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Abstract
Reinforcement learning (RL) has had many suc-
cesses, but significant hyperparameter tuning is
commonly required to achieve good performance.
Furthermore, when nonlinear function approxima-
tion is used, non-stationarity in the state represen-
tation can lead to learning instability. A variety
of techniques exist to combat this — most no-
tably experience replay or the use of parallel ac-
tors. These techniques stabilize learning by mak-
ing the RL problem more similar to the supervised
setting. However, they come at the cost of moving
away from the RL problem as it is typically formu-
lated, that is, a single agent learning online without
maintaining a large database of training examples.
To address these issues, we propose Metatrace, a
meta-gradient descent based algorithm to tune the
step-size online. Metatrace leverages the structure
of eligibility traces, and works for both tuning a
scalar step-size and a respective step-size for each
parameter. We empirically evaluate Metatrace for
actor-critic on the Arcade Learning Environment.
Results show Metatrace can speed up learning, and
improve performance in non-stationary settings.

1 Introduction
In the supervised learning setting, there are a variety of op-
timization methods that build on stochastic gradient descent
(SGD) for tuning neural network parameters. Applying or-
dinary SGD is difficult due to the sensitivity to the step-size
parameter, which controls the magnitude of each update, as
well as potential for wide variation in the gradient magnitude
across different dimensions. Methods like RMSProp [Tiele-
man and Hinton, 2012] and ADAM [Kingma and Ba, 2014]
aim to accelerate learning and improve stability by approxi-
mately accounting for higher order gradients of a fixed loss
surface. While these methods are effective in the supervised
case, they do not translate straightforwardly to online rein-
forcement learning (RL), where targets incorporate future es-
timates and subsequent observations are correlated.

The eligibility trace method is a key component used in
RL to control the degree of bootstrapping from future esti-
mates. However, this further complicates the analogy with

supervised learning, as individual updates do not correspond
to a gradient descent step toward any target on their own. In-
stead, the error signal is broken up into a series of updates
such that only the sum of updates over time optimizes it. The
appropriate analogy to the previously mentioned SGD tech-
niques from supervised learning is not clear in this setting.

To apply these SGD techniques in the RL setting, a com-
mon strategy is to make the RL problem as close to the super-
vised learning problem as possible. Techniques that help to
achieve this include multiple actors [Mnih et al., 2016], large
experience replay buffers [Mnih et al., 2015], and separate
online and target networks [Van Hasselt et al., 2016]. These
all help smooth gradient noise and mitigate non-stationarity.
However, they do so at the cost of losing the advantages of on-
line updating. These advantages include lower computation
and memory use, learning immediately from new experience,
and allowing a single agent to learn from its own trajectories.

We propose Metatrace, a novel set of algorithms that tune
the step-size parameter online for the actor-critic algorithm.
Metatrace applies meta-gradient descent, propagating gradi-
ents through the optimization algorithm itself, to derive step-
size tuning algorithms specifically for the online RL control
problem. These algorithms build on the incremental delta-
bar-delta (IDBD) approach [Sutton, 1992] while solving an
open issue of previous work. To be exact, we use an eligibility
trace-like mechanism to allow the meta-objective to account
for time-dependent weights in an online manner. We apply
this insight to define algorithms for tuning a scalar step-size,
as well as a vector of step-sizes. Finally, we propose a mixed
version that leverages the benefits of both, and integrate the
algorithm with entropy regularization and normalization of
the metaupdate to improve performance in practice.

We evaluate Metatrace for actor-critic with eligibility
traces (AC(λ)). Our experiments include a classic mountain
car problem to demonstrate the efficiency of the algorithms
and a drifting version of mountain car to explore the perfor-
mance of meta-gradient descent with a non-stationary state
representation. Finally, we evaluate Metatrace for training a
deep neural network online in the original training-set games
of the Arcade Learning Environment (ALE) [Bellemare et al.,
2013]. Without the use of either multiple actors or experience
replay, our method learns faster and achieves better perfor-
mance than an optimal fixed step-size in most of the games.
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2 Related Work
Meta-learning has a long history dating back to Schmidhu-
ber’s thesis [Schmidhuber, 1987], where a genetic program-
ming algorithm was applied to evolve better genetic pro-
gramming algorithms. Our work is closely related to IDBD
[Sutton, 1992] and autostep [Mahmood et al., 2012], which
are meta-gradient descent procedures for step-size tuning in
the supervised learning case. Also closely related are SID
and NOSID [Dabney, 2014], which analogize meta-gradient
descent procedures for the SARSA(λ) method [Sutton and
Barto, 2018]. Our approach differs primarily by explicitly ac-
counting for time-varying weights in the optimization objec-
tive for the step-size. We also extend the approach to AC(λ)
and to vector-valued step-sizes, as well as a mixed version
which combines scalar and vector step-sizes.

Meta-gradient RL [Xu et al., 2018] applies meta-gradient
descent to optimize γ and λ in AC(λ). They use multiple
parallel agents, deviating from the online RL case we focus
on.

It is worth noting that previous works such as TIDBD and
its extension AutoTIDBD [Kearney et al., 2019] tune vector
step-sizes online. That work focuses on TD(λ) for predic-
tion, and explores both vector and scalar step-sizes. They
demonstrate that both scalar and vector AutoTIDBD outper-
form ordinary TD(λ), while vector AutoTIDBD outperforms
a variety of scalar step-size adaptation methods. Aside from
focusing on control rather than prediction, our methods differ
from TIDBD in the meta-objective optimized by the step-size
tuning: they use one step TD error, while we use a more gen-
eral multi-step objective.

Our neural network experiments draw inspiration from the
work of Elfwing et al. [Elfwing et al., 2018], to our best
knowledge the only prior work to apply online RL with eli-
gibility traces to train a deep neural network. In their case,
the neural network is used as a function approximator in
SARSA(λ). They do not explore step-size tuning.

3 Background
We consider the RL problem, where a learning agent inter-
acting with an environment strives to maximize a reward sig-
nal. The problem is formalized as a Markov decision pro-
cess 〈S,A, p, r, γ〉. We consider stochastic environments and
stochastic policies. At each time-step the agent observes the
state St ∈ S and selects an action At ∈ A. Based on St and
At, the next state St+1 is generated by p(St+1|St, At). The
agent additionally observes a reward Rt+1, generated by r :
S×A → R. We focus on the control problem, where an agent
learns, through interaction with the environment, a policy π
that maximizes the expected return Gt =

∑∞
k=0 γ

kRt+k+1,
with discount factor γ ∈ [0, 1].

Action-value methods like Q-learning are often used for
RL control [Mnih et al., 2015, Watkins and Dayan, 1992].
However, actor-critic (AC) methods, which more directly op-
timize the expected return, are becoming increasingly popular
in Deep RL [Espeholt et al., 2018]. We will focus on AC, but
our proposed method is general enough to be applied to other
RL algorithms. AC methods learn a state value function for
the current policy, as well as a policy which attempts to max-

imize that value function. In particular, we will derive Meta-
trace for actor-critic with eligibility traces, AC(λ) [Degris et
al., 2012, Schulman et al., 2015].

We define the objective of AC(λ) in terms of the lambda
return, which is recursively defined as

Gλw,t = Rt+1 + γ
(
(1− λ)Vw(St+1) + λGλw,t+1

)
.

Gλw,t bootstraps future evaluations to a degree controlled by
λ. Here we defineGλw,t for a fixed weight vectorw; in Section
4, we will extend this to a time varying wt. Also, define the
TD-error δt = Rt + γVw(St+1) − Vw(St). Then we can
expand Gλw,t as the current state value estimate plus the sum
of future discounted δt values as

Gλw,t = Vw(St) +
∞∑
k=t

(γλ)k−tδk. (1)

TD(λ) can be understood as performing gradient descent
along the mean squared error

(
Gλw,t − Vw(St)

)2
between the

value function Vw and the lambda return Gλw,t. In the deriva-
tion of TD(λ), the target Gλw,t is taken as a constant despite
its dependence on w. For this reason, TD(λ) is often called
a semi-gradient method. Intuitively, this reflects our desire to
modify our current estimate to match our future estimates, not
the other way around. AC(λ), combines this mean squared
error objective with a policy improvement term, such that the
combined objective represents a trade-off between the quality
of our value estimates and the performance of our policy:

Jλ(w) =
1

2

( ∞∑
t=0

[
Gλw,t − Vw(St)

]2
−
∞∑
t=0

log(πw (At|St))
[
Gλw,t − Vw(St)

])
. (2)

As is in TD(λ), we aim to perform semi-gradient descent to
minimize equation (2). Along with Gλw,t, Vw(St) in the right
sum is taken to be constant. Similar to previous arguments,
the intuition is that we wish to improve our actor under the
evaluation of our critic, instead of modifying our critic to
make our actor’s performance look better. With this caveat in
mind, by the policy gradient theorem [Sutton et al., 2000], the
expectation of the gradient of the right term in equation (2) is
approximately equal to the negated gradient of the expected
return. This approximation is accurate to the extent that our
advantage estimate

(
Gλw,t − Vw(St)

)
is accurate. Descend-

ing the gradient of the right half of Jλ(w) is then ascending
the gradient of an estimate of expected return. Taking the
semi-gradient of equation (2) yields

∂

∂w
Jλ(w) = −

∞∑
t=0

(
∂Vw(St)

∂w

[
Gλw,t − Vw(St)

]
+

1

2

∂ log(πw (At|St))
∂w

[
Gλw,t − Vw(St)

])
Now, define for compactness

Uw(St)=̇Vw(St) +
1

2
log(πw (At|St))
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so that, applying equation (1), we can rewrite
∂

∂w
Jλ(w) = −

∞∑
t=0

∂Uw(St)

∂w

∞∑
k=t

(γλ)k−tδk

= −
∞∑
t=0

δt

t∑
k=0

(γλ)t−k
∂Uw(Sk)

∂w

and define the eligibility trace at time t as zt =
t∑

k=0

(γλ)t−k ∂Uw(Sk)
∂w , such that

∂

∂w
Jλ(w) = −

∞∑
t=0

δtzt. (3)

Offline AC(λ) makes updates in the direction of equation (3).
Online AC(λ), analogous to online TD(λ), is an approxima-
tion to this offline version (exact in the limit of quasi-static
weights) that updates weights after every time-step. Advan-
tages of the online version include making immediate use of
new information, and being applicable to continual learning1.
Online AC(λ) is defined by the following set of equations:

zt = γλzt−1 +
∂Uwt(St)

∂wt
, (4)

wt+1 = wt + αztδt.

Where α is the step-size parameter, controlling the magnitude
of each update. In practice, performance can be highly sensi-
tive the the value of α, hence tuning it online as we do in this
work is a worthwhile goal.

4 Algorithm
We present three variations of Metatrace for control using
AC(λ): scalar (single α for all model weights), vector (one
α per model weight), and finally a “mixed” version that at-
tempts to leverage the benefits of both. Additionally, we dis-
cuss two practical improvements over the basic algorithm:
normalization that helps to mitigate parameter sensitivity
across problems and avoid divergence; and entropy regular-
ization, which is commonly employed in AC to avoid prema-
ture convergence [Mnih et al., 2016].

4.1 Scalar Metatrace for AC(λ)

For convenience, we define our step-size as α = eβ , similar
to IDBD [Sutton, 1992]. We desire to optimize α to allow
our weights to efficiently track the non-stationary AC(λ) ob-
jective. To account for non-stationarity in the representation,
we define the objective with time-dependent weights

J βλ (w0..w∞) =
1

2

( ∞∑
t=0

[
Gλt − Vwt(St)

]2
−
∞∑
t=0

log(πwt (At|St))
[
Gλt − Vwt(St)

])
.

(5)
Gλt with no subscript w is defined as Gλt = Vwt(St) +∑∞
k=t(γλ)k−tδk, where δk = Rk+γVwk(Sk+1)−Vwk(Sk).

1Continual learning is the setting where an agent interacts with
an environment indefinitely, with no distinct episodes.

Our derivation is similar to Section 4.3.1 of Dabney’s the-
sis [Dabney, 2014], but explicitly accounts for the time-
dependency of wt. Regarding each wt as a function of β, dif-
ferentiating equation (5) under the same semi-gradient treat-
ment used in AC(λ) yields

∂

∂β
Jλ(w0..w∞)

= −
∞∑
t=0

∂Uwt(St)

∂β

[
Gλw,t − Vwt(St)

]
= −

∞∑
t=0

〈
∂Uwt(St)

∂wt
,
∂wt
∂β

〉 ∞∑
k=t

(γλ)k−tδk

= −
∞∑
t=0

δt

t∑
k=0

(γλ)t−k
〈
∂Uwt(St)

∂wt
,
∂wt
∂β

〉
.

To handle the above objective, we define an auxiliary eligibil-
ity trace as

zβ,t=̇
t∑

k=0

(γλ)t−k
〈
∂Uwk(Sk)

∂wk
,
∂wk
∂β

〉
(6)

such that
∂

∂β
Jλ(w0..w∞) = −

∞∑
t=0

δtzβ,t. (7)

As z itself is a sum of first-order derivatives with respect tow,
we approximate ∂zt

∂w = 0. Since log(πwt (At|St)) necessarily
involves some non-linearity, this is a first-order approxima-
tion even in the linear case. Furthermore, in the control case,
the weights affect action selection. Action selection, in turn,
affects expected weight updates. Hence, there are additional
higher order effects of modifying β on the expected weight
updates. As is in Dabney’s thesis [Dabney, 2014], we do not
account for this effect. We leave the question open of how to
account for this interaction in the online setting, and to what
extent it would make a difference in the algorithm. With the
above reasoning, let h(t) denote ∂wt/∂β, we update h(t) as

h(t+ 1) =
∂

∂β
[wt + αδtzt]

≈ h(t) + αδtzt + αzt
∂δt
∂β

= h(t) + αzt

[
δt +

〈
∂δt
∂wt

,
∂wt
∂β

〉]
= h(t) + αzt

[
δt +

〈
∂δt
∂wt

, h(t)

〉]
. (8)

Following equation (6)-(8), our Scalar Metatrace for AC(λ)
is described by

zβ ← γλzβ +

〈
∂Uwt(St)

∂wt
, h

〉
,

β ← β + µzβδt,

h← h+ eβz

[
δt +

〈
∂δt
∂wt

, h

〉]
.

Where µ is the meta-step-size parameter, controlling the up-
date magnitude for the step-size parameter itself. The update
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Algorithm 1 Normalized Scalar Metatrace for actor-critic
1: h← 0, β ← β0, v ← 0
2: for each episode do
3: zβ ← 0, u← 0
4: while episode not complete do
5: receive Vwt(St), πwt(St|At), δt, z
6: Uwt ← Vwt + 1

2 log(πwt (At|St))
7: zβ ← γλzβ +

〈
∂Uwt
∂wt

, h
〉

8: ∆β ← zβδt + ψ
〈
∂Hwt (St)

∂wt
, h
〉

9: v ← max(|∆β |, v + µ(|∆β | − v)

10: β ← β + µ
∆β

(v if v>0 else 1)

11: u← max(eβ
∣∣∣∂Uwt∂wt

∣∣∣2 , u+(1−γλ)(eβ
∣∣∣∂Uwt∂wt

∣∣∣2−
u))

12: M ← max (u, 1)
13: β ← β − log(M)

14: h← h+ eβ(z(δt +
〈
∂δt
∂wt

, h
〉

) + ψ
∂Hwt (St)

∂wt
)

15: output α = eβ

16: end while
17: end for

to zβ is an online computation of equation (6). The update to
β is exactly analogous to the AC(λ) weight update but with
equation (7) in place of equation (3). The update to h com-
putes equation (8) online. The full algorithm is detailed in
Algorithm 1, including entropy regularization and normaliza-
tion to be described shortly.

4.2 Vector Metatrace for AC(λ)

For the vector case, we denote αi = eβi to be the ith ele-
ment of a vector of step-sizes. Each element αi corresponds
to one weight such that the update for each weight element in
AC(λ) will use the associated αi. Having a separate αi for
each weight enables the algorithm to individually adjust how
quickly it tracks each feature. This is particularly important
when the state representation is non-stationary, including the
case where neural network-based models are used. We expect
our algorithm to assign high step-size to fast-changing, use-
ful features while annealing the step-size of features that are
either mostly stationary or not useful to avoid tracking noise.

Taking each wt to be a function of βi for all i, and follow-
ing IDBD [Sutton, 1992] in using the approximation ∂wi,t

∂βj
=

0 for all i 6= j, differentiating equation (2) with respect to βi
yields
∂

∂βi
J βλ (w0..w∞) = −

∞∑
t=0

∂Uwt(St)

∂βi

[
Gλt − Vwt(St)

]
≈ −

∞∑
t=0

∂Uwt(St)

∂wi,t

∂wi,t
∂βi

∞∑
k=t

(γλ)k−tδk

= −
∞∑
t=0

δt

t∑
k=0

(γλ)t−k
∂Uwk(Sk)

∂wi,k

∂wi,k
∂βi

.

Similarly we define an auxiliary eligibility trace, which is

Algorithm 2 Normalized Vector Metatrace for actor-critic

1: h← 0,
−→
β ← β0, −→v ← 0

2: for each episode do
3: −→zβ ← 0, u← 0
4: while episode not complete do
5: receive Vwt(St), πwt(At|St), δt, z
6: Uwt ← Vwt + 1

2 log(πwt (At|St))
7: −→zβ ← γλ−→zβ +

∂Uwt
∂wt
�
−→
h

8: ∆−→
β
← −→zβδt + ψ

∂Hwt (St)

∂wt
�
−→
h

9: −→v ← max(|∆−→
β
|,−→v + µ(|∆−→

β
| − −→v )

10:
−→
β ←

−→
β + µ

∆−→
β

(−→v where−→v >0 elsewhere 1)

11: u ← max
(〈
e
−→
β
∣∣∣∂Uwt∂wt

2〉
, u + (1 − γλ)(〈

e
−→
β
∣∣∣∂Uwt∂wt

2〉
− u
))

12: M ← max (u, 1)

13:
−→
β ←

−→
β − log(M)

14:
−→
h ←

−→
h + e

−→
β �

(−→z �(δt + ∂δt
∂wt

�
−→
h
)

+ψ
∂Hwt (St)

∂wt

)
15: output −→α = e

−→
β

16: end while
17: end for

vectorized in this section, with elements

zβ,i,t=̇
t∑

k=0

(γλ)t−k
∂Uwk(Sk)

∂wi,k

∂wi,k
∂βi

,

such that
∂

∂βi
Jλ(w0..w∞) ≈ −

∞∑
t=0

δtzβ,i,t.

To compute h(t)=̇
∂wi,t
∂βi

we use the immediate generalization

of the scalar case and the approximation ∂wi,t
∂βj

= 0, which
yields

hi(t+ 1)

≈ hi(t) + αizi,t

[
δt +

〈
∂δt
∂wt

,
∂wt
∂βi

〉]
≈ hi(t) + αizi,t

[
δt +

∂δt
∂wi,t

∂wi,t
∂βi

]
= hi(t) + αizi,t

[
δt +

∂δt
∂wi,t

hi(t)

]
.

Therefore, Vector Metatrace for AC(λ) is described by

zβ ← γλzβ +
∂Uwt(St)

∂wt
� h,

β ← β + µzβδt,

h← h+ eβ � z �
(
δt +

∂δt
∂wt
� h
)
,

where � denotes the Hadamard product. The full algorithm
is detailed in Algorithm 2.

We now describe three variations based on Scalar Meta-
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trace and Vector Metatrace that can be helpful in practice.

Mixed Metatrace
We explore a mixed algorithm where a vector correction to
the step-size

−→
β is learned for each weight and added to a

global value β̂ which is learned collectively for all weights.
The idea is that through β̂ Mixed Metatrace can make use
of all available data to learn a good base step-size, while

−→
β

can be adjusted per parameter where it is useful. We omit
the algorithm for this case for brevity: it is a straightforward
combination of the scalar and vector algorithms.

Entropy Regularization
In practice, it is often helpful to add an entropy bonus,

−ψ
∞∑
t=0

Hw(St), to the objective function to discourage pre-

mature convergence [Mnih et al., 2016]. We found it helpful
to also include the entropy bonus in the meta-objective, which
requires modification to the step-size tuning procedure. This
modification is included in Algorithms 1 and 2.

Normalization
As discussed in autostep [Mahmood et al., 2012], even in
the supervised learning case, the meta-gradient descent al-
gorithms discussed so far can be unstable and sensitive to the
parameter µ. To combat this, we normalize the meta-update,
and clip the step-size to avoid overshooting in a manner anal-
ogous to the procedure introduced in autostep.

5 Experiments and Results
5.1 Mountain Car
We begin by testing Scalar Metatrace on the mountain car do-
main from OpenAI Gym [Brockman et al., 2016]. A reward
of −1 is given for each time-step until the goal is reached or
200 steps are taken. In this experiment, we use linear function
approximation with tile-coding for state representation. The
tiling size is 10 × 10 where 16 tilings create a feature vec-
tor of size 1600. The learning algorithm is based on AC(λ)
with γ fixed to 0.99 and λ fixed to 0.8 in all experiments. For
mountain car, we use no entropy regularization.

Figure 1a shows the results for a variety of α values with-
out step-size tuning. α values were chosen as powers of 2
which range from excessively low to excessively high (where
the algorithm diverges). Figure 1b shows the results for Nor-
malized Scalar Metatrace with different initial α values. In
contrast to the untuned baseline, the learning curves of differ-
ent αs ares very similar. Though the µ value has to be speci-
fied, similar results hold for a broad range of µ values below
µ ≥ 2−6, above which the algorithm becomes unstable.

5.2 Drifting Mountain Car
Motivated by the noisy, non-stationary experiment from
IDBD [Sutton, 1992], we create drifting mountain car by
adding noise and non-stationarity to the state representation.
The environment is intended to provide a proxy for the issues
inherent in representation learning such as using a neural net-
work function approximator. We use the same tiling features
as in the original mountain car experiment. However, at each

(a) No step-size tuning

(b) Normalized Scalar Metatrace with µ = 2−7

Figure 1: Return v.s. training episodes on mountain car for a variety
of initial α values with and without step-size tuning. Each curve
shows the average of 10 random seeds, smoothed over 20 episodes.

time-step, each feature has a chance to randomly flip from in-
dicating activation with 1 to −1 and vice-versa. We define a
uniform flipping probability per time step across all features
that we refer to as the drift rate, which is 6× 10−6 in our ex-
periment. Additionally, we add 32 noisy features which are 1
or 0 with probability 0.5 for every time-step.

Due to the non-stationarity, an arbitrarily small α is not
asymptotically optimal, as it is unable to track the changing
features. Because of the noise, a scalar α will be suboptimal
as well. Nonzero αi values for noisy features lead to weight
updates when that feature is active in a particular state. This
random fluctuation adds noise to the learning process. The
noise can be avoided by annealing associated αis to zero,
which is what Vector and Mixed Metatrace are expected to
achieve. We demonstrate the effectiveness in Figure 2, for
Scalar, Vector, and Mixed Metatrace methods along with a
baseline with no online tuning. The best µ value for each
method was selected from {2−i|i ∈ {6, ..., 11}}. We observe
that Mixed Metatrace maintains the most stable performance
in the presence of non-stationarity.

To better understand the algorithm, we illustrate the evolu-
tion of various elements of the log step-size β under Mixed
Metatrace, in Figure 3. Value βs refer to the log step-sizes
of weights associated with the value function while policy βs
refer to those associated with the policy. Noisy βs refer to the
weights attached to noisy features, while informative βs refer
to those associated with the tile-coding which are expected
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Figure 2: Return v.s. training episodes on drifting mountain car.
Each curve shows the average of 20 random seeds, smoothed over
40 episodes.

Figure 3: Evolution of average β values for various weights on drift-
ing mountain car for initial α = 2−10, µ = 2−10. Each curve shows
the average of 20 repeats, smoothed over 40 episodes.

to be useful. While all the step-sizes associated with noisy
features are suppressed compared to the informative features,
we observe a much stronger separation between the noisy and
informative features for the value function than for the policy.
One possible reason for this is that small errors in the value
function have far more impact on optimizing the objective Jβλ
in mountain car than small imperfections in the policy. Learn-
ing a good policy requires fine-grained ability to distinguish
the value of similar states, as individual actions will have a
relatively minor impact on the car. On the other hand, errors
in the value function in one state have a large negative impact
on both the value learning of other states and the ability to
learn a good policy.

5.3 Arcade Learning Environment
Finally, we test our algorithm with the 5 original training-
set games of the ALE [Bellemare et al., 2013]. We use a
convolutional neural network architecture similar to that used
in DQN [Mnih et al., 2013], with SiLU and dSiLU activations
to improve the performance in the online setting [Elfwing et
al., 2018]. The policy and value network share all but the final
output layer. We fix µ = 1 × 10−3 and run all experiments
up to 1.25 × 107 observed frames. We use sticky actions to
add stochasticity to the environments [Machado et al., 2017].
Figure 4 shows the results of the ALE experiments.

(a) space invaders (b) seaquest

(c) asterix (d) beam rider

Figure 4: Return v.s. learning steps for the ALE games. Each
curve is the average of 5 random seeds, smoothed over 40 episodes.
Solid lines correspond to Metatrace with meta-step-size parameter
µ = 1 × 10−3 while dotted lines correspond to the fixed step-size
baseline.

Metatrace significantly decreases the sensitivity to the ini-
tial choice of α. In most cases, Metatrace also improves the
performance while accelerating learning. In space invaders,
each α value tested outperforms the best α without online
tuning. In seaquest, two of the three do. In asterix, the fi-
nal performance of all initial αs with Metatrace was similar
to the best-untuned α value, but the learning process is much
faster. In beam rider, however, using no online tuning results
in faster learning, especially for a well-chosen initial α. This
result is possibly due to the high α sensitivity and high sam-
ple complexity in the game. The impact of changes in α only
occurs after a very long period, making the online tuning es-
pecially difficult. In future work, it would be interesting to
explore how Metatrace could be made robust to this issue.

6 Conclusion
We propose Metatrace, a novel set of algorithms based on
meta-gradient descent for reinforcement learning, which per-
forms step-size tuning for AC(λ). Our result extends the
methods of IDBD [Sutton, 1992] and autostep [Mahmood et
al., 2012] from supervised learning to reinforcement learning,
which involves several technical challenges. To achieve this,
we derive an eligibility trace-like mechanism to allow the
meta-objective to account for time-dependent weights. We
show that that Scalar Metatrace improves robustness to ini-
tial step-size choice, while Mixed Metatrace facilitates learn-
ing in an RL problem with non-stationary state representa-
tion. We also empirically test our approach for training a neu-
ral network online for several games in the Arcade Learning
Environment, with nonlinear function approximation, where
the state representation is inherently unstable. In most of the
games, Metatrace allows a range of initial step-sizes to learn
faster. Metatrace can also achieve better performance com-
pared to the best-fixed choice of the step-size.
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