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Abstract

Recently, Variational Autoencoders (VAEs) have
been successfully applied to collaborative filtering
for implicit feedback. However, the performance
of the resulting model depends a lot on the ex-
pressiveness of the inference model and the laten-
t representation is often too constrained to be ex-
pressive enough to capture the true posterior dis-
tribution. In this paper, a novel framework named
VAEGAN is proposed to address the above issue.
In VAEGAN, we first introduce Adversarial Vari-
ational Bayes (AVB) to train Variational Autoen-
coders with arbitrarily expressive inference mod-
el. By utilizing Generative Adversarial Network-
s (GANs) for implicit variational inference, the
inference model provides better approximation to
the posterior and maximum-likelihood assignment.
Then the performance of our model is further im-
proved by introducing an auxiliary discriminative
network using adversarial training to achieve high
accuracy in recommendation. Furthermore, con-
tractive loss is added to the classical reconstruction
cost function as a penalty term to yield robust fea-
tures and improve the generalization performance.
Finally, we show that the performance of our pro-
posed VAEGAN significantly outperforms state-of-
the-art baselines on several real-world datasets.

1 Introduction
Collaborative Filtering (CF) technology is one of the earliest
and most successful technologies in recommendation system-
s. In CF, autoencoder is a deep neural network which achieves
significant performance and receives much attention recent-
ly. As shown in Figure 1(a), Collaborative Denoising Au-
toencoders (CDAE) [Wu et al., 2016] augments the standard
Denoising Autoencoders (DAEs) [Vincent et al., 2008] by
adding user latent vector. However, it is prone to overfitting
with the increase of both users and items; it also requires addi-
tional optimization to obtain user latent vector when dealing
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Figure 1: Graphical structures comparison among CDAE, VAE and
AVB, where the dashed arrows denote sampling from some noise
distributions and T denotes the discriminator.

with unseen users. Mult-VAE [Liang et al., 2018] success-
fully applies Variational Autoencoders [Kingma and Welling,
2013] to CF problems. While this model is very flexible in its
dependence on the input, the latent variables are often limited
to exponential family distributions or other distributions with
tractable densities [Rezende and Mohamed, 2015] as shown
in Figure 1(b). In fact, using more expressive inference model
is essential to make use of the latent space at all [Chen et al.,
2016] to get a tighter lower bound which can lead to substan-
tially better results in performing maximum-likelihood train-
ing [Kingma et al., 2016]. To develop an expressive inference
model, Generative Adversarial Networks (GANs) [Goodfel-
low et al., 2014] provide an effective solution.

In GANs framework, two models are simultaneously
trained: generative model G, which tends to capture data
distribution, and discriminative model D, which tries to es-
timate the probabilities of sampling from the true distribu-
tion. Though GANs have achieved great success in image
generation [Brock et al., 2018] and natural language genera-
tion [Yu et al., 2016], there is still a lot of room for its appli-
cation in recommendation systems. The newly proposed IR-
GAN [Wang et al., 2017] and GraphGAN [Wang et al., 2018]
have proved that GANs can also be promising and effective
in CF. However, none of the previously proposed GAN-based
CF models is combined with autoencoders, which are effec-
tive and useful especially when modelling large, sparse, high-
dimensional data. To the best of our knowledge, we are the
first one to apply GANs to autoencoder structure in CF.
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In this paper, we propose a novel CF framework based on
Adversarial Variational Autoencoders, named VAEGAN. The
overall structure of VAEGAN is shown in Figure 2. We first
introduce Adversarial Variational Bayes (AVB) [Mesched-
er et al., 2017], which utilizes a flexible black-box infer-
ence model. As shown in Figure 1(c), AVB unifies VAEs
and GANs through adversarial training. It obtains arbitrarily
flexible inference model parameterized by neural networks,
which leads to closer approximation to the true posterior dis-
tribution for the inference model and approximate maximum-
likelihood assignment for the generative model. Then an
auxiliary discriminative network is proposed to further re-
duce reconstruction loss between the generated vector and
the ground-truth by adversarial training. Furthermore, we
add contractive loss as a penalty term. This term results in
a localized space contraction that yields robust features and
improves generalization performance. We conduct experi-
ments on several public real-world datasets to evaluate the
quality of our proposed framework and investigate the effect
of each proposed component. Experimental results show that
the performance of VAEGAN significantly outperforms state-
of-the-art top-N recommendation methods on some common
evaluation metrics.

Our main contributions are summarized as follows:
1. We utilize a flexible black-box inference model as well

as adversarial training to train VAEs for implicit varia-
tional inference, which unifies VAEs and GANs.

2. We introduce an auxiliary discriminative network to
conduct adversarial training to further reduce the recon-
struction loss of the observed user-item interactions.

3. Contractive loss is added to the classical reconstruction
cost function as a penalty term to yield robust features
and improve the generalization performance.

2 Related Work
In this section, we briefly introduce the related works in two
aspects. Existing GAN-based and AE-based recommenda-
tion methods will be reviewed.

2.1 GAN-based Methods
IRGAN [Wang et al., 2017] proposes a minimax game to iter-
atively optimize generative model G and discriminative mod-
el D. G generates relevant items by sampling from the candi-
date pool for the given user and D discriminates the ground-
truth items from those generated by G. However, owing to
the fact that the discrete item index generated by G is prob-
ably the same as the ground-truth, D tends to be involved in
confusion and gets degraded due to the large portion of con-
tradicting labels for the same item index. To address the prob-
lem, CFGAN [Chae et al., 2018] proposes a novel framework.
Instead of sampling a single discrete item index, G tries to
generate real-valued vectors to prevent D’s confusion, which
makes D guide G consistently to improve.

2.2 AE-based Methods
DAEs extend the classical autoencoder by training to recon-
struct input x from its partially corrupted version x̃. C-
DAE [Wu et al., 2016] learns latent representation combined
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Figure 2: Overall architecture of our method. The blue arrows de-
note conditional information.

with user latent factor from the corrupted user-item prefer-
ences and reconstructs the full input. It is prone to overfitting
and relatively complicated to scale to unseen users. Mult-
VAE [Liang et al., 2018] extends variational autoencoders to
CF with multinomial likelihood. The inference model is con-
strained to produce latent variables that approximately follow
some common distributions, and the generative model tend-
s to reconstruct the input by sampling from the distribution.
Generally, the inference model may be not expressive enough
to capture the true posterior distribution.

3 Our Method
Given u ∈ {1, ...,M} to index users and i ∈ {1, ..., N}
to index items, we define the user-item interaction matrix
as X ∈ RM×N from users’ implicit feedback. xu =
[xu1, xu2, ..., xuN ] ∈ X denotes the u-th bag-of-words vec-
tor, where xui = 1 if the interaction between user u and item
i is observed otherwise xui = 0.

3.1 Adversarial Variational Bayes
When performing maximum-likelihood training, it is usual-
ly intractable to directly optimize the marginal log-likelihood
EpD(x)logpθ(x). After using Jensen’s inequality, we have:

log pθ(x) ≥ Ez∼qφ(z|x)[log pθ(x|z)]−KL(qφ(z|x), p(z)).
(1)

Variational Bayes rephrases this intractable problem into:

max
θ,φ

Ex∼pD(x)[Ez∼qφ(z|x)[log pθ(x|z)]−KL(qφ(z|x), p(z))].

(2)
where pD(x) is the data distribution and θ, φ denote the pa-
rameters of generative and inference model respectively.

This is commonly called the variational lower bound or ev-
idence lower bound (ELBO). VAEs have an explicit represen-
tation of qφ(z|x) such as a Gaussian distribution with diag-
onal covariance matrix whose mean and variance vectors are
parameterized by neural networks, which can be optimized
using the reparameterization trick [Kingma and Welling,
2013; Rezende et al., 2014] and stochastic gradient descent.
With an explicit representation of qφ(z|x), it is straightfor-
ward to calculate the KL-divergence term KL(qφ(z|x), p(z)).
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However, explicit variational inference is restrictive w.r.t. its
dependence on z. A flexible implicit distribution may pro-
vide better approximation to the posterior and a tighter lower
bound. The resulting latent variables model, which utilizes
an implicit likelihood, may fit the data better [Huszár, 2017].

We could try to model the likelihood and the approximate
posterior implicitly. Different from Mult-VAE [Liang et al.,
2018], we can utilize a flexible black-box inference mod-
el qφ(z|x) instead. Then adversarial training which unifies
VAEs and GANs is introduced to obtain a closer approxi-
mation to the real posterior and an approximate maximum-
likelihood parameters assignment. While it is intractable to
directly obtain the KL-divergence term KL(qφ(z|x), p(z))
with an implicit representation of qφ(z|x). We can rewrite
the optimization problem in (2) as:

max
θ,φ

Ex∼pD(x)Ez∼qφ(z|x)(log pθ(x|z)

+ log p(z)− log qφ(z|x)).
(3)

A discriminative network T (x, z) is introduced to implicit-
ly represent the term log p(z) − log qφ(z|x) with its opti-
mal value, thus replacing the intractable KL-divergence term
KL(qφ(z|x), p(z)).

Specifically, given the latent variables representation
qφ(z|x) and a prior Gaussian representation p(z), the dis-
criminative network T (x, z) is trained to distinguish pairs
(x, z) sampled independently using the prior distribution
pD(x)p(z) from those sampled using the posterior distribu-
tion pD(x)qφ(z|x). Formally, the objective for the discrimi-
nator T (x, z) is as follows:

max
Ψ

Ex∼pD(x)Ez∼qφ(z|x)logσ(T (x, z))

+ Ex∼pD(x)Ez∼p(z)log(1− σ(T (x, z))).
(4)

where σ(t) denotes the sigmoid function and Ψ denotes the
parameters of the discriminator T (x, z).

The objective in (4) attains the maximum at σ(T ∗(x, z)) =
qφ(z|x)

qφ(z|x)+p(z) , where T ∗(x, z) denotes the optimal discrimina-
tor. Equivalently, we have

T ∗(x, z) = log qφ(z|x)− log p(z). (5)

Inserting (5) into (3), the problem can be written as:

max
θ,φ

Ex∼pD(x)Ez∼qφ(z|x)(log pθ(x|z)− T ∗(x, z)). (6)

Using the reparameterization trick, we reparametrize sam-
pling from qφ in terms of non-linear function zφ and noise
variables ε which is generally assumed to be Gaussian noise:

max
θ,φ

Ex∼pD(x)Eε∼N (0,I)(log pθ(x|zφ(x, ε))−T ∗(x, zφ(x, ε))).

(7)
We define the function: zφ(x, ε) = f(f(x̃+ ε1) + ε2), where
f denotes the non-linear function, ε1 and ε2 are sampled from
gaussian distribution. For simplicity, we use zφ to denote
zφ(x, ε) in this paper. The optimization objective (7) has been
proved to be optimized directly w.r.t. θ and φ using stochas-
tic gradient descent, while it needs to keep T ∗(x, z) optimal

in contrast. Therefore, we regard the optimization problem-
s (4) and (7) as a two-player minimax game. Additionally,
if (θ∗, φ∗, T ∗) defines a Nash-equilibrium for the two-player
game defined by (4) and (7), the variational lower bound (EL-
BO) in (2) attains maximum.

3.2 Annealing
The first part of the optimization objective (7) tends to obtain
the maximum-likelihood of the reconstructed input x̂ from
the generative model. We obtain the reconstruction error us-
ing the logistic log-likelihood. The second part of (7) can be
viewed as a regularization term. In recommendation system-
s, the CF models are supposed to recommend personalized
items which the user might like and hasn’t interacted, not to
maximize likelihood and generate the accurate reconstruct-
ed input. By reducing the constraint of prior distribution on
latent variables, we may get better recommendation perfor-
mance. Meanwhile, simply using the origin regularization
term, the model may be over regularized.

Additionally, the optimization of (7) requires to keep the
discriminator T (x, z) close to optimality. Instead of perform-
ing several SGD-updates for the adversary and one SGD-
update for the generative model, it is reasonable to set a pa-
rameter α (0 < α < 1) to control the strength of the reg-
ularization term. The generative model tends to update at a
slower pace than the discriminator.

max
θ,φ

Ex∼pD(x)Eε∼N (0,I)(log pθ(x|zφ)−α ·T ∗(x, zφ)). (8)

When training VAEs, KL annealing [Bowman et al., 2015]
and Free Bits [Kingma et al., 2016] are the commonly used
methods to ensure the effect of KL-divergence term and pre-
vent KL-vanishing [Bowman et al., 2015] or posterior col-
lapse [Oord et al., 2016]. Similarly, inspired by KL anneal-
ing, we adopt a simple heuristic for setting α: we start train-
ing with α = 0 and gradually increase α, which consistently
produces significant recommendation results.

3.3 GAN-based Reconstruction Loss
We introduce an auxiliary discriminative network D to con-
duct adversarial training to further reduce the reconstruction
loss of the observed user-item interactions. The proposed au-
toencoder in Section 3.1 is regarded as G to generate plausible
user-item preference vector that most closely resembles the
ground-truth and D, in contrary, tries to distinguish ground-
truth from generated vector as accurately as possible. The
two-player game makes D guide G consistently to improve
so as to generate vectors closer to the ground-truth.

However, it’s generally difficult to tell whether a recom-
mendation sequence is real or fake without a specific user.
In order to help D to distinguish real input training examples
from fake reconstructed input samples, inspired by Condi-
tional GAN [Mirza and Osindero, 2014], a new latent vector
zc is generated to characterize user. The model parameters of
D are learned while taking user’s personalization into account
with the conditional user-personalized vector.

Meanwhile, if we simply regard the reconstructed input x̂
as the fake sample, the gradient from D will guide G to re-
duce the reconstruction loss of both the observed interacted
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and non-interacted items. In other words, the click proba-
bilities of the interacted items tend to be predicted as 1 and
the probabilities of the non-interacted items are assumed to
be 0. It seems to make no sense in recommendation tasks as
we are more focused on making recommendations on poten-
tial preference items which the user has not interacted with
rather than obtaining the exact reconstructed results. There-
fore, we reset the reconstructed predicting probabilities of the
non-interacted items to 0 before we send it into D. In this way,
D distinguishes the reconstructed input from the origin input
according to the interacted items and G does not get the gra-
dient of the non-interacted items from D. So G has expected
predicting probabilities on the non-interacted items, which is
reasonable and desirable in recommendation tasks.

Formally, for user u, we take {x̂ � xu, zcu} as the fake
sample and {xu, zcu} as the real sample, where � denotes
element-wise multiplication and {} denotes the concatenation
of the vectors inside and zcu is the conditional characterized
vector for user u. x̂� xu obtains a processed reconstruction
vector where the probabilities of the non-interacted items are
reset to 0. The objective for D is as follows:

max
τ,ξ

Ex∼pD(x)Ezc∼qξ(zc|x) log σ(D(x|zc))

+ Ex̂∼pθ(x|z)Ezc∼qξ(zc|x) log(1− σ(D(x̂� x|zc))).
(9)

where τ denotes the parameters of the discriminator D and ξ
denotes the parameters of the additional part that generating
the conditional characterized vectors. The objective for G is:

min
θ,φ

Ex̂∼pθ(x|z)Ezc∼qξ(zc|x) log(1− σ(D(x̂� x|zc))). (10)

Then we introduce it as a regularization term of the recon-
struction loss:

max
θ,φ

Ex∼pD(x)Eε∼N (0,I)(log pθ(x|zφ)− α · T ∗(x, zφ))

+ Ex̂∼pθ(x|z)Ezc∼qξ(zc|x)β · log σ(D(x̂� x|zc)).
(11)

where β is a tunable parameter to control the strength of the
regularization term.

3.4 Contractive Loss
Though the inference model is theoretically flexible and ex-
pressive, the latent space may be over expanded leading to
a delicate recommendation model. It has been demonstrated
that many state-of-the-art classifiers are actually very frag-
ile and vulnerable to adversarial examples [Szegedy et al.,
2013], implying that the model is prone to suffering from
the perturbations of the input. Inspired by Contractive Auto-
Encoders [Rifai et al., 2011], we propose a simple and effec-
tive way to obtain robust latent representations.

We add a penalty term as the contractive loss to the recon-
struction objective function. This penalty term corresponds
to the Frobenius norm of the Jacobian matrix of the latent
variables from the inference model with respect to the input,
resulting in a localized space contraction thus yields robust
representations. As a result, the latent representations tend to
be robust to small changes of the input. In recommendation
systems, it is common to obtain exactly similar input from d-
ifferent users as the input data is often large and sparse. By

introducing contractive loss, we can get exactly similar latent
representations with respect to similar input and the general-
ization performance of the model can be improved.

Formally, in our model, the input X ∈ RM×N is mapped
by the inference model qφ(z|x) to the latent representations
z. We utilize a sensitivity penalization term to penalize its
sensitivity to the input, which is the sum of squares of all
partial derivatives of the latent representations w.r.t. input:

‖Jqφ(X)‖2F =

M,N∑
u=1,i=1

(
∂zu
∂xui

)2. (12)

where zu denotes the latent representation of user u. The
mapping to the latent space is encouraged to be contrac-
tive in the neighborhood of the training data by penalizing
‖Jqφ(X)‖2F , implying an invariance or robustness of the la-
tent representations for small changes of the input.

Overall, our final objectives of VAEGAN are as follows:

JG : max
θ,φ

Ex∼pD(x)Eε∼N (0,I)(log pθ(x|zφ)− α · T ∗(x, zφ))

+ Ex̂∼pθ(x|z)Ezc∼qξ(zc|x)β · log σ(D(x̂� x|zc))
+ λ · ‖Jqφ(X)‖2F ,

JT : max
Ψ

Ex∼pD(x)Ez∼qφ(z|x)logσ(T (x, z))

+ Ex∼pD(x)Ez∼p(z)log(1− σ(T (x, z))),

JD : max
τ,ξ

Ex∼pD(x)Ezc∼qξ(zc|x) log σ(D(x|zc))

+ Ex̂∼pθ(x|z)Ezc∼qξ(zc|x) log(1− σ(D(x̂� x|zc))).
(13)

where λ denotes a tunable parameter to control the strength
of penalizing the contractive loss.

4 Experiments and Analysis
In this section, we perform thorough experiments to evaluate
our proposed VAEGAN on four real-world datasets. We aim
to answer the following research questions:

Q1. How does our proposed method perform compared with
the state-of-the-art top-N recommendation methods?

Q2. How much does each of our proposed components con-
tribute to the model?

Q3. How much is our proposed method influenced by the key
hyperparameters?

4.1 Experiments
Datasets
In order to fully demonstrate the effectiveness of our pro-
posed VAEGAN, we study the performance of different mod-
els under both strong and weak generalization [Marlin, 2004].
Four common real-word datasets: MovieLens-20M, Nextflix
Prize1, MovieLens-1M and MovieLens-100K are used to e-
valuate our method. In strong generalization experiments, we
use two medium to large scale datasets: MovieLens-20M and
Netflix Prize as the Mult-VAE [Liang et al., 2018] did. All

1https://www.netflixprize.com/
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Metrics R@5 R@20 R@50 G@10 G@20 G@100 M@10 M@20 M@100
Dataset MovieLens-20M

Mult-VAE 0.308 0.395 0.537 0.318 0.334 0.426 0.511 0.516 0.518
Mult-DAE 0.311 0.387 0.524 0.311 0.331 0.419 0.515 0.520 0.522

aWAE 0.326 0.391 0.532 0.338 0.338 0.424 - - -
Ours-AVB 0.335 0.402 0.539 0.337 0.349 0.434 0.542 0.547 0.549

Ours-AVB+D 0.339 0.405 0.539 0.341 0.352 0.436 0.546 0.551 0.553
Ours-AVB+D+C 0.339 0.407 0.541 0.343 0.354 0.438 0.549 0.554 0.556

Dataset Netflix
Mult-VAE 0.324 0.355 0.444 0.331 0.320 0.386 0.510 0.515 0.517
Mult-DAE 0.321 0.344 0.438 0.317 0.314 0.380 0.504 0.509 0.511

aWAE 0.301 0.354 0.441 0.256 0.331 0.381 - - -
Ours-AVB 0.353 0.360 0.445 0.346 0.337 0.393 0.544 0.548 0.551

Ours-AVB+D 0.354 0.362 0.445 0.347 0.339 0.394 0.547 0.552 0.554
Ours-AVB+D+C 0.355 0.363 0.447 0.349 0.340 0.396 0.549 0.554 0.556

Table 1: Strong generalization experiments on MovieLens-20M and Netflix. Best results are shown in bold.

users are divided into training/validation/test sets. Specifical-
ly, we take 10K and 40K users as the the held-out valida-
tion/test users for MovieLens-20M and Netflix Prize respec-
tively. The entire click histories of the training users are used
to train models. For evaluation, we take 80% of the click his-
tories for each held-out user as the input and compute metrics
on the remaining 20% of the click histories. The explicit data
is binarized by keeping those with ratings no less than 4 stars
and only users who have rated at least five movies are kept. In
weak generalization experiments, we use two small datasets:
MovieLens-1M and MovieLens-100K as the CF-GAN [Chae
et al., 2018] did. We split all the user-item interactions of
each user into two subsets: 80% for training and 20% for
testing. All the explicit data is treated as implicit feedback
and we only keep users who have rated at least five movies.

Evaluation Metrics
To evaluate our model, we adopt three common metrics for
top-N recommendation: recall(R@N), normalized discount-
ed cumulative gain(G@N), and mean reciprocal rank(M@N).
While Recall@N equally weights all the top-N items, ND-
CG@N and MRR@N assign higher scores to higher ranks.

Baselines
We compare our proposed VAEGAN with the following state-
of-the-art collaborative filtering methods:

CDAE. It extends the denoising autoencoders (DAEs) by
adding user-specific latent vector [Wu et al., 2016].

IRGAN. It is the pioneer GAN-based method that success-
fully applies GANs to CF [Wang et al., 2017].

CFGAN. It suggests a new direction of vector-wise adver-
sarial training [Chae et al., 2018].

Mult-VAE and Mult-DAE. They improve the performance
of variational autoencoders (VAEs) and denoising autoen-
coders (DAEs) by using a multinomial likelihood for the data
distribution [Liang et al., 2018].

aWAE. It extends the Wasserstein Autoencoders [Tol-
stikhin et al., 2017] for collaborative filtering to address the
problem that the distributions of the encoder latent variables
overlap a lot [Zhong and Zhang, 2018].

Some of the above methods, such as CDAE, are not suit-
able for training under strong generalization since they lack
the necessary latent representations for unseen held-out user-
s. Though we could reluctantly solve this problem using ad-
ditional optimization, it is not a rigorous and precise way
to verify models. For fair comparisons, we train them un-
der weak generalization. Meanwhile, training models un-
der strong generalization can better illustrate the effectiveness
and robustness, as it’s relatively more difficult to train models
under strong generalization than weak generalization. So, we
train the other models under strong generalization.

Implementation Details
We keep the model with the best validation NDCG@N and
the structure and hyperparameters are dertermined according
to test metrics with it. Concretely, following Mult-VAE, we
adopt symmetrical autoencoder structure and set the dimen-
sion of the bottleneck layer to 200. The overall model struc-
ture is [I → 600 → 200 → 600 → I], where I denotes the
total number of items. We apply dropout [Srivastava et al.,
2014] at the input layer with probability 0.5 to avoid overfit-
ting. Weight decay isn’t adopted in our model as we already
have regularization terms. We train our model using Adam
with batch size 500 and 256 under strong and weak general-
ization, respectively. We train for 300 epochs for MovieLens-
20M, 200 epochs for Netflix Prize and 1000 epochs on the
other two datasets. Other key hyperparameters will be further
discussed in Section 4.4.

4.2 Q1. Comparisons with The State-of-the-arts
In this section, we compare our proposed VAEGAN with sev-
eral popular top-N recommendation methods under strong
and weak generalization as discussed in Section 4.1.

Table 1 shows the results of various models under strong
generalization on MovieLens-20M and Netflix, respective-
ly. We can see that our model achieves the best performance
on both datasets. Our methods outperform significantly than
Mult-VAE, which is the most similar method to ours, in terms
of all the metrics. It demonstrates that AVB improves the re-
stricted performance of VAE by relieving the problems that
the latent representations are limited and the inference model
is not expressive enough. Additionally, our model achieves
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Metrics R@5 R@20 G@5 G@20 M@5 M@20 R@5 R@20 G@5 G@20 M@5 M@20
Dataset MovieLens-100K MovieLens-1M
CDAE 0.144 0.353 0.465 0.425 0.664 0.674 0.108 0.272 0.439 0.401 0.629 0.644
IRGAN 0.107 0.275 0.342 0.368 0.536 0.523 0.072 0.166 0.264 0.246 0.301 0.338
CFGAN 0.152 0.360 0.476 0.433 0.681 0.693 0.108 0.272 0.455 0.406 0.647 0.660

Ours-AVB 0.151 0.362 0.459 0.433 0.686 0.698 0.113 0.279 0.460 0.414 0.656 0.669
Ours-AVB+D 0.153 0.365 0.467 0.437 0.688 0.700 0.115 0.281 0.465 0.416 0.663 0.676

Ours-AVB+D+C 0.152 0.364 0.468 0.436 0.688 0.700 0.114 0.281 0.464 0.416 0.662 0.674

Table 2: Weak generalization experiments on MovieLens-1M and MovieLens-100K. Best results are shown in bold.

superior accuracy by the adversarial training on the generat-
ed recommendation results and the contractive regularization
term resulting in robust features. Compared to other non-
linear AE-based methods, our model imposes stronger mod-
elling assumptions and achieves state-of-the-art performance.

Table 2 shows the results under weak generalization on
MovieLens-1M and MovieLens-100K. We can see our model
outperforms the state-of-the-art methods. Compared to other
GAN-based methods, our model both relies on the adversar-
ial training process of GANs and combines the AE structure
which is effective and powerful when user-item interactions
are scarce. Overall, our proposed VAEGAN consistently pro-
duces good results under both strong and weak generalization
compared with GAN-based and AE-based methods.

4.3 Q2. Effectiveness of Proposed Components
AVB. It has been illustrated that AVB obviously performs
better than Mult-VAE in Table 1, 2. AVB utilizes a flexi-
ble black-box inference model and adversarial training to en-
hance the expressiveness of the model, thus obtaining a better
approximation to the true posterior distribution.
AVB+D. Table 1, 2 show that after adding an auxiliary dis-
criminative network D, the model performs better. We con-
duct additional experiments to study the influence of the ad-
versarial regularization coefficient in Section 4.4. The dis-
criminative network D implicitly measures the distance be-
tween distributions of input data and reconstructed data using
black-box neural networks. The two distributions are getting
closer and closer through adversarial training.
AVB+D+C. Table 1 shows that the model performs better
after introducing the contractive regularization term. We al-
so conduct additional experiments to study the influence of
the contractive regularization coefficient in Section 4.4. The
penalty term encourages the latent representations to be ro-
bust to small changes of the input around the input exam-
ples. It would be effective to learn robust latent representa-
tions when modelling unseen click histories. However, under
weak generalization, the training input examples also appear
during evaluation. The contractive regularization term can
hardly play its due role under weak generalization as the ex-
perimental results show in Table 2.

4.4 Q3. Influence of The Key Hyperparameters
In this section, we mainly investigate the following hyperpa-
rameters in our proposed method: the annealing coefficient
(α), regularization coefficient of D (β), contractive regular-
ization coefficient (γ). Figure 3 shows the validation ND-
CG@100 with and without annealing to α = 0.2 and 1 (α
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Figure 3: Analysis of annealing parameter α.

0.33
0.332
0.334
0.336
0.338
0.34
0.342
0.344
0.346
0.348
0.35

0.01 0.1 0.2 0.5 1
β

NDCG@10 Recall@5

(a) β

0.33
0.332
0.334
0.336
0.338
0.34
0.342
0.344
0.346
0.348
0.35

0.0001 0.0003 0.001 0.003 0.01
γ

NDCG@10 Recall@5

(b) γ

Figure 4: Analysis of parameter β and parameter γ.

reaches maximum at around 80 epochs). We can see that with
annealing the model converges faster and obtains better per-
formance. In this paper, we set α as 0.2 which consistently
produces good results on the test set. Figure 4 shows the per-
formance of our method depending on the value of β and γ.
As we can see, when we set β as 0.2, γ as 0.0003, the pro-
posed method reach the best results. The model may be over
regularized or the proposed component may be underutilized
with other parameters settings.

5 Conclusions
In this paper, we present a variant of Variational Autoencoder-
s based on adversarial training for collaborative filtering. The
inference model is much more flexible and expressive to mod-
el almost arbitrary posterior distributions over the latent vari-
ables. GAN-based reconstruction loss further improves the
performance of our model. Moreover, we obtain robust latent
representations by introducing contractive loss.
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