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Abstract

It is arguably believed that flatter minima can gen-
eralize better. However, it has been pointed out
that the usual definitions of sharpness, which con-
sider either the maxima or the integral of loss over
a δ ball of parameters around minima, cannot give
consistent measurement for scale invariant neural
networks, e.g., networks with batch normalization
layer. In this paper, we first propose a measure
of sharpness, BN-Sharpness, which gives consis-
tent value for equivalent networks under BN. It
achieves the property of scale invariance by con-
necting the integral diameter with the scale of pa-
rameter. Then we present a computation-efficient
way to calculate the BN-sharpness approximately
i.e., one dimensional integral along the ”sharpest”
direction. Furthermore, we use the BN-sharpness
to regularize the training and design an algorithm
to minimize the new regularized objective. Our al-
gorithm achieves considerably better performance
than vanilla SGD over various experiment settings.

1 Introduction
With the support of big data, deep learning techniques has
achieved a huge success across domains. In recent years, it
becomes a common sense that deep neural networks have per-
fect training performance. Specifically, [Zhang et al., 2016]
empirically shows that the popular neural networks (NN) can
always reach zero training error at the end of training pro-
cess. Moreover, [Du et al., 2018] and [Allen-Zhu et al., 2018]
prove that, for the neural networks with sufficient width, gra-
dient descent converges to the global minima of the objective,
under some conditions on the data generation. Thus how to
find minima taht generalize well seems to be more critical in
the study of deep neural network.

It’s arguably believed that minima locate in a flat valley
generalize better. [Neyshabur et al., 2017] employs the PAC
Bayes theory [McAllesterl, 1998] and proves a generaliza-
tion bound give by ”expected sharpness”. The conclusion
gives us a new angle to discuss generalization error of a neu-
ral network. This viewpoint is also empirically confirmed by
[Keskar et al., 2017] and [Li et al., 2018]. However, for neu-

ral network with scale invariant property, the definitions of
sharpness become problematic.

One important case is deep neural network with batch nor-
malization (BN) [Ioffe and Szegedy, 2015]. BN is an impor-
tant component which normalize the distribution of input to
each neuron in the network by mean and standard deviation of
input computed over a mini-batch of training data. Batch nor-
malization will bring a scale invariant property to neural net-
work which will make the definition of sharpness for neural
network problematic (two parameter points with same gen-
eralization error but different sharpness). Since sharpness is
related to generalization, a natural question is can we develop
an appropriate definition of sharpness for neural network with
batch normalization? Meanwhile, can we leverage the ap-
propriate measurement of sharpness to develop an algorithm
which helps us find minima generalize better?

In this paper, we answer the two above problems posi-
tively. First, we show that the original definition of sharpness
for neural network with batch normalization is ambiguous.
Specifically, the original sharpness (δ-sharpness) consider the
maxima of loss over a δ ball of parameters around minima
with radius δ unrelated to parameter θ. However, due to the
scale invariant property of neural network with batch normal-
ization, the radius δ should scale with parameter norm θ. On
the other hand, the new measurement of sharpness should be
computational efficient since we want to leverage it to help
us find minima generalize better. Based on the two above
points, we propose a ”BN-sharpness” to measure the sharp-
ness for BN neural network. In specific, BN-Sharpness is a
one dimensional integral of the loss’s difference value along
the ”sharpest” direction in a small neighborhood while the di-
ameter of this neighborhood is related with parameter scale.
It’s an intuitively thought that a minimum locate in a flat val-
ley when the loss values in the valley are closely with each
other along the steepest changing direction.

In order to find minima locate in flat valley which gen-
eralize better, we penalize the original optimization objec-
tive with BN-Sharpness. Due to the one dimensional inte-
gral structure of BN-Sharpness, we can easily acquire the
”sharpest direction” by optimization on manifold [Boumal et
al., 2017] as well as the gradient of BN-Sharpness.

It’s empirically showed that SGD with large batch size tend
to produce ”sharp” minima which generalize worse [Keskar
et al., 2017]. We test our algorithm on CIFAR dataset
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[Krizhevsky et al., 2012], it has preferable results under large
batch size compared with baselines (SGD, Entropy SGD).

1.1 Related Work
Sharpness is a property connected with the loss surface. [Li
et al., 2018] first visualize the loss landscape of NN to de-
scribe that ”sharp” minima indeed generalize worse. Such
phenomenon was also empirically confirmed by [Keskar et
al., 2017] and [Wu et al., 2018]. [Neyshabur et al., 2017]
also gives the conclusion a theoretical interpretation.

In fact, the definition of sharpness is proved to be ambigu-
ous for ReLU neural network [Dinh et al., 2017]. Suffering
from the definition of sharpness and computational complex-
ity, some local structured algorithms aimed to produce ”flat”
minima avoid exactly definition of sharpness. Entropy SGD
proposed by [Chaudhari et al., 2017] is motivated by the lo-
cal geometry of the energy landscape, it alters loss as accumu-
lated ”energy value” instead of single point value. [Wen et al.,
2018] argues that choosing integral of a small cubic around
iterate as loss function can produce a smoother loss function
which will lead to a ”flat” minimum. [Wang et al., 2018] sets
an expected loss function to produce ”flatter” minima under
PAC Bayes theory. However, all of these algorithms will face
a high dimensional integral.

There are lots of sharpness based algorithms to find flat
minima [Chaudhari et al., 2017; Wang et al., 2018; Wen et
al., 2018]. Since it’s hard to compute the gradient of the orig-
inal sharpness, they set optimization objective as integral of
the loss function in a ball to force iterates walking into a flat
valley instead of optimizing original loss function regularized
by sharpness. This kind of optimization objective involves a
high dimensional integral which is actually hard to be com-
puted in practice.

For the topic of neural network with batch normalization,
[Cho and Lee, 2018] and [Huang et al., 2017] give Rieman-
nian approach to optimize neural network with batch normal-
ization. [Yuan et al., 2018] propose a general variant of batch
normalization to speed up training process. However, none
of these works consider combining the sharpness with batch
normalization to reduce generalization error.

1.2 Contribution
(1) We show that the generally accepted definition of sharp-
ness: δ-sharpness [Keskar et al., 2017] is ill-posed for NN
with BN. We propose a scale invariant and computational effi-
cient ”BN-Sharpness” to measure sharpness for NN with BN.
(2) We present a computational efficient algorithm based on
BN-Sharpness to enhance generalization ability of iterates
which has preferable experimental results.

2 Background
2.1 Definitions of Sharpness
There are lots of definitions to describe sharpness [Keskar et
al., 2017; Wu et al., 2018]. We focus on a widely discussed
definition: δ-sharpness this paper.

Definition 2.1 (δ-Lp sharpness) Let B2(θ, δ) be an Eu-
clidean ball centered on a minimum θ with radius δ. Then,

for a non-negative valued loss functionL(·) and non-negative
number p, the δ-Lp sharpness will be defined as

Sp
δ-sharpness(θ) =

(∫
θ′∈B2(θ,δ)

|L(θ′)− L(θ)|p dθ′
) 1

p

1 + L(θ)
. (1)

In fact, denominator of equation (1) will close to 1 when L(θ)
is small. Thus, we ignore it during discussion. We can actu-
ally prove that δ-sharpness Sδ-sharpness used in [Keskar et al.,
2017] is actually δ-L∞ sharpness

2.2 Batch Normalization
We briefly revisit the batch normalization and its properties.
A network with BN transforms the input value to a neuron
from z = ′Tx to

BN(z) = γ
z − E(z)√
V ar(z)

+ β = γ
θT (x− E(x))√

θTVxθ
+ β. (2)

We can easily verify BN(az) = BN(z) for any a >
0. Then, for a partially batch normalized neural network
(Some of input values to neuron are batch normalized) with
N parameter vector θ = (θ1, · · · , θN1

, θN1+1, · · · , θN )T ,
where θi (i = 1 · · ·N1) is parameter vector connected with
batch normalized neuron and (θN1+1, · · · , θN ) connect neu-
ron without batch normalization. We can actually view the
affine parameters γ, β and bias parameters of each neuron as
un-batch normalized parameters. We integrate them into pa-
rameter vector θ during our latter discussion. In the latter
discussion, our analysis is applied to partially batch normal-
ized neural network if we don’t give an additional illustra-
tion. Now we give the definition of scale transformation for
partially batch normalized neural network.

Definition 2.2 T~a(·) denote scale transformation for a par-
tially batch normalized neural network with

T~a(θ) = (a1θ1, · · · aN1θN1 , θN1+1, · · · , θN )T , ai > 0. (3)

We see the loss function L(θ) satisfy L(θ) = L(T~a(θ)) for
any T~a(·) 1. We call this the property of scale invariant of
BN. In fact, the ambiguous of sharpness is brought by such
property.

3 BN-Sharpness
In this section, we give a δ-BN sharpness to measure sharp-
ness. A well defined geometrical measurement linked with
generalization error for neural network with batch normal-
ization should be scale invariant. We start with theorem to
explain why the original measurement of sharpness is inap-
propriate.

Theorem 3.1 Given a partially batch normalized network, δ-
sharpness is not scale invariant.

1For the situation of Pre-ResNet which has inputBN((~1+θ)T z)
in skip connection layer. It’s not a scale invariant layer, we treat
these θ as un-batch normalized parameters.
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Proof 3.1 For Sδ-sharpness(·), We consider a partially batch
normalized neural network, without of loss generality we as-
sume the network has batch normalized neuron in one layer.
Then we choose ~a as (1, · · · , a0, · · · , a0, 1, · · · , 1)T where
a0 locate in the same coordinate with batch normalized pa-
rameter. For any δ > 0, we can choose

0 < a0 ≤
δ√

N max1≤i≤N ‖θi‖
(4)

with L(T~a(θ)) = L(θ). Because a parameter θ with one
layer zero weight matrix locate in B2(T~a(θ), δ) which result
in maxθ′∈B2(θ,δ) (L(θ

′)− L(θ)) is at least as high as con-
stant function. Then, the value of Sδ-sharpness(T~a(θ)) is rela-
tively large. �

The above result reveals that the original definition of
sharpness is not well defined for BN-network. Actually, we
can achieve a minimum with small generalization error but in-
finite sharpness if we rescale the minimizer adequately close
to zero for δ-sharpness. Hence, using δ-sharpness as a mea-
surement of generalization is meaningless. We see the ill-
posed issue of δ-sharpness suffers from the scale invariant
ability of batch normalization network. Based on Theorem
3.1, we aim to derive a scale invariant sharpness.

Due to these, we present a scale invariant meanwhile com-
putational efficient measurement: ”BN-Sharpness”, which is
instructive for us to leverage it to find ”flat” minima. Now,
we give the exact definition of ”BN-Sharpness”.

Definition 3.1 (δ-Lp BN-Sharpness) Given a positive num-
ber δ, and a parameter point θ, and a partially batch normal-
ized network, the δ-Lp BN-Sharpness is defined as

‖L(·)‖δ,θp = sup
v∈φ(θ)

1

δ
1
p

(∫ δ

−δ

∣∣∣∣L(θ + tv)− L(θ)
δ

∣∣∣∣p dt)
1
p

, (5)

where φ(θ) is a set composed by v with ‖vi‖ =

‖θi‖,
√∑N

j=N1+1 ‖vj‖2 = 1; i = 1, · · · , N1.

We notice v ∈ φ(θ) has same dimension with θ. And it’s
decided by the parameter of a partially batch normalized net-
work. Since v ∈ φ(θ) has identically l2 norm which is√∑N1

i=1 ‖θi‖2 + 1, we use ‖φ(θ)‖ to denote it. For simplic-
ity, we use BN-Sharpness to substitute δ-Lp BN-Sharpness.

As we have discussed in Section 2, the Lp norm of function
L(·) − L(θ) defined in B2(θ, δ) can be a measurement of
sharpness (δ-sharpness is L∞ norm). The crucial problem
of such Lp-sharpness is losing sight of parameter scale when
choosing region diameter δ. On the other hand, it’s a high
dimensional integral (p < ∞) which is hard to be computed
in practice let alone combining them to reduce sharpness. The
two shortages are also hold when p =∞.

We see BN-Sharpness consider the scale of batch normal-
ized parameter. Meanwhile BN-Sharpness is an one dimen-
sional integral along the sharpest direction v of L(θ) for each
parameter component θi. It will be computational efficient es-
pecially for the gradient which we will discuss it more specif-
ically in Section 5. By Taylor’s expansion, for each parameter

component θi we have

L(θ + tv)− L(θ) ≈
N∑
i=1

t∇θL(θ)Ti vi + o(t‖v‖)

≤ t
N∑
i=1

‖∇θL(θ)i‖‖vi‖+ o(t‖φ(θ)‖).

(6)

Here∇L(θ)i represent gradient of L(·) to component param-
eter vector θi. The equation (6) gives an approximate cal-
culating of the ”sharpest” direction when δ is small. Pre-
cisely calculation of BN-Sharpness requires optimization on
Oblique manifold which we will discuss in Section 4.

Now, we prove that BN-Sharpness is scale invariant.
Hence, it’s appropriate to measure sharpness for BN neural
network.

Theorem 3.2 The loss function L(θ) of a DNN with batch
normalization satisfies ‖L(·)‖δ,θp = ‖L(·)‖δ,T~a(θ)p for any ~a
without negative element.

Proof 3.2 For any a 6= 0, we notice that L(θ) = L(T~a(θ)).
Therefore for any v with v ∈ φ(θ), we have

L(θ + tv)− L(θ) = L(T~a(θ) + tT~a(v))− L(T~a(θ)), (7)

for t ∈ [−δ, δ]. It’s easily to verify that∫ δ

−δ

∣∣∣∣L(θ + tv)− L(θ)
δ

∣∣∣∣p dt
=

∫ δ

−δ

∣∣∣∣L(T~a(θ) + tT~a(v))− L(T~a(θ))
δ

∣∣∣∣p dt
(8)

Since

sup
v∈φ(θ)

1

δ
1
p

(∫ δ

−δ

∣∣∣∣L(T~a(θ) + tT~a(v))− L(T~a(θ))
δ

∣∣∣∣p dt)
1
p

= sup
v∈φ(T~a(θ))

1

δ
1
p

(∫ δ

−δ

∣∣∣∣L(T~a(θ) + tv)− L(T~a(θ))
δ

∣∣∣∣p dt)
1
p

= ‖L(·)‖δ,T~a(θ)p ,
(9)

we get the conclusion. �

Actually, we can derive a relationship between BN-
Sharpness and generalization error. The result is based on
PAC Bayesian theory [McAllesterl, 1998; 1999].

Theorem 3.3 Given a ”prior” distribution P (for parameter
θ) over the hypothesis that is independent of the training data,
with probability at least 1− ε, we have

|Eu[L(θ + u)]− L̂(θ)| ≤ δ1+
1
p ‖L(·)‖δ,θp

+ 4

√
1

m

(
KL(θ + u||P ) + log

2m

ε

)
,

(10)
where L(·) and L̂(·) are respectively expected loss and train-
ing loss, m is the number of training data and θ is the param-
eter learned from training data. As long as u is an uniform
distribution on any specific v ∈ δ · φ(θ).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4166



A straightforward connection between generalization error
|L(θ)− L̂(θ)| and sharpness is nontrivial. We can only derive
a perturbed generalization error |Eu[L(θ+u)]−L̂(θ)|, where
u is the perturbation variable. A small perturbation variable
u will make the perturbed generalization error close to the
real generalization error which involves a small δ in equation
(10). We claim that the result gives a quantitatively descrip-
tion of generalization error based on BN-Sharpness. It’s a
direct corollary according to the equation (6) in McAllester
[McAllesterl, 2003] and the definition of BN-Sharpness.

4 Regularizing Training with BN-Sharpness
We already have an appropriate definition of BN-Sharpness.
It has also been confirmed that smaller BN-Sharpness leads
to better generalization. We naturally consider leveraging it
to find a flat minimum generalizes better.

Intuitively, we consider using BN-Sharpness as a regular-
ization term tend to produce flat minima for BN neural net-
work. We substitute the optimization problem minθ L(θ)
with

min
θ
L(θ) + λ(‖L(θ′)‖δ,θp )p. (11)

An interesting phenomenon is such regularization term not
only computational efficient and appropriate but also well-
posed. More specifically, traditional regularization term such
as l1, l2 would change the minimums set of loss function. But
BN-Sharpness regularization term keeps minima of original
loss function in the minimal point set of regularized loss func-
tion, while it force iterates move to a flat valley. The next the-
orem states that regularization term in (11) wouldn’t remove
minima of original loss function when δ is small.
Theorem 4.1 The minima of problem minθ L(θ) are also
minima of optimization problem (11), when δ → 0 and p ≥ 1.

The optimization problem (11) is actually a multi-target
programming with ”accuracy target” and ”flatness target”. λ
in (11) is actually a proportion between the two terms. Since
we aim to find ”flat” minima rather than ”flat” point, an ap-
propriate proportion between the two purpose is crucial.

Now, we give a computational efficient algorithm to solve
the optimization problem (11). Here we simply explain our
algorithm flow. We notice that the obstacle of optimization
problem (11) is calculating the gradient of regularization term
(‖L(θ′)‖δ,θp )p (BN-Sharpness). It involves two steps: First,
calculating the ”sharpest” direction which we need optimiza-
tion on Oblique manifold; Second, computing the gradient of
integral term in BN-Sharpness under the ”sharpest” direction.

Now we give the complete flow of our algorithm: Algo-
rithm 1. Then we will discuss more details about it.

In Algorithm 1, the first inner loop is calculating the
”sharpest” direction which is the process of optimization
on Oblique manifold. The second inner loop is general
gradient descent to update parameter θ. In addition, we

make an approximation to λ∇θ 1
δ

∫ δ
−δ

(
L(θ+tv)−L(θ)

δ

)p
dt

and ∇v 1
δ

∫ δ
−δ

(
L(θ+tv)−L(θ)

δ

)p
dt in equation (15) and (16)

to further reduce computational redundancy. We respectively
denote them as h1(θ, v, δ, p, λ) and h2(θ, v, δ, p).

Algorithm 1 SGD with BN-Sharpness regularization

Input δ > 0, even number p, initialize point θ0 ∈ Rn,
v0 ∈ φ(θ0) set to be the gradient direction like equa-
tion (6), regularization coefficient λ, iterations K1,K2 and
learning rate η.
Optimization with BN-Sharpness term
k2 = 0
while k2 ≤ K2 and∇θL(θk2) 6= 0 do

Iterate K1 times to search the sharpest direction
vk1(θk2) in point θk2
θk2+1 = θk2−η(∇θL(θk2)+h1(θk2 , vk1(θk2), δ, p, λ)),
k2 = k2 + 1, v0 ∈ φ(θk2)

end while
return θk2

4.1 Searching the Sharpest Direction v
The extra computation cost comparing to vanilla SGD is the
procedure of searching the ”sharpest” direction v which is the
second inner loop in Algorithm 1. Inspiring by equation (6),
we can also choose vk ∈ φ(θk) with vik has same direction
with ∇L(θk)i for each step to avoid the searching process
(Iterate K1 times in Algorithm 1).

However, there is a more accurate searching procedure
which is optimization on Oblique manifold. Searching v in
BN-Sharpness (5) is equivalent to solving optimization prob-
lem:

argmax
v∈φ(θ)

1

δ
1
p

(∫ δ

−δ

∣∣∣∣L(θ + tv)− L(θ)
δ

∣∣∣∣p dt)
1
p

. (12)

This is a constrained optimization problem which can be con-
verted to optimization on manifold. We briefly present opti-
mization on manifold here. Detailed introduction can be re-
ferred to [Boumal et al., 2017].

Optimization on manifold converts a constrained optimiza-
tion problem into an un-constraint problem while iterates lo-
cate in a manifold satisfy the constraint. Specific definition
of manifoldM can be found in [Pierre-Antoine et al., 2009].
Here we only consider matrix manifold i.e. a subspace of Eu-
clidean space. Solving problem (12) needs gradient assent on
manifold which produce iterates as

vk+1 = Retrvk

(
1

L
gradf(vk)

)
. (13)

Here gradf(x) is Riemannian gradient which is a map from
tangent space TxM of point x to manifoldM. The optimiza-
tion problem (12) defined on the general Oblique manifold.
We need the related formulations in Oblique manifold to pro-
cess our algorithm.
Definition 4.1 (Oblique manifold) Oblique manifold is a
subset of Euclidean space satisfy St(n, p) = {X ∈ Rn×p :
ddiag(XTX) = Ip}, where ddiag(·) is diagonal matrix of a
matrix.

Apparently, for a given θ in equation (12), v lives in
a special Oblique product manifold ‖θ‖1St(n1, 1) × · · · ×
‖θ‖N1

St(nN1
, 1) × St(

∑N
j=N1+1 nj , 1) where ni is the di-

mension of parameter θi.
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As we discussed, optimization on manifold requires Retrx
and gradf(x). The two items on single Oblique manifold
‖θ‖St(n, 1) respectively are

Retr‖θ‖x (η) =
x+ η

‖x+ η‖‖θ‖, P
‖θ‖
x (η) = η − x

‖θ‖2 ddiag(x
T η),

gradf(x) = P ‖θ‖x (∇f(x)) = ∇f(x)− x

‖θ‖2 ddiag(x
T∇f(x))

(14)
where P ‖θ‖x (·) is projection matrix of the tangent space at
x. These results can be derived from the general formulas
in [Pierre-Antoine et al., 2009; Pierre-Antoine and Gallivan,
2006]. Then we can generalize it to achieve the update rule in
product manifold we used. The procedure is gradually update
vki according to the manifold it located [Cho and Lee, 2018].

In addition, we note that our algorithm involves

∇θ 1
δ

∫ δ
−δ

(
L(θ+tv)−L(θ)

δ

)p
dt (The gradient descent for pa-

rameter θ) and ∇v 1
δ

∫ δ
−δ

(
L(θ+tv)−L(θ)

δ

)p
dt (Searching the

sharpest direction). Precise calculation of the two terms will
bring some extra computational redundancy. Because L(θ)
usually be a neural network, but calculating the integral term
requires sampling value of L(θ + tv) and ∇L(θ + tv). Each
sampling corresponds to a forward and backward process of
neural network. The next proposition gives an approxima-
tion to the gradient of BN-Sharpness. It reduces the times of
froward and backward process to two. In the next proposi-
tion, we aim to a specific v and suppose that v is a constant
vector.

Proposition 4.1 Given δ > 0, for any v satisfy ‖v‖ =
‖φ(θ)‖, we have

∥∥∥∥∥λ∇θ 1δ
(∫ δ

−δ

(
L(θ + tv)− L(θ)

δ

)p
dt

)
− λ

δ
(∇θL(θ)T v)p−1

(∇θL(θ +
p

p+ 1
δv) +∇θL(θ −

p

p+ 1
δv)− 2∇θL(θ))

∥∥∥∥∥ < o(δ‖v‖),

(15)
when p is an even number.

Proposition 4.1 indicates the gradient respect to parameter θ
can be replaced by a computational efficient term. On the
other hand, we can achieve a similar result presented as

∥∥∥∥∥∇v 1δ
(∫ δ

−δ

(
L(θ + tv)− L(θ)

δ

)p
dt

)
− p

p+ 1
(∇θL(θ)T v)p−1

[∇Lv(θ +
p+ 1

p+ 2
δv) +∇vL(θ −

p+ 1

p+ 2
δv)]

∥∥∥∥∥ < o(δ‖v‖).

(16)
for v. The equation gives an approximation for the gradient
respect to vector v locate in a product Oblique manifold.

(a) Accuracy on CIFAR10 (b) Training loss on CIFAR10

Figure 1: Performance on LeNet

We will use the two approximation terms to substitute the
original gradients of BN-Sharpness in our algorithm. Finally,
we point out that the sharpest direction vk of point θ in Algo-
rithm 1 is produced as

vki = Retr
‖θi‖
vk−1
i

(
P
‖θi‖
vk−1
i

(hi2(θ, v
k−1, δ, p))

)
, i = 1, · · ·N1

vk∗ = Retr1
vk−1
∗

(
P 1

vk−1
∗

(hi2(θ, v
k−1, δ, p))

)
,

(17)

where v∗ = (vTN1+1, · · · , vTN )T .

5 Experiment

The previous work indicate that SGD with large batch size
produces sharp minima while small batch size can avoid
sharp minima itself [Keskar et al., 2017]. Therefore, in or-
der to finding flat minima under large batch size, we use
Algorithm 1 to reach such target. We consider our algo-
rithm should have a preferable result comparing to SGD un-
der large batch size. We should highlight that the biases gra-
dient ∇θL

(
θ + p

p+1δv
)

and ∇θL
(
θ − p

p+1δv
)

in equation
(15) are calculated by different batch data. It’s a way of re-
ducing variance which is used in Entropy SGD [Chaudhari et
al., 2017].

First we test the algorithm with fully batch normalized
LeNet [LeCun et al., 1998] to test the performance for CI-
FAR10 [Krizhevsky et al., 2012]. Update rule is SGD with
momentum by setting learning rate as 0.2 and decay it by a
factor 0.1 respectively in epoch 60, 120, 160 and momentum
parameter as 0.9. We use 10000 batch size, and 5e-4 weight
decay ratio for all the three experiments.

For experiments with regularization term, we clip the gra-
dient of BN-Sharpness by norm with factor 0.1. We use
”SGDS-number-decay” to represent the algorithm regular-
ized by BN-Sharpness iterate ”number” times of searching
sharpest direction and using a weight decay ratio as ”decay”.
For example, ”SGDS-5-5e-4” means iterate 5 times of search-
ing v in 3.1 (K1=5 in Algorithm 1) and setting weight decay
ratio as 5e-4. In addition, the initial point of iteration is set to
be the gradient direction like in equation (6). For the exper-
iments with regularized BN-Sharpness, we choose λ as 1e-4
which increase by a factor of 1.02 for each epoch. We set
δ = 0.001, and the p is chosen as 2.
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(a) Accuracy of 2048 batch
size with weight decay on
CIFAR10

(b) Accuracy of 2048 batch
size with weight decay on
CIFAR100

(c) Accuracy of 2048 batch
size without weight decay on
CIFAR10

(d) Accuracy of 2048 batch
size without weight decay on
CIFAR100

Figure 2: Performance on VGG11

Algorithm SGD-5e-4 SGDS-0-5e-4 SGDS-5-5e-4 E-SGD-5e-4
CIFAR10 91.67 91.78 91.55 91.03

CIFAR100 69.33 69.07 68.53 67.37
Algorithm SGD SGDS-0-0 SGDS-5-0 E-SGD-0
CIFAR10 90.5 90.53 90.53 89.96

CIFAR100 65.5 65.45 64.82 63.45

Table 1: Performance of VGG with batch size as 128.

Algorithm SGD-5e-4 SGDS-0-5e-4 SGDS-5-5e-4 E-SGD-5e-4
CIFAR10 89.6 90.51 90.35 89.67

CIFAR100 63.83 65.31 64.8 61.02
Algorithm SGD SGDS-0-0 SGDS-5-0 E-SGD-0
CIFAR10 88.5 88.58 88.9 87.13

CIFAR100 62.17 62.25 61.8 56.68

Table 2: Performance of VGG with batch size as 2048.

The accuracy result is referred to Figure 1a, where the ac-
curacy results of ”SGD”, ”SGD with sharpness” and ”SGD
with sharpness iteration=5” are respectively 69.87, 71.84,
70.95. We see that our algorithm has a significant promotion
on such toy example. Now we test our algorithm on a deeper
network VGG11 with bath normalization [Simonyan and Zis-
serman, 2014]. We respectively test vanilla SGD, SGD with
BN-Sharpness regularization and Entropy-SGD (represented
as E-SGD) on the network. The experiments can be divided
into two groups, large batch size and small batch size. The
batch size we used for the two groups of experiments are re-
spectively 128 and 2048.

For SGDS, the δ in CIFAR10 is 5e-4 and in CIFAR100 is
1e-3, learning rate is 0.2 and decay by a factor 0.1 respec-
tively in epoch 60, 120, 160. The learning rate for SGD is 0.1

and we decay it like SGDS. Other hyper-parameters we used
follow the setting in the first experiment of LeNet.

For Entropy SGD we follow the same hyper parameters
in [Chaudhari et al., 2017] for experiments with 2048 batch
size, except for the learning rate. We set learning rate like
SGD experiments. But for experiment with 128 batch size,
we turn off the drop out and use a 0.01 global learning rate.
We also didn’t adjust the γ accord with iteration times. These
adjustments will make Entropy-SGD perform better. From
the results, we conclude that SGD with small batch size can
avoid ”sharp” minima itself, and regularized by sharpness has
little influence. Here we don’t pay a lot attention to searching
the sharpest direction. This is motivated by reducing compu-
tation complexity as well as balancing regularized term and
loss function.

We emphasize that dividing the sharpness target and accu-
racy target is important. It allows us to dynamically adjust
”flat” target which avoid iterates stack in a wide valley when
accuracy in a low standard. Actually, if we use the same hy-
per parameters for Entropy SGD under batch size 128 and
2048. The training accuracy will end in a low level. Even
though, Entropy SGD still perform general. We think it suf-
fer from two aspects: First, sampling 20 points(L = 20 in
Entropy SGD) for a huge model is not enough, which make it
unstable. It will present a high variance result; Second, iter-
ates tend to stack in a inaccurate point, since the loss function
may be inexact (See Supplement Material).

Training model with SGD for 600 epochs (adjust learning
rate by iterations) can reach the results of SGDS. It’s a view-
point for large batch size SGD: Training longer, generalize
better [Hoffer et al., 2017]. However, our method can reach
such result under fewer iterations.

6 Conclusion
We first prove that tradition definitions of sharpness are in-
sufficient to describe geometrical structure of neural network
with batch normalization. Based on that, we propose a scale
invariant BN-Sharpness to measure the sharpness of min-
ima. Then, we give an algorithm based on BN-Sharpness.
It has computational advantage comparing to existing sharp-
ness based algorithms.

For all algorithms in order to find ”flat” minima (includ-
ing our algorithm), the training purpose is finding a ”flatter”
minima generalize better, rather than finding a ”flatter” point.
Therefore, for such kind of algorithms, setting a large pro-
portion to sharpness target will easily force iterates walk into
a ”flat” local minimum that generalize poor. Therefore, bal-
ancing the sharpness target and loss target is a delicate but
meaningful problem.

Finally, we don’t particularly discuss the combination of
our algorithms with training tricks under large batch size such
as [Hoffer et al., 2017], [Choromanska et al., 2015] and [De
et al., 2017]. In fact, combing them together it’s a very inter-
esting topic.
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