al.,
2017] on incorporating CRF with neural network for discrete
labeling problems, we proceed to alleviate the limit of in-
tegrating CCRF with neural network for structured regres-
sion problems. In details, traditional CCRF model consists
of two parts, the unary potential and the pairwise potential.
Commonly, unary potential models relationship between in-
puts and outputs of each instance, and pairwise potential con-
straints outputs of each instance according to a predefined
correlation matrix calculated by some kernel functions (e.g.,
Gaussian kernel, RBF kernel). Existing works only trans-
form pairwise potential into neural network framework, and
adopt predefined kernel functions to calculate the correlation
matrix for pairwise interaction modeling. In our work, the
proposed NN-CCRF model not only formulates pairwise po-
tential into neural network, but also reformulates the unary
potential into a Long Short-Term Memory (LSTM) neural
network. Furthermore, we propose to learn the correlation
matrix between instances using Stacked Denoising AutoEn-
coder (SDAE) rather than predefined kernel functions, which
is more effective to understand the spatial correlation between
regions in a data-driven manner. And our work mainly makes
the following contributions:

e We propose a Neural Network based Continuous Condi-
tional Random Field (NN-CCRF) model for fine-grained
crime prediction, which applies Long Short-Term Mem-
ory (LSTM) as the unary potential and leverages Stacked
Denoising AutoEncoder (SDAE) to learn spatial corre-
lations across regions.
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e We formulate the inference process of NN-CCRF model
into a sequential neural network, which helps us to train
the whole model in an end-to-end manner leveraging the
advantages of back-propagation algorithm.

e We conduct experiments on two real-world crime
records collected from Chicago and New York respec-
tively. Considering different types of criminal inci-
dences and disjointed grids in the city as fine-grained
regions, our NN-CCRF model outperforms the state-of-
the-art approaches with respect to crime prediction and
ranking accuracy.

By achieving the above contributions, our work is of great
importance for researchers to understand the mechanism of
fusing/transforming traditional CCRF model into neural net-
works for crime prediction.

2 NN-CCRF Model for Crime Prediction

2.1 Problem Formulation

In our work, we propose to learn a neural network based non-
linear mapping model M : Z — O from the input historical
crime number 7 to the output future crime number O. More
formally, let @ = {(H;, F;)}{_, be a training set of ¢ pairs,
where H,; € Z represents the historical crime numbers and
Fi € O donates the corresponding future crime numbers. To
deal with fine-grained crime prediction, we divide city land-
scape into many small regions. Therefore, H; isa N x T
matrix and F; forms as a N x 1 vector, where N donates
the number of disjointed regions in a city and 7" represents
the length of historical time steps (e.g., T' days, weeks, or
months). That is, our model aims to predict future crime
numbers leveraging historical 7' time steps of data records.
Further, considering a N x NN correlation matrix that can po-
tential influence the crime distribution across all regions, our
model is also required to capture spatial relationship for crime
prediction.

2.2 Neural Network Based CCRF Model

The proposed Neural Network based Continuous Conditional
Random Field (NN-CCRF) model is illustrated in Figure 1,
which takes advantages from both CCRF model and NN al-
gorithms. Specifically, we demonstrate a conventional CCRF
model in the middle, where each gray node tagged with x;
represents the historical crime numbers with 7" time steps and
white node in y; donates the corresponding future crime num-
bers of i-th region. The unary feature function and correla-
tion matrix learning components are proposed based on neu-
ral network algorithms to solve CCRF model, and we define
our NN-CCRF model as:

P(ylx) = exp{tu(y, %, 0*) + > ¥y (i, 45, K*)},

i,J
(1)
where v, (y,x,h*) is the unary potential function, and we
adopt LSTM [Hochreiter and Schmidhuber, 1997; Gers er al.,
1999] with hidden states h* to represent the mapping from
input x to output y as follows:

¢1L(Y7X7h*) = - (y - R(Xa h*))Qa
R(x,h*) =c(Wiphi + by|x, W, Uy, b),

1
Z(x)

@)
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Figure 1: The proposed NN-CCRF model.

where R(x,h*) is the preliminary estimations on y without
considering the pairwise spatial correlations, o(e) is the Sig-
mod function, and W, and U, are weight matrices, and b,
donate the bias vectors within LSTM components that are
specified as follows in iteratively updating h;:

fe =0(Wsxy + Ushy_y + by),

it :0'( VViXt + Uihzll + bl),

Ot :O'( WoXt + Uoh;:_l -+ bo),

g =tanh(Wyx, + Ushy_; +b,),

e =ft ©cr—1+1i O gr,

h; =o0; ® tanh(c;).

3)

Besides, the pairwise potential function provides a spatial-
dependent smoothing term that encourage correlated regions
to have similar crime numbers as defined:

V(i v, K*) = =K (yi — y;)°, 4

where K7 ; represents the spatial-dependent correlation be-
tween y; and y;, which constraints and smooths the prelim-
inary estimations (e.g., R(x;,h*) and R(x;,h*) ) to have
better overall results. And one critical problem is how to de-
duce K7 ; for each pair of y; and y;. In our work, we leverage
a modified SADE [Vincent et al., 2010] framework to learn
the spatial correlation matrix K* used in pairwise potential
function.

Specifically, SDAE is a feedforward neural network that
matches the corrupted input and output (ground-truth) by en-
coding and decoding raw input data in a sequential manner.
In our work, suppose we have corrupted input ¥ (inferred by
unary potential function) and ground-truth y, SDAE first en-
codes ¥ into image z and then decodes z to produce y’ as
predictions on y as follows:

z =0(W,y +b,),

5
y =o(Wyz+ by), ©)

and the objective function of conventional SDAE is shown as:

: /112 2
Lminly =y + AW ©
where W donate the weight matrices mapping ¥ to y, which
can be regarded that W achieves the goal of measuring cor-
relation between y; and y;. And if we adopt each encoding
or decoding layer with a same weight matrix, which indicates
that our modified SDAE would have n identical layers, we
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will eventually learn the spatial correlation matrix K* simi-
larly by minimizing the following objective function:

fuin [y — on(K*R(x, W%+ MK 7 D
where o, (K* R(x, h*)) is the n times encode-decode results
of unary predictions in replace of y’ according to n iden-
tical layers of modified SDAE, and K* is exactly identical
to W used in conventional SDAE, and we just replace it in
each layer. Finally, our proposed NN-CCRF model manages
to maximize the following function according to aforemen-
tioned LSTM and SDAE components:

P(ylx) =

1
Z(x)
> K- y)*h

g
®

In general, solving such a probability density function that
contains neural network component requires a lot mathemat-
ical derivation, even there is only a simple one layer neu-
ral network as discussed in [Baltruaitis er al., 2014], not to
mention that in our work we will consider a LSTM model
with many layers and a SDAE. And the main contribution
of our work is to reformulate this function into a neural net-
work framework and learn the parameters in an end-to-end
manner, instead of manually deducing the gradients of every
parameters, which reduces a lot gradient derivation as well as
mathematical analysis.

2.3 End-to-End Model Inferencing

To avoid complicated gradient derivation as discussed in [Ris-
tovski et al., 2013; Qin et al., 2009] for learning CRF models,
CRFasRNN [Zheng et al., 2015] is proposed to transfer part
of CRF into neural network for fast learning in an end-to-
end training manner. However, CRFasRNN is limited in only
transforming pairwise potential in a RNN manner with a pre-
defined kernel function for inferring pairwise correlation ma-
trix. In our work, we not only reformulate unary and pairwise
potential into neural networks, but also simultaneously learn
the pairwise correlation matrix instead of adopting a prede-
fined kernel function.

Directly solving the probability dense function in Equa-
tion (8) is impractical and complex. We turn to apply mean-
field theory [Koller and Friedman, 2009] to approximate this
distribution P(y|x). The objective of mean-field inference is
to approximate distribution P(y|x) with distribution Q(y|x)
that can be expressed as a product of independent marginals
Qylx) = Hf\il Qi(yi|x), where N represents the total
number of regions in our work. To achieve this, we have
to minimizes the Kullback-Leibler (KL) divergence between
these two distributions P and Q:

KLQ[IP) =) Qi(y:)log Qi(y:) + Y _ thu(yi|n*)

©,Yi Yi
D (i 4 K Qi) Q5 (y;) ©)
YiYj

+1log Z(h*, K¥),
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exp{ — (y — o(Wph} + bu|x, Wi, U,, b.))?

Algorithm 1 Mean-field inference for CCRF

1: foriin N do

2: y¥ < R(x;|h*)

3: end for

4: for ¢ in Iter do
5w g Ky
6: yi < R(x;|h*) +y}
7: end for

> Unary estimation

> Pairwise interaction
> Adding unary estimation

where h* and K* donate the parameters in our model.
Following derivations discussed in [Zheng er al., 2015;
Krihenbiihl and Koltun, 2011], we are able to solve above
function and obtain the following compact update functions
for model inference:

yi = R(xi|h*) + > _K;y;. (10)
J#i

where y; is the estimated crime number for i-th region. And
the goal of mean-field approximation for regression problem
is to iteratively update each y; according to Equation (10) to
minimize the mean absolute error between estimated y; and
ground truth y;. Specifically, the mean-field approximation
inference algorithm is illustrated in Algorithm 1.

There are two main stages during the whole mean-field in-
ference according to Algorithm 1. To begin with, the algo-
rithm first gives estimations on each region using unary fea-
ture function. After that, the algorithm passes the estimated
values across all regions considering their pairwise interac-
tions. The final estimation of each region is the combination
of unary estimation and pairwise interaction. To learn param-
eters in unary feature function and the corresponding corre-
lation matrix K*, we transform the mean-field inference into
a sequential neural network framework as illustrated in Fig-
ure 2, in which there are two distinct neural networks include
a LSTM block for unary potential and SDAE block for learn-
ing correlation matrix used in pairwise potential.

In specific, the LSTM block is used in replacement of
unary potential, which aims to learn relationship between in-
put features X and output Y and we consider three layers in
LSTM in our work. Besides, since there are totally /V regions,
the model has to apply a N x N pairwise correlation matrix
to constraint the values on each y; and y;, and we leverage
SDAE to learn such N x N matrix which is used in pairwise

Linear Layer

LSTM Block
(Unary)

SDAE Block
(Pairwise)

Figure 2: Neural network based mean-field inference
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potent1al Particularly, we notice that the correlation K7’ ;
mains invariant when iteratively updating Y, therefore in
our work, each layer in SDAE should be the identically same
and forms as a N x N matrix to keep the consistency to Al-
gorithm 1. Further, the number of SDAE layers should be
identical to the number of iterations in stage two of mean-
field inference (the pairwise interaction phase). Hence, by
changing the number of SDAE layers, we could control the
iteration numbers for mean-field inference thus influencing
the degree of applying the pairwise interaction in our model.
Besides, in order to balance the importance of unary and pair-
wise estimations, we add a linear combination in the end of
the procedure. Since we apply neural networks in mean-field
inference for CCRF, we are able to learn the model’s param-
eters in an end-to-end manner.

Algorithm 2 gives a detailed procedure of the end-to-end
model training for our NN-CCRF according to the proposed
neural network based mean-field inference. Specifically, the
hyper-parameter 7, A, N, and epoch represent the number of
hidden states in LSTM block, the number of layers in SDAE
block, the number of regions, and the number of iterations for
training respectively. The whole procedure could be divided
into two steps, line 3 to line 11 contain the procedure of ini-
tialing a NN-CCRF model according to neural network based
mean-field inference, and line 12 to line 19 are the end-to-end
training procedure of NN-CCRF model. Without calculating
any parameters’ gradients and considering mathematical con-
straints, this end-to-end parameter learning algorithm is sim-
ple but efficient. We implement this algorithm using a popular
deep learning toolkit Pytorch [Chollet, 2017].

3 Experiments

3.1 Data Preprocessing

We totally collect 1,072,208 crime records in Chicago city
from Jan. 1 2013 to Dec. 31 2015, and 1,417,083 in New
York City from Jan.1 2015 to Dec. 31 2016. Specifically,
each crime record is attached with timestamp, location, and
crime type information. In order to predict a fine-grained
crime number across the city, we first divide the whole city
landscape into N disjointed regions, and each region is a
1kmx 1km grid resulting in 35 (7 x 5) and 63 (7 x 9) grids
for Chicago and New York respectively. Then, we select one
day as the minimum time step, and aggregate the crime inci-
dence into different regions in different time steps. Knowing
that it is also acceptable to select different length (e.g., 500m,
200m) for regions and different time step (e.g., week, month).

Noticing that data sparsity could become an issue in our
work for predicting specific crime types, we manage to ag-
gregate similar crime types into classes (crime against person
or property) to solve such data sparsity problem. For exam-
ple, in Chicago dataset, the ratio of non-zeros counts is 0.07,
0.16, 0.04, 0.4 and 0.05 for crime types assault, battery, rob-
bery, theft, and burglary respectively, while that becomes 0.24
and 0.43 for crime against person and property after we ag-
gregate them.
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Algorithm 2 End-to-End model training for NN-CCRF

1: Input: hyper-parameters 7, A, IV, epoch, and training set
Q={(Hi, Fi)}i_4

2: Output: NN-CCRF model M

3: M < nn.Sequential() > create a NN-CCRF
4: lstm < nn.LSTM (n) > create a LSTM block
5: sdae < nn.Sequential() > create a SDAE block
6: kernel < nn.Linear(N,N) > create a SDAE layer
7: for i in A do

8: sdae.append(kernel) > fill in SDAE block
9: end for

10: linear < nn.Linear(2,1)

11: M.append([lstm, sdae, linear])
12: for i in epoch do

13: F* <+ M.forward(H)

14: loss <~ MSELoss(F*,F)

> create a linear layer
> fill in NN-CCRF

15: if l0ss is minimized then
16: break

17: end if

18: loss.backward()

19: end for

20: return M

3.2 Experiment Setup

In our work, we do not only evaluate the prediction precision,
but also try to measure the ranking performance. Hence, we
apply the following two metrics. The averaged Root Mean
Square Error (RMSE):

RMSE =

t N
—NZZyw yij)2, (D)

Jj=11i=1

and the averaged Hitting Rate@K (HR @K):

HRQK = ;

t K
1
722 (list] ;, list; ;), (12)
j=1i=1

where N is the number of regions, ¢ is the number of testing
days, such that ¢ = 5 represents we totally conduct experi-
ments on distinct 5 days. And list* and list are the ordered
region sequence according to Y* and Y respectively, I(-)
donates a binary function which outputs 1 when the inputs
are identical otherwise 0. Specifically, smaller RMSE repre-
sents better performance on prediction precision, and higher
HR @K values indicate better performance the model could
rank all regions in the same order identical to the real rank-
ing list. We list the following methods for comparison in our
work in details.

e History: This method is the baseline method in our
work, which simply regards crime numbers in time j,_1
as the predicted future crimes in time ¢.

o LR[Montgomery et al., 2012]: Linear Regression model
is applied to the whole dataset merged from all regions,
and it assumes that future crime numbers are linearly
related to historical crime numbers.
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Datasets

Model Crime against Person Crime against Property
CHLs | CHLIy | CHLi5 | NYi5 | NYiy¢ | CHILi3 | CHL, | CHIis | NYi5 | NYyg
History 0.7505 | 1.1139 | 0.8713 | 1.6410 | 1.6466 | 1.4541 | 1.5105 | 1.3171 | 1.7294 | 1.7090
LR 0.6159 | 0.8869 | 0.6647 | 1.4497 | 1.4071 | 1.6034 | 1.6354 | 1.4157 | 2.0137 | 2.0616
LSTM 0.6298 | 0.8932 | 0.6365 | 1.2720 | 1.3338 | 1.3969 | 1.4409 | 1.2165 | 1.5148 | 1.4433
CRFasRNN | 0.6098 | 0.8092 | 0.6841 | 1.3473 | 1.3263 | 1.1478 | 1.1085 | 1.0945 | 1.4680 | 1.4075
TCP 0.5970 | 0.8429 | 0.6511 | 1.3642 | 1.3584 | 1.3718 | 1.1906 | 1.1051 | 2.3182 | 1.7097
NN-CCRF | 0.5838 | 0.7581 | 0.6272 | 1.2632 | 1.2805 | 1.0278 | 1.0602 | 1.0751 | 1.3077 | 1.2774

Table 1: Prediction performance comparison (RMSE).

e LSTMIGers et al., 1999]: Long Short-Term Memory
is one type of Recurrent Neural Network (RNN) that
is widely used in time-series modeling and prediction.
It introduces hidden states to capture the dynamic of
time-series and usually provide reasonable results. In
our work, we build a three layers LSTM with predefined
hidden state  with H dimensions.

e CRFasRNN|Zheng et al., 2015]: This model is pro-
posed for classification tasks, and we reformulate its
object function to suit for regression problem. CR-
FasRNN only transform pairwise updating into RNN
framework, and still adopts predefined kernel func-
tions to calculate the correlation matrix between re-
gions. Here we adopt two kernels exp(—%) and

PR . 2 . .
exp(—”fleigffu), where p; and p; are the location of i-

th and j-th region, f; and f; donate the corresponding
Point-Of-Interest (POI) feature vector of these regions.

e TCP[Zhao and Tang, 2017]: Temporal-spatial Correla-
tion for Crime Prediction is a multi-task learning frame-
work that considers both parametric temporal and spatial
constraints in crime prediction. Its spatial correlation
is predefined using power law exponential function that

K;;=d, j’ , where d; ; is the distance between i-th and
j-th region, ¢ is a predefined regularization parameter

controlling the degree of spatial correlation.

e NN-CCREF: Our proposed Neural Network based Con-
tinuous Conditional Random Field model regards tradi-
tional CCRF model as sequential neural network, which
applies LSTM and SDAE in unary feature function and
pairwise interaction learning. Using mean-field infer-
ence, the model is trained in an end-to-end manner.
And the correlation matrix K* is simultaneously learned
from SDAE instead of predefined using some kernel
functions.

3.3 Prediction Performance

We test prediction accuracy on different subsets from our col-
lected data, including C H I13_15y and NY{ 5 16 represent-
ing dataset from different years of Chicago (e.g., CH I3 is
the dataset from year 2013 of Chicago) and New York re-
spectively. The detailed experimental results from our pro-
posed NN-CCRF model and other models are demonstrated
in Table 1.

4161

Before further analysis on model performances, we ob-
serve that as a simple inference model, History based method
outperforms LR with respect to crime against property, which
indicates that only using yesterday’s crime number would be
more effective than combining last few days crime numbers
for property criminal prediction. While for predicting crime
against person, LR outperforms History and History performs
the worst as expected. Among all compared approaches, our
proposed NN-CCRF model performs the best on all datasets
and crime types. Specifically, LR and LSTM models mainly
focus on temporal correlations alone for crime prediction,
while CRFasRNN, TCP and NN-CCREF additionally take spa-
tial correlation across regions into consideration.

Comparing to LR and LSTM that only take temporal fac-
tor into account, CRFasRNN and TCP are more likely to
achieve better performance due to the consideration of spatial
correlation between regions. However, there are still nega-
tive effects, such as results in CH 15 and NY5 16 for crime
against person or property where they perform worse than LR
or LSTM, one possible reason is that the spatial correlation
considered in these two methods are all predefined, which
may not always be suitable for different situations. Different
from CRFasRNN and TCP, our proposed NN-CCRF model
applies SDAE to learn the pairwise spatial correlation in a
data-driven manner, which is more likely to capture the dy-
namics of spatial correlation under various situations. Hence
providing better and more robust results.

We further analysis the running time across different mod-
els as shown in Figure 3. Our proposed NN-CCRF model
costs reasonable running time comparing to other mod-
els. Specifically, our model costs equally comparing with
LSTM and a little longer than TCP and CRFasRNN models.
Both neural network based models, including NN-CCRF and
LSTM, grow linearly but faster than other two models when
increasing the training data size.

90| mmm8 NN-CCRF
Ego - LSTM
g7
o
Y60
o
E50
® a0
30
c
£20

=l
%10
0

E=N TCP
CRFasRNN

30 120

60 90
Training data size

Figure 3: Running time on different models.
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Figure 4: Ranking performances on New York (HR@5,10).
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Figure 5: Ranking performances on Chicago (HR@5,10).

3.4 Ranking Performance

Apart from evaluating the prediction accuracy, we also con-
duct experiments on each subset to judge if the model could
rank the most “dangerous” regions as demonstrated in Fig-
ure 4 and Figure 5. Specifically, each figure contains the rank-
ing performance for two different crime types (person and
property), and a higher value indicates better performance.
According to the results, we observe that the performance of
comparison models (e.g., LSTM, TCP, or CRFasRNN) fluc-
tuates a lot under different situations, for example, LSTM
performs the fourth place when evaluating on crime against
person from New York dataset as shown in Figure 4(a), while
it performs the second place as shown in Figure 4(b) and be-
comes the worst when testing on Chicago dataset as illus-
trated in Figure 5. Similarly, spatial-based models with pre-
defined kernel functions like TCP and CRFasRNN also per-
form differently under different situations, which indicating
that a static spatial correlation is insufficient for various con-
ditions. However, our data-driven based NN-CCRF model
could learn dynamic spatial correlations through SDAE com-
ponent under different situations, achieving more robust per-
formance in all conditions. Noticing that TCP performs bet-
ter than ours when testing on crime against person from New
York dataset with Hitting Rate at 10 as shown in Figure 4(a).

3.5 Hyper-parameters Effects

We test two major hyper-parameters (n for LSTM and A for
SDAE) as illustrated in Table 2 and 3, and the results are av-
eraged from two crime types. We discover that the parameter
setting for best prediction and ranking performance are not
consistent. For example, our model achieves its best perfor-
mance when 17 = 32 and A\ = 4 for prediction with Chicago
dataset, while that is 7 = 128 and A\ = 8 for its best ranking
performance. Besides, we discover that A impacts more on
model’s performance when 7 is small, showing that spatial
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A

Dataset " 4 6 8 10
32 0.855 | 0.928 | 0.919 | 0.907
CHI 64 0.879 | 0.874 | 0.880 | 0.876
128 0.875 | 0.874 | 0.873 | 0.874
32 1.291 | 1.285 | 1.283 | 1.295
NY 64 1.236 | 1.236 | 1.236 | 1.236
128 1.237 | 1.237 | 1.237 | 1.236

Table 2: Influence of different parameter settings on prediction.

Dataset " A 4 6 8 10
32 0.153 | 0.157 | 0.139 | 0.148
CHI 64 0.156 | 0.156 | 0.157 | 0.153
128 0.161 | 0.152 | 0.169 | 0.160
32 0.207 | 0.212 | 0.224 | 0.208
NY 64 0.228 | 0.230 | 0.230 | 0.230
128 0.229 | 0.230 | 0.230 | 0.230

Table 3: Influence of different parameter settings on ranking.

correlation plays an important role when temporal influence
is weak, while its influence vanishes when 7 grows larger.
In our work, considering the trade-off between accuracy and
computational complexity, we take 7 = 32 and A = 4 for
training model using Chicago dataset, and that is 7 = 64 and
A = 4 for New York dataset.

4 Conclusion

In this work, we proposed to exploit the effectiveness of
formulating conventional CCRF model into neural network
framework for spatial correlation learning in fine-grained
crime prediction. Specifically, we first reformulated the unary
potential of CCRF into LSTM, and applied SDAE to learn
pairwise interaction between instances. After that, we trans-
formed the inference of CCRF model into an iterative pro-
cess based on mean-field approximation theory. By achiev-
ing these, a Neural Network based CCRF (NN-CCRF) model
was proposed, which is able to deal with large-scale and fine-
grained crime prediction. Specifically, the proposed SDAE
component made it much more effective and convenient to
capture spatial correlation between disjointed regions, com-
paring to traditional predefined kernel functions for calculat-
ing the correlation matrix. Furthermore, we reformulated the
inference process of NN-CCRF model into a sequential neu-
ral network, which could help us to train NN-CCRF in an
end-to-end manner using back-propagation algorithm. Ex-
periments conducted on two real-world datasets validated the
superiority of our model compared to several state-of-the-art
approaches with respect to prediction and ranking accuracy.
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