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Abstract

Because of the intrinsic complexity in computation,
three-dimensional (3D) reconstruction is an essen-
tial and challenging topic in computer vision re-
search and applications. The existing methods for
3D reconstruction often produce holes, distortions
and obscure parts in the reconstructed 3D model-
s, or can only reconstruct voxelized 3D models for
simple isolated objects. So they are not adequate
for real usage. From 2014, the Generative Adver-
sarial Network (GAN) is widely used in generating
unreal dataset and semi-supervised learning. So the
focus of this paper is to achieve high quality 3D re-
construction performance by adopting GAN princi-
ple. We propose a novel semi-supervised 3D recon-
struction framework, namely SS-3D-GAN, which
can iteratively improve any raw 3D reconstruction
models by training the GAN models to converge.
This new model only takes real-time 2D observa-
tion images as the weak supervision, and doesn’t
rely on prior knowledge of shape models or any
referenced observations. Finally, through the quali-
tative and quantitative experiments & analysis, this
new method shows compelling advantages over the
current state-of-the-art methods on Tanks & Tem-
ples reconstruction benchmark dataset.

1 Introduction and Related Work

In computer graphics and computer vision areas, 3D recon-
struction is the technique of recovering the shape, structure
and appearance of real objects. Because of its abundant and
intuitional expressive force, 3D reconstruction is widely ap-
plied in construction [Dai et al., 2017], geomatics [Nex and
Remondino, 2014], archaeology [Johnson-Roberson ef al.,
20171, game and virtual reality [Sra ef al., 2016] areas, etc.
Researchers have made significant progress on 3D recon-
struction in the past decades. The state-of-the-art 3D recon-
struction methods can be divided into four categories: Struc-
ture from motion (SFM) based, RGB-D camera based, Shape
prior based and Generative-Adversarial based methods.

In this paper, we propose a semi-supervised 3D reconstruc-
tion framework named SS-3D-GAN. It combines latest GAN
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principle as well as advantages in traditional 3D reconstruc-
tion methods like SFM and multi-view stereo (MVS). By
the fine-tuning adversarial training process of 3D generative
model and 3D discriminative model, SS-3D-GAN can itera-
tively improve the reconstruction quality in semi-supervised
manner. The main contribution of this paper includes:

e SS-3D-GAN is a weakly semi-supervised framework. It
only takes collected 2D observation images as the su-
pervision, and has no reliance of 3D shape priors, CAD
model libraries or any referenced observations.

e Unlike many state-of-the-art methods which can only
generate voxelized objects or some simple isolated ob-
jects such as table, bus, SS-3D-GAN can reconstruct
complicated 3D objects, and still obtains good results.

e By establishing evaluation criterion of 3D reconstructed
model with GAN, SS-3D-GAN simplifies and optimizes
the training process. It makes the application of GAN to
complex reconstruction possible.

1.1 SFM and MVS Based Method

In the traditional SFM and MVS method, two-view recon-
structed results are firstly estimated upon the feature match-
ing between two images. Then, 3D models are reconstructed
by initializing from successful two-view reconstructed result-
s, iteratively adding new matched images, triangulating fea-
ture matches, and bundle-adjusting the structure and motion.
The time complexity of traditional SFM and MVS method
is often known as O(n*) with respect to the number of cam-
eras. The representative work namely VisualSFM, further im-
proves the performance. The time complexity is reduced to
O(n) on many major time-consuming steps including bundle
adjustment. However, this method has obvious restrictions.
They come from the key technical assumption that features
are able to be matched across multi-views. If the viewpoints
are separated by a large baseline, feature matching will be ex-
tremely problematic because of local appearance changes or
self-occlusions. Another key limitation is that if the surface
of the reconstructed objects lacks of texture or has specular
reflections, the feature matching will also be in vain.

1.2 RGB-D Camera Based Method

The most famous work is KinectFusion [Newcombe et al.,
2011]. With the depth information provided, the method
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can continuously tracks the six degrees-of-freedom pose of
a RGB-D camera. The tracking accuracy relies on the feature
matching between RGB frames for pose tracking. Recon-
structed model is obtained by iteratively integrating depth and
tracking information into a global dense volumetric model.
Whelan [Whelan et al., 2016] further improves the Kinect-
Fusion in tracking accuracy, robustness and reconstruction
quality. The improvement is achieved by adopting dense
frame-to-model camera tracking and windowed surfel-based
fusion coupled with frequent model refinement through non-
rigid surface deformations. The main restriction of this
method type is that there are obvious holes, distortions and
obscure parts exist in the 3D reconstructed model due to self-
occlusion, light reflection, fusion error of depth sensor data,
etc.

1.3 Shape Prior Based Method

Representative work is 3D-R2N2 [Choy et al., 2016]. It us-
es deep convolutional neural network to learn the mapping
relation from observed 2D images to corresponding under-
lying 3D shapes of target objects from a large collection of
training data. Taking the advantages of LSTM network, it
takes in one or more images of an object instance from ar-
bitrary viewpoints and outputs the reconstructed result in the
3D voxelized form. The main advantage is this method can be
applied to single-view and multi-view 3D reconstruction by
selectively updating hidden representations with the control
of input gates and forget gates. It can get the 3D reconstruct-
ed model even the information from different viewpoints are
partly conflicted. However, the restrictions are also obvious.
The success of 3D-R2N2 depends on training dataset of 3D
CAD models and the corresponding 2D observations. And it
can only reconstruct some categories of isolated objects into
3D voxelized form.

1.4 Generative-Adversarial Based Method

Representative work is 3D-GAN [Wu et al., 2016]. 3D-GAN
introduces generative-adversarial loss as the criterion to clas-
sify whether an object is real or reconstructed. Because 3D
objects are highly structured, generative-adversarial criteri-
on has better performance on capturing the structural differ-
ence of 3D objects than traditional voxel-wise independent
heuristic criterion. It also solves the criterion-dependent over-
fitting problem. Most obvious advantage comes from GAN
principle. With GAN framework, it learns the mapping rela-
tion from low-dimensional probabilistic space to 3D objects
space. So the reconstruction process doesn’t depend on train-
ing dataset of 3D CAD models and corresponding 2D refer-
ence observations. But limitation is also caused by GAN prin-
ciple. Currently, even many works have improved the training
process of GAN, but it is still hard to converge even in 2D s-
pace. Because of the complexity of 3D space, it can only
reconstruct simply isolated objects into 3D voxelized form,
which is limited in size, color, texture style, and quality.

2 SS-3D-GAN for Reconstruction
2.1 Principle of SS-3D-GAN

Imagine the following situation, a person wants to discrimi-
nate the real scene and artificially reconstructed scene model.
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Firstly, he observes in the real 3D scene. Then he observes
in the reconstructed 3D scene model at exactly the same po-
sitions and viewpoints. If all the observed 2D images in the
reconstructed 3D scene model are exactly the same as the ob-
served 2D images in the real 3D scene. Then this person can
hardly differentiate reconstructed 3D scene model from the
real 3D scene. For the purpose of 3D reconstruction, we can
accumulate the difference between each observed 2D image
in the reconstructed 3D model and the observed 2D image in
the real 3D scene. If the difference at each position and view-
point is small enough, we can regard it as a high-quality 3D
reconstruction result. Fig. 1 illustrates this concept.

To combine the purpose of 3D reconstruction and GAN
model, we propose the novel 3D reconstruction framework,
namely SS-3D-GAN. For the proposed SS-3D-GAN model,
it consists of the 3D generative network and the 3D discrimi-
native network. Here, we can imagine the discriminative net-
work as the observer. So the purpose of the generative net-
work is to reconstruct new 3D model which is aligned with
the real 3D scene, and attempts to confuse the discriminative
network, i.e., the observer. While the purpose of the discrim-
inative network is to classify reconstructed 3D model by the
generative network and the real 3D scene. When the SS-3D-
GAN model achieves Nash Equilibrium, i.e., the generative
network can reconstruct 3D model which exactly aligns with
the character and distribution of real 3D scene. And at the
same time, the discriminative network returns the classifica-
tion probability 0.5 for each observation pair of generated and
real 3D scene. This is also aligned with the evaluation criteri-
on of 3D reconstructed. In conclusion, solving the 3D recon-
struction problem is equal to making the SS-3D-GAN model
well-trained and converged.

2.2 Workflow of SS-3D-GAN

Firstly, to start the training process of SS-3D-GAN, we gen-
erate a rough 3D reconstructed model as the initialization
of generative network. The representation of the 3D mod-
el is aligned with “ply” model format. The vertex and col-
or info are separately stored in triple structures. To gener-
ate this initial 3D model, we use the camera to collect video
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stream as ground truth. The video stream is served as the
raw data to generate 2D observed images, camera trajectory,
as well as the original rough 3D model with spatial mapping
method [Pillai et al., 2016]. This method generates 3D model
based on depth sensing estimation by comparing the differ-
entials between adjacent frames. The 2D observed images
captured from video stream are also served as ground-truth
image dataset. After the initialization, we can start the it-
erative fine-tuning training process of generative network and
discriminative network in SS-3D-GAN. The overall workflow
of SS-3D-GAN is also shown in Fig. 1.

As SS-3D-GAN needs to get the observed 2D images in
the reconstructed 3D scene model, we import the reconstruct-
ed 3D model into “Blender” (a professional and open-source
3D computer graphics software toolset) and “OpenDR” [Lop-
er and Black, 2014]. OpenDR is a differentiable renderer
that approximates the true rendering pipeline for mapping 3D
models to 2D scene images, as well as back-propagating the
gradients of 2D scene images to 3D models. The differen-
tiable renderer is necessary. Because GAN structure needs to
be fully differentiable to pass the discriminator’s gradients to
update the generator.

In the Blender, we setup a virtual camera with the same
optical parameters as the real camera to collect video stream
in real 3D scene. As the camera trajectory is calculated while
processing ground truth video stream, we move the virtual
camera along this trajectory, and use renderer to capture the
2D images at the same positions and viewpoints as in the real
3D scene. Hence, we are able to generate the same number of
2D fake observed images in the reconstructed 3D model and
2D ground truth images captured from video stream.

When the 2D scene images of ground truth and fake obser-
vation are ready, we use the discriminative network to classify
them as the real or fake 2D images. At the same time, we cal-
culate the overall loss value through loss function. With the
overall loss, SS-3D-GAN will continue fine-tuning training
process, and create new 3D generative network and 3D dis-
criminative network. The new trained 3D generative network
will generate a new reconstructed 3D model for virtual cam-
era to observe. And the new observed fake 2D images as well
as the ground-truth images will be fed into the new 3D dis-
criminative network for classification. The workflow of SS-
3D-GAN will iteratively train and create new 3D generative
and discriminative networks, until the overall loss converges
to the desired value.

2.3 Loss Function Definition

The overall loss function of SS-3D-GAN consists of two
parts: reconstruction 10sS Lpecons and cross entropy loss
Lss_3p_gan. So the loss function is written as follows:

Loverail = LRecons + A Lss—3p-Gan, (D
where A is parameter to adjust percentages between recon-
struction loss and cross entropy loss.

In the SS-3D-GAN framework, the reconstruction quality
is judged by the discriminative network. So the reconstruc-
tion loss is provided by calculating the differences between
real and fake 2D scene image pairs from the discriminator.
In this paper, three quantitative image effect indicators are
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applied to measure the differences [Yu, 2016]. Peak Signal
to Noise Ratio (PSNR) indicator is applied to assess the ef-
fect difference from the gray-level fidelity aspect. Structural
Similarity (SSIM) [Wang et al., 2004] indicator which is an
image quality assessment indicator based on the human vi-
sion system is applied to assess the effect difference from the
structure-level fidelity aspect. Normalized Correlation (NC)
indicator which represents the similarity between the same
dimension images is also taken into consideration.

SSIM indicator value of two images is in the range of 0 to
1. NC indicator’s value is in the range of -1 to 1. If the value
of SSIM or NC is closer to 1, it means there is less difference
between image x and y. For PSNR , the common value is in
the range of 20 to 70 dB. So we apply the extended sigmoid
function to regulate its value to the range of O to 1.

1

E_Sigm (PSNR (x,y)) = [ o O (PSN Ry ) ()

So the reconstruction loss is written as follows:

N
LRecons = Z {Oé : [1 - E,Szgm (PSNRGJFJ>] —+
7=1 3)

B (1 - SSIMGij) +7- (1 - NCGij) }

where «, 3,7y are the parameters to adjust the percentages a-
mong the loss values from PSNR, SSIM and NC indicators.
The subscript G;F; represent the pair of ground truth and
fake observed 2D scene images. The symbol N represents
the total amount of 2D image pairs. In the next session, we
will discuss details of cross entropy loss for SS-3D-GAN.

2.4 SS-3D-GAN Network Structure

As aforementioned, the 3D model learned in SS-3D-GAN is
mesh data. The traditional method to handle mesh 3D data is
sampling it into voxel representations. Then mature convo-
lutional neural network (CNN) concept can be applied to this
grid-based structured data, such as volumetric CNN [Qi ez al.,
2016]. However, the memory requirement is O(M?), which
will dramatically increase with the size of target object. The
memory boundary also leads to the low resolution and poor
visual quality of 3D models.

3D mesh data can be represented by vertices and edges.
Because vertices and edges are basic elements of graph, so
we use the graph data structure to represent the 3D model
in SS-3D-GAN as Gzp = (V,A), where V € RV*" is the
matrix with N vertices and F features each. A € RV*" is the
adjacency matrix, which defines the connections between the
vertices in G3p. The element a;; is defined as 1 if there is an
edge between vertex i and j. Other elements are 0 in matrix A
if no edges are connected. The memory requirement of G3p
is O(N?+ F N), which is an obvious memory saving over the
voxel representation memory cost [Dominguez et al., 2017].

Then we can apply Graph CNN [Dominguez et al., 2017]
to Gsp. We allow a graph be represented by L adjacency
matrices at the same time instead of one. This can help SS-
3D-GAN to learn more parameters from the same sample and
apply different filters to emphasize different aspects of the
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Figure 2: Details of generative network structure and discriminative network structure in SS-3D-GAN

data. The input data for a graph convolutional layer with C
filters includes:

Vin c RNXF,A c RNXNXL7H c RLXFXC,b c RC, (4)

where V;,, is an input graph, A is a tensor to represent L ad-
jacency matrices for a particular sample, H is the graph fil-
ter tensor, and b is the bias tensor. The filtering operation is
shown as follows.

Vout = (A X V;J;L)(Q)H%,;,) +b7 Vout S RNXC (5)

Like traditional CNN, this operation can be learned
through back-propagation and it is compatible with opera-
tions such as ReLLU, batch normalization, etc.

For SS-3D-GAN, the discriminative network needs bril-
liant classification capability to handle the complex 2D scene
images which is the projection of 3D space. So we apply
the 101-layer ResNet [He er al., 2016] as the discriminative
network. The structure of generative network is almost the
same as the discriminative network. Because the generative
network needs to reconstruct the 3D model, so we change al-
1 the convolutional layers to graph convolutional layers. The
typical ResNet applies batch normalization to achieve the sta-
ble training performance. However, the introduction of batch
normalization makes the discriminative network to map from
a batch of inputs to a batch of outputs. In the SS-3D-GAN,
we want to keep the mapping relation from a single input to
a single output. We replace batch normalization by layer nor-
malization for the generative and discriminative networks to
avoid the correlations introduced between input samples. We
also replace ReLU with parametric ReLU for the generative
and discriminative networks to improve the training perfor-
mance. Moreover, to improve the convergence performance,
we use Adam solver instead of stochastic gradient descen-
t (SGD) solver. In practice, Adam solver can work with a
higher learning rate when training SS-3D-GAN. The detailed
network structures are shown in Fig. 2.

Based on the experiments in [Guizilini and Ramos, 2016],
Wasserstein GAN (WGAN) with gradient penalty can suc-
ceed in training the complicated generative and discrimina-
tive networks like ResNet. So we introduce the improved

training method of WGAN into SS-3D-GAN training pro-
cess. The target of training the generative network G and
discriminative network D is as follows.

_E [D(x)],

X~

min max xE)T [D (x)] (6)
where symbol P, is the real scene images distribution and
symbol P is the generated scene images distribution. Sym-
bol x is implicitly generated by generative network G. For
the raw WGAN training process, the weight clipping is easy
to result in the optimization difficulties including capacity un-
deruse, gradients explosion or vanish. For improvement, the
gradient penalty as a softer constraint is adopted instead. So
the cross entropy loss for SS-3D-GAN is written as follows.

Lss—sp-can = E (D)~ _E [D(®)] -

(N
0- E |(IV:D®)]l, — 1],

where 6 is the parameter to adjust the percentage of gradient
penalty in the cross entropy loss. P; is implicitly defined as
the dataset which is uniformly sampled along straight lines
between pairs of points come from P,. and P, distributions.
The value of this cross entropy loss can quantitatively indicate
the training process of SS-3D-GAN.

3 Experimental Results

3.1 Qualitative Performance Experiments

With the initial rough 3D reconstructed model generated by
spatial mapping, we initialize parameters in loss functions.
We set the value of parameters as follows: A = 0.7,a =
0.25,8 = 0.6,7 = 0.15,0 = 10. In this experiment, we
use 600 scene images as weak supervision. The learning rate
of generative and discriminative networks is 0.063. We use
PyTorch as the framework, and train the SS-3D-GAN with
the iterative fine-tuning process of 150 epochs.

Typical samples of reconstructed 3D models of Tanks and
Temples dataset are shown in Fig. 3. Compared with ground
truth provided by benchmark, it proves the reconstruction ca-
pability of SS-3D-GAN framework in qualitative aspect.
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Figure 3: Reconstructed results in Tanks and Temples dataset. Column 1 shows ground truth. Column 2 shows the reconstructed 3D model
with COLMAP method. Column 3 shows the reconstructed 3D model with SS-3D-GAN. Row 4 shows the details of truck examples.

Algorithms Family Francis Horse Lighthouse M60 Panther Playground Train Auditorium Ballroom Courtroom Museum Palace Temple
COLMAP 56.02 3435 40.34 41.07 5351 39.94 38.17 41.93 31.57 24.25 38.79 45.12 27.85  34.30
MVE 37.65 18.74  11.15 27.86 3.68 2555 12.01 20.73 6.93 9.65 21.39 25.99 1255 1474
MVE + SMVS 30.36 17.80 1572 29.53 3454 29.59 11.42 22.05 8.29 10.62 21.24 18.57 1145 1276
OpenMVG + MVE 3888 2244 1827 31.98 31.17 3148 23.32 26.11 14.21 19.73 25.94 28.33 1079 17.94
OpenMVG +PMVS | 61.26  49.72  37.79 47.92 47.10  52.88 41.18 37.20 26.79 29.10 42.70 47.82 2378 2858
OpenMVG + SMVS | 31.87 2136  16.69 31.63 3471  33.83 32.61 26.32 16.45 14.72 2292 20.05 12.81 15.07
SS-3D-GAN 66.63 4899 4215 50.07 5335 52.89 46.30 41.21 38.01 29.08 43.04 48.23 3059 3345
VisualSfM + PMVS | 59.13  38.67 35.25 48.92 5320 53.74 46.02 33.69 37.57 29.75 41.31 40.36 3116 18.69

Table 1: Precision (%) for Tanks and Temple Dataset

3.2 Quantitative Comparative Experiments

We compare SS-3D-GAN with the state-of-the-art 3D recon-
struction methods in various scenes benchmark. Here are the
dataset we used in quantitative experiments.

Tanks and Temples dataset [Knapitsch ez al., 2017] is de-
signed for evaluating image-based and video-based 3D recon-
struction algorithms. The benchmark includes both outdoor
scenes and indoor environments. It also provides the ground
truth of 3D surface model and its geometry. So it can be used
to have a precise quantitative evaluation of 3D reconstruction
accuracy.

As most of the state-of-the-art works in the shape prior
based and generative-adversarial based method categories are
target for single object reconstruction, and cannot handle the
complicated 3D scene reconstruction. Moreover, their results
are mainly represented in voxelized form without color. So
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for fair comparison, we just take the state-of-the-art work-
s in SFM & MVS based and RGB-D camera based method
categories which have similar 3D reconstruction capability
and result representation form into comparative experiments.
We choose VisualSFM [Wu and others, 2011], PMVS [Fu-
rukawa and Ponce, 2010], MVE [Fuhrmann et al., 2014],
Gipuma [Galliani et al., 2015], COLMAP [Schénberger and
Frahm, 2016], OpenMVG [Moulon et al., 2016] and S-
MVS [Langguth et al., 2016] to compare with SS-3D-GAN.
Beyond these, we also evaluate some combinations of meth-
ods which provides compatible interfaces.

For comparative evaluation, the first step is aligned recon-
structed 3D models to the ground truth. Because the methods
can estimate the reconstructed camera poses, so the alignment
is achieved by registering them to ground-truth camera pos-
es [Knapitsch et al., 2017].
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Algorithms Family Francis Horse Lighthouse M60 Panther Playground Train Auditorium Ballroom Courtroom Museum Palace Temple
COLMAP 45.82 1646 1879 49.34 59.69  57.01 66.61 42.15 10.73 26.29 31.40 38.44 1336 23.56
MVE 68.52 3275 1474 68.59 8.14 75.40 3.83 49.32 2.92 18.26 40.21 52.05 14.79 19.51
MVE + SMVS 30.47 15.62 7.82 41.06 4520 5271 1.34 20.86 0.51 4.96 14.13 21.03 5.84 5.80
OpenMVG + MVE 69.70 3791 24.01 73.21 7115 77.41 84.71 57.69 15.22 39.72 43.42 55.74 2.20 3141
OpenMVG + PMVS | 30.85 10.77 7.73 28.73 30.04  24.19 25.88 22.58 2.48 7.63 13.93 20.99 3.94 8.18
OpenMVG + SMVS | 31.99 18.66  13.65 43.16 4551  54.02 39.91 24.02 441 9.54 17.46 24.11 6.82 10.35
SS-3D-GAN 69.31 38.11  25.12 72.89 69.97  77.60 83.55 55.72 15.47 37.66 43.59 54.83 1474 32.28
VisualSfM + PMVS | 28.02 7.77 6.73 27.83 3436  25.07 28.86 8.25 2.49 6.63 10.20 13.30 4.15 1.13
Table 2: Recall (%) for Tanks and Temple Dataset
Algorithms Family Francis Horse Lighthouse M60 Panther Playground Train Auditorium Ballroom Courtroom Museum Palace Temple
COLMAP 50.41 2226  25.64 44.83 56.43 4697 48.53 42.04 16.02 25.23 34.71 41.51 18.06  27.93
MVE 48.60  23.84 12.70 39.63 5.07 38.17 5.81 29.19 4.11 12.63 27.93 34.67 13.58 16.79
MVE + SMVS 3041 16.64  10.44 3435 39.16  37.90 2.40 21.44 0.96 6.76 16.97 19.72 7.73 7.98
OpenMVG + MVE 49.92 28.19  20.75 44.51 4335 4476 36.57 35.95 14.70 26.36 32.48 37.57 3.65 22.84
OpenMVG + PMVS | 41.04 1770 12.83 35.92 36.68  33.19 31.78 28.10 4.54 12.09 21.01 29.17 6.76 12.72
OpenMVG + SMVS | 31.93 1992 15.02 36.51 39.38  41.60 35.89 25.12 6.96 11.58 19.82 21.89 8.90 12.27
SS-3D-GAN 67.94  42.87 3148 59.36 60.54 6291 59.58 47.38 21.99 32.82 43.31 51.32 19.89  32.85
VisualSfM + PMVS | 38.02 1294 1130 35.48 41.75  34.19 35.47 13.25 4.67 10.84 16.36 20.01 7.32 2.13

Table 3: F-score (%) for Tanks and Temple Dataset

The second step is sampled the aligned 3D reconstructed
model using the same voxel grid as the ground-truth point
cloud. If multiple points fall into the same voxel, the mean of
these points is retained as sampled result.

We use three metrics to evaluate the reconstruction quality.
The precision metric quantifies the accuracy of reconstruc-
tion. Its value represents how closely the points in recon-
structed model lie to the ground truth. We use R as the point
set sampled from reconstructed model and G as the ground
truth point set. Then the precision metric of the reconstructed
model for any distance threshold e is defined as follows.

> [drse < €]
rerR

P(e):T’

®)
where [-] is the Iverson bracket. The recall metric quantifies
the completeness of reconstruction. Its value represents to
what extent all the ground-truth points are covered. The recall
metric of the reconstructed model for any distance threshold
e is defined as follows.

> ldg—r < €]
_ geG

|G

Precision metric alone can be maximized by producing a very
sparse point set of precisely localized landmarks. While re-
call metric alone can be maximized by densely covering the
whole space with points. To avoid the situation, we combine
precision and recall together in a summary metric F-score,
which is defined as follows.

Fle) =

R(e) 9

2P(e)R(e)

P(e) + R(e) (10)

Either aforementioned situation will drive F-score metric to
0. A high F-score can only be achieved by the reconstructed
model which is both accurate and complete.

The precision, recall and F-score metrics for Tanks & Tem-
ples benchmark dataset are shown in Table 1~ 3, respective-
ly. According to the F-score metric obtained on each of the

benchmark scenes in this dataset, SS-3D-GAN outperforms
all other state-of-the-art 3D reconstruction methods based on
SFM & MVS and RGB-D camera.

In the Tanks & Temples dataset, for precision metric, the
closest competitor is COLMAP and VisualSFM + PMVS al-
gorithms. For recall metric, the closest competitor is Open-
MVG + MVE algorithm. But for the aggregate F-score met-
ric, SS-3D-GAN can still achieve 1.1X~1.5X relative im-
provement over the second highest F-score algorithms.

4 Conclusion and Future Works

We propose the novel 3D reconstruction framework to
achieve high quality 3D reconstructed models of complicated
scene. SS-3D-GAN transfers the traditional 3D reconstruc-
tion problem to the training and converge issue of GAN mod-
el. Due to its weakly semi-supervised principle, SS-3D-GAN
has no reliance on 3D shape priors. So it is very suitable to
complicated industrial and commercial reconstruction appli-
cations in real business. SS-3D-GAN also provides the quan-
titative indicators to measure the quality of 3D reconstructed
model from human observation view angle. So it can also be
used to mentor human’s design work in the 3D modeling soft-
ware, such as role modeling for video games, special visual
effects for films, simulator design for autonomous driving,
etc.

In this paper, we use Blender as the tool to operate the 3D
reconstructed model. However the APIs provided by Blender
is not user-friendly. It leads to the extra time consumption-
s for training SS-3D-GAN. In the future, we will solve this
issue to improve the reconstruction efficiency.

The SS-3D-GAN modle is trained from initial rough 3D
reconstructed model [Pillai ef al., 2016]. So the quality of
initial rough 3D model will affect the final result of SS-3D-
GAN. In the future, we will make quantitative analysis of the
influence of initial rough model to SS-3D-GAN. Also lighting
influence will be analysed in the future work.
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