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Abstract

Positive and Unlabeled (PU) learning aims to learn
a binary classifier from only positive and unlabeled
training data. The state-of-the-art methods usual-
ly formulate PU learning as a cost-sensitive learn-
ing problem, in which every unlabeled example
is simultaneously treated as positive and negative
with different class weights. However, the ground-
truth label of an unlabeled example should be u-
nique, so the existing models inadvertently intro-
duce the label noise which may lead to the biased
classifier and deteriorated performance. To solve
this problem, this paper proposes a novel algorith-
m dubbed as “Positive and Unlabeled learning with
Label Disambiguation” (PULD). We first regard all
the unlabeled examples in PU learning as ambigu-
ously labeled as positive and negative, and then em-
ploy the margin-based label disambiguation strate-
gy, which enlarges the margin of classifier response
between the most likely label and the less likely
one, to find the unique ground-truth label of each
unlabeled example. Theoretically, we derive the
generalization error bound of the proposed method
by analyzing its Rademacher complexity. Experi-
mentally, we conduct intensive experiments on both
benchmark and real-world datasets, and the results
clearly demonstrate the superiority of the proposed
PULD to the existing PU learning approaches.

1 Introduction
Collecting a large amount of labeled data, especially labeled
negative data, is a critical bottleneck in many real-world ma-
chine learning applications due to the laborious manual an-
notation or the difficulty of collecting negative data. In con-
trast, positive and unlabeled data can often be collected eas-
ily. This has led to the development of Positive and Un-
labeled (PU) learning [Denis et al., 2005], which aims at
learning a binary classifier only from positive and unlabeled
data without the assistance of negative data. Recently, PU
learning has gained lots of popularity in tackling many real-
world scenarios such as software clone detection [Wei and
Li, 2018], protein function prediction [Youngs et al., 2014;

Fu et al., 2016], and remote-sensed hyperspectral image clas-
sification [Li et al., 2011], etc.

Given its broad applicability as mentioned above, PU
learning has attracted a great deal of research attention in
recent years. Effective algorithms have been developed
which can be roughly divided into three categories. The
first category [Liu et al., 2002; Li and Liu, 2003] firstly
identifies some reliable negative examples from the unla-
beled set, and then employs the reliable negative as well as
the original positive examples to train a traditional super-
vised classifier. The second category [Lee and Liu, 2003;
Shi et al., 2018] takes PU leaning problem as a one-side label
noise learning problem, which directly treats the unlabeled
examples as negative ones. Particularly, the undiscovered
positive examples in the unlabeled set are regarded as misla-
beled, while no negative examples are mislabeled as positive.
The last category [Elkan and Noto, 2008; Youngs et al., 2015;
Du Plessis et al., 2014; Du Plessis et al., 2015] imposes dif-
ferent weights on the loss values incurred by simultaneously
treating unlabeled examples as positive and negative, and thus
transferring PU learning into a cost-sensitive learning prob-
lem. However, the ground-truth label of each unlabeled ex-
ample is definite and unique, so simultaneously evaluating
every unlabeled example as positive and negative under the
framework of empirical risk minimization will inevitably in-
troduce the label noise, leading to the imperfect performance.

To address this drawback, this paper proposes a novel PU
leaning algorithm dubbed “Positive and Unlabeled learning
with Label Disambiguation” (PULD). To be specific, we
first treat PU learning problem as a Partial Label Learning
(PLL) [Jin and Ghahramani, 2003] problem, where we regard
the unlabeled examples as ambiguously labeled as positive
and negative, and then employ the disambiguation technique,
which is widely used in PLL, to robustly determine the real
label of every unlabeled example. PLL aims to learn from
ambiguous labeling information where each training exam-
ple is associated with a set of candidate labels, among which
only one label is valid [Cour et al., 2011; Gong et al., 2018;
Feng and An, 2018; Chen et al., 2018]. Recent successful
PLL methods have devised various disambiguation regulariz-
ers to identify the single ground-truth label from the candidate
label set associated with each training example [Nguyen and
Caruana, 2008; Wu and Zhang, 2018], which play an impor-
tant role in boosting the PLL performance.
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In our PU learning case, we take each unlabeled example
as a partially labeled example with the candidate label set {1,
2}, and then utilize the margin based disambiguation strate-
gy to enlarge the margin between the most likely label and
the less likely one. As a result, the ground-truth label in the
candidate label set can be effectively highlighted. Besides,
a manifold regularizer with geometric knowledge of the o-
riginal data is applied [Zhou et al., 2004; Belkin et al., 2006;
Gong et al., 2019b], so that the similar examples in the feature
space are assigned similar labels. Furthermore, we theoreti-
cally derive the generalization error bound of the proposed
PULD by analyzing its Rademacher complexity, and inten-
sive experiments on both benchmark and real-world datasets
clearly demonstrate the superiority of the proposed method to
the state-of-the-art PU learning approaches.

2 Our Method
In this section, we first establish our proposed PULD model,
and then explain its iterative optimization process.

2.1 Model
Assume that there are n training examples S =
{(x1, y1), . . . , (xp, yp), (xp+1, yp+1), . . . , (xn, yn);n = p+
u} identically and independently drawn from some distribu-
tion D over X × Y , where X ∈ Rd and Y = {1, 2} denote
the feature space and label space, respectively. For the con-
venience of the subsequent derivations, we follow the setting
of multi-class classification, where negative examples are la-
beled as 1 and positive examples are labeled as 2. In S , the
first p elements with the label {yi}pi=1 = 2 constitute the pos-
itive set P , and the rest u elements form the unlabeled set U
in which the label of each example can be either 1 or 2 but
not known.

In the training stage, our target is to find a real-valued s-
coring function h : X ×Y → R based on the training set
S = P∪U , and the classification is performed according to
the score, i.e. arg maxy∈Y h(x, y). Firstly, we build a K-
NN graph G = 〈V , E〉 over the training set S where V is
the vertex set consisted of all xi ∈ S , and E is the edge set
describing the similarity between these nodes. Further, A is
the adjacency matrix of G, and its (i, j)-th element Aij en-
codes the similarity between xi and xj , which is computed
by Aij =exp

(
−‖xi−xj‖2/(2δ2)

)
with δ being the Gaussian

kernel width if xi and xj are linked, and Aij = 0 other-
wise. Therefore, the normalized adjacency matrix adopted by
us is Ā = D−1/2AD−1/2 with D being the diagonal de-
gree matrix of which the (i, i)-th element is Dii =

∑
j Aij .

Moreover, we define the mapping Φ(x, y) :X×Y 7→F which
projects the example-label pair (x, y) to Φ(x, y)∈F , namely

Φ(x, y) =

(
x · 1(y = 1)

x · 1(y = 2)

)
∈ R2d, (1)

with d being the dimensionality of the input feature x, and
1(a) being an indicator function which returns 1 if a is true
and 0 otherwise. Let y = (y1, . . . , yp, yp+1, . . . , yn) be the
ground-truth labels of training examples. Then given the
classifier as h(x, y) = ω>Φ(x, y), and ξ = {ξi}pi=1 and

η = {ηi}p+ui=p+1 as slack variables, our model is formulated as

min
ω,y,ξ,η

1

2
‖ω‖2+

α

p

p∑
i=1

ξi+
β

u

p+u∑
i=p+1

ηi+γ
n∑

i,j=1

Āij(yi−yj)2

(2)
s.t. For xi ∈ P :

ω>Φ(xi, 2)− ω>Φ(xi, 1) ≥ 1− ξi (3)
ξi ≥ 0, i = 1, · · · , p

For xi ∈ U :

max
y′i∈Y

ω>Φ(xi, y
′
i)−max

y
′′
i 6=y′i

ω>Φ(xi, y
′′
i )≥1−ηi (4)

ηi ≥ 0, i = p+ 1, · · · , n∑p+u

i=p+1
1(yi = 2) = uc, (5)

where α, β, and γ are nonnegative trade-off parameters, and
c is the proportion of positive examples in unlabeled set U .

In (2), the first term is used to present overfitting. The sec-
ond term along with the constraint (3) imposed on P requires
that for every xi∈P , the score ω>Φ(xi, 2) with the correct
label yi=2 should be larger than the score ω>Φ(xi, 1) asso-
ciated with the incorrect label yi=1, by at least 1−ξi. The
third term as well as the constraint (4) enlarges the margin
between the most likely label and the less likely one for each
unlabeled example xi∈U , in which the score associated with
the most likely label y′ (i.e. maxy′ ω

>Φ(xi, y
′
i)) should be

larger than the score associated with the less likely one y′′
(i.e. maxy′′i 6=y′i ω

>Φ(xi, y
′′
i )), by at least 1−ηi. The last term

ensures that the similar examples in the feature space should
obtain similar labels. Constraint (5) requires the number of
positive examples in U to be identical to uc, where the esti-
mation of c is deferrd to Section 4.1.

Since we regard the unlabeled examples in U as ambigu-
ously labeled as positive and negative, and the candidate label
set of unlabeled examples can be denoted as {1, 2}, so we fol-
low multi-class SVM [Crammer and Singer, 2001] and partial
label learning [Yu and Zhang, 2017] to equip our model with
good label discriminability. Therefore, the unique ground-
truth label of every unlabeled example can be precisely high-
lighted. After we have learned the model parameter ω, a test
example xi is classified as yi = arg maxyi∈Y ω

>Φ(xi, yi).
Note that once the ground-truth labels {yi}p+ui=p+1 of the

unlabeled examples in U are determined, our algorithm pro-
ceeds to maximize the canonical multi-class margin over each
xi ∈ P ∪ U , i.e. ω>Φ(xi, yi) − maxy′i 6=yi ω

>Φ(xi, y
′
i).

Therefore, by introducing the slack variables ν = {νi}ni=1,
the previous model can be transformed to

min
ω,ν,y

1

2
‖ω‖2+

µ

n

∑n

i=1
νi+γ

∑n

i,j=1
Āij(yi−yj)2 (6)

s.t. ω>Φ(xi, yi)− max
y′i 6=yi

ω>Φ(xi, y
′
i) ≥ 1− νi (7)

νi ≥ 0, i = 1, · · · , n
yi ∈ {1, 2}, i = 1, · · · , n (8)∑n

i=1
1(yi = 2) = uc+ p. (9)
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In above model, the constraint (7) enforces the maximum
margin between different label responses for each training
example. In addition, the constraint (8) enforces that the
ground-truth label yi should take a value in the candidate la-
bel set {1, 2}.

Note that our model is different from the LapSVM [Belkin
et al., 2006] for semi-supervised learning, as LapSVM
does not contain the label disambiguation regularizer as our
PULD. Furthermore, if LapSVM is employed for PU learn-
ing, it will incorrectly classify all unlabeled examples to pos-
itive due to the absence of negative training data.

2.2 Optimization
Since our model (6)-(9) involves mixed-type variables (i.e.
integer variables y, and continuous variables ω and ν), so
its optimization is non-trivial. In this section, an alternating
optimization procedure is devised to find the optimal solution.

Note that the variable y appears in both the second term
and the third term of (6), so it is difficult to be updated all
at once. Therefore, we adopt the variable splitting technique
and introduce an auxiliary variable z = {z1, . . . , zn}. As a
result, our model (6)-(9) is transformed to

min
ω,ν,y,z

1

2
‖ω‖2+

µ

n

n∑
i=1

νi+γ
n∑

i,j=1

Āij(zi−zj)2+λ
n∑
i=1

1(yi6=zi)

(10)

s.t. ω>Φ(xi, yi)−maxy′i 6=yiω
>Φ(xi, y

′
i) ≥ 1− νi

νi ≥ 0, i = 1, · · · , n
yi ∈ {1, 2}, i = 1, · · · , n∑n

i=1
1(yi = 2) = uc+ p,

where the last term in (10) is to keep y and z to be consistent,
and λ is a trade-off parameter. Now, we are going to solve the
three subproblems associated with ω, y, and z, respectively.
Update ω. By fixing y and z, the subproblem related to ω is

min
ω,ν

1

2
‖ω‖2 +

µ

n

∑n

i=1
νi

s.t. ω>Φ(xi, yi)− max
y′i 6=yi

ω>Φ(xi, y
′
i) ≥ 1− νi

νi ≥ 0 i = 1, · · · , n.

(11)

Note that (11) coincides with the well-studied multi-class
maximum margin formulation [Crammer and Singer, 2001].
Therefore, (11) can be readily solved by utilizing any off-the-
shelf implementation for multi-class SVM [Fan et al., 2008].
Update y. By dropping the unrelated terms to y in (10), the
subproblem regarding y is

min
y,ν

µ

n

∑n

i=1
νi + λ

∑n

i=1
1(yi 6= zi)

s.t. ω>Φ(xi, yi)−maxy′i 6=yiω
>Φ(xi, y

′
i) ≥ 1− νi

νi ≥ 0, i = 1, · · · , n
yi ∈ {1, 2}, i = 1, · · · , n∑n

i=1
1(yi = 2) = uc+ p.

(12)

Let ζyii = ω>Φ(xi, yi)−maxy′i 6=yi ω
>Φ(xi, y

′
i), then ac-

cording to the first two constraints of (12), we have νi =
max(0, 1− ζyii ), so the first term of the objective function in
(12) can be written as

min
y

µ

n

∑n

i=1
max(0, 1− ζyii ). (13)

Let Y = [Yij ]n×2 be the binary-valued presentation of y,
where Yij =1 indicates that the label of example xi is j, and 0
otherwise. Similarly, we may define Z=[Zij ]n×2. By further
defining the i-th row of an n×2 coefficient matrix C as:

Ci· =

{(
M,max(0, 1− ζ2i )

)
if xi ∈ P ,(

max(0, 1−ζ1i ),max(0, 1−ζ2i )
)

if xi ∈ U ,
(14)

where M is a user-specfied large number to keep the label
of each positive example to be constant, we know that the
formulation (13) can be transformed to

min
Y

µ

n

∑n

i=1

∑2

j=1
Yij · Cij . (15)

Since Y and Z are both binary-valued, the second term of the
objective function in (12) can be written as

min
y
λ

n∑
i=1

1(yi 6= zi)⇔ −min
Y

λ
n∑
i=1

2∑
j=1

Yij · Zij . (16)

By Combining (12), (13), (15), and (16), the subproblem
related to Y (i.e. the binary-valued representation of y) can
be finally transformed to

min
Y

∑n

i=1

∑2

j=1
Yij · (

µ

n
Cij − λZij)

s.t.
∑2

j=1
Yij = 1, i = 1, · · · , n∑n

i=1
Yij = uc+ p, j ∈ {1, 2}

Yij ∈ {0, 1},

(17)

where the first constraint
∑2
j=1 Yij = 1 ensures that each

training example has a unique ground-truth label and the sec-
ond constraint

∑n
i=1 Yij = uc + p controls the amount of

classified positive examples.
Note that (17) is a binary integer programming (BIP) prob-

lem. By relaxing Yij ∈ {0, 1} as Yij ∈ [0, 1], it can be effi-
ciently solved by employing standard Linear Programming
(LP) solvers such as the simplex algorithm or the interior
point algorithm [Boyd and Vandenberghe, 2004], where y
can be computed based on yi = arg maxj Yij .
Update z. The subproblem regarding z is

min
z
γ
∑n

i,j=1
Āij(zi − zj)2 + λ

∑n

i=1
1(yi 6= zi). (18)

Considering that the last term in (18) is usually difficult to
optimize, here we replace the indicator function with a surro-
gate `2 norm term, therefore (18) can be converted to

min
Z
γ
∑n

i,j=1
Āij‖Zi−Zj‖2 + λ

∑n

i=1
‖Yi−Zi‖2. (19)

According to [Zhou et al., 2004], the closed form solution of
(19) can be expressed as

Z =
λ/γ

1 + λ/γ
(I− 1

1 + λ/γ
Ā)−1Y. (20)
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Algorithm 1 The algorithm for solving PULD

Input: positive set P , unlabeled set U ; trade-off parameters
µ, γ, and λ; stopping criteria ε, iter max;

1: Initialize ω = 0, z = y = 0;
2: Construct K-NN graph and compute Ā;
3: Initialize the coefficient matrix C, where {Ci·}pi=1 =

(0, 1) and {Ci·}u+pi=p+1 = (1/2, 1/2);
4: Initialize the ground-truth label y via solving (17);
5: while not converge do
6: Objold = Obj;
7: Update ω via solving (11);
8: Update C via (14);
9: Update y via solving (17);

10: Update z via solving (19);
11: Compute the objective function value Obj via (10);
12: iter := iter + 1;
13: Check the convergence conditions:

Obj −Objold < ε or iter > iter max;
14: end while
Output: optimized classifier parameter ω.

Therefore, we can get z according to zi = arg maxj Zij .
The entire optimization procedure of our PULD is summa-

rized in Algorithm 1, in which the alternating procedure is
guaranteed to converge according to [Hong and Luo, 2017].

3 Theoretical Analysis
In this section, we study the generalizability of the proposed
PULD algorithm. In our PU learning case, the hypothesis is
defined on a scoring function h ∈ H : X × Y → R with H
denoting the hypothesis space. The label associated with the
input x is the one resulting in the largest score h(x, y) when
y ∈ Y , which defines the mapping

x 7→ arg maxy∈Yh(x, y), (21)

where h(x, y) = ω>Φ(x, y). We may define the margin
loss on positive examples ρp(x, y) and unlabeled examples
ρu(x, y) as

ρp(x, y) = h(x, y)−maxy′ 6=yh(x, y′) (22)
and
ρu(x, y) = maxy′∈Yh(x, y′)−maxy′′ 6=y′h(x, y′′). (23)

To get the empirical margin loss for our PU learning case, we
first introduce the following margin loss function [Gong et
al., 2019a]:

`ρ =


0 if x > ρ,

1− x/ρ if 0 ≤ x ≤ ρ,
1 otherwise,

(24)

where ρ is the margin. Let ρ(p) > 0 and ρ(u) > 0 denote
the margins for positive and unlabeled examples, respectively,
then we may define the empirical margin loss as

R̂ρ(h) =
1

p

p∑
i=1

`ρ(p)(ρp (xi, yi))+
1

u

p+u∑
i=p+1

`ρ(u)(ρu (xi, yi)) .

(25)

Let ĥ be any learned classifier output by PULD and R(ĥ)
be the corresponding expected loss, so our target is to upper
bound the generalization error R(ĥ)− R̂ρ(ĥ).

Theorem 1. Assume that ∀x ∈ X , ‖x‖ ≤ b. Let p and u
be the sizes of positive set and unlabeled set respectively, α,
β be the trade-off parameters in (2), and ĥ be the scoring
function learned by the proposed algorithm. For any δ ≥ 0,
with probability at least 1− δ, we have

R(ĥ)−R̂ρ(ĥ)≤
8b
√

2(α+β)

ρ(p)
√
p

+
8b
√

2(α+β)

ρ(u)
√
u

+

√
ln(1/δ)

2n
.

(26)

Before proving this theorem, we first present some useful
definitions and lemmas.

Definition 2. (Rademacher complexity, [Bartlett and
Mendelson, 2002]) Let σ = {σ1, . . . , σn} be a set of inde-
pendent Rademacher variables which are uniformly sampled
from {−1, 1}. Let v1, . . . , vn be an independent distributed
sample set and F be a function class. The Rademacher com-
plexity is defined as:

Rn(F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σif (vi)

]
. (27)

Lemma 3. (Generalization bound, [Bartlett and Mendel-
son, 2002]) Let F be a [0, 1]-valued function class on X and
f ∈ F . Given x1, . . . ,xn ∈ X are i.i.d. variables, then for
any δ > 0, with probability at least 1− δ, we have

sup
f∈F

(
Ef (x)− 1

n

∑n

i=1
f (xi)

)
≤ 2Rn(F) +

√
ln(1/δ)

2n
.

(28)

The Rademacher complexity appeared in (28) can be
bounded by the following Lemma, which is

Lemma 4. (Talagrand contraction Lemma, [Bartlett and
Mendelson, 2002]) If L : R → R is Lipschitz continuous
with constant L and satisfies L(0) = 0, then

Rn(L ◦ F) ≤ LRn(F), (29)

where “◦” represents the composition of two functions.
Now we present the formal proof for Theorem 1:

Proof. LetH1 be the family of hypothesis mapping X ×Y to
R defined byH1 = {(x, y) 7→ ρh(x, y) :h ∈ H}. By Lemma
3, with probability at least 1− δ, for all h ∈ H, we have

E
[
`
(
ρh (x, y)

)]
≤ R̂ρ(h) + 2Rp(`

ρ(p) ◦ H1)

+2Ru(`ρ(u) ◦H1) +

√
ln(1/δ)

2n
.

(30)

Since 1t≤0 ≤ `(t) for all t ∈ R, the expected error
R(h) is the lower bound of E

[
`
(
ρh (x, y)

)]
, namelyR(h) =

E[1[h(x,y)−h(x,y′)]≤0] ≤ E
[
`
(
ρh (x, y)

)]
, and thus we have

R(h) ≤ R̂ρ(h) + 2Rp(`
ρ(p) ◦ H1)

+ 2Ru(`ρ(u) ◦ H1) +

√
ln(1/δ)

2n
,

(31)
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where

Rp(`
ρ(p) ◦ H1) = E

[
sup
h∈H

1

p

p∑
i=1

σi`
ρ(p) (ρp (xi, yi))

]
(32)

and

Ru(`ρ(u) ◦ H1) = E

sup
h∈H

1

u

p+u∑
i=p+1

σi`
ρ(u) (ρu (xi, yi))

 .
(33)

To upper bound the Rademacher complexities in (32) and
(33), we first derive an upper bound for the classifiers in H.
Due to the optimality of any classifier parameters ω, we have
1

2
‖ω‖2 +

α

p

∑p

i=1

(
1−

(
ω>Φ (xi, 2)− ω>Φ (xi, 1)

))
+

+
β

u

p+u∑
i=p+1

(
1−
(

max
y′i

ω>Φ (xi, y
′
i)− max

y′′i 6=y′i
ω>Φ (xi, y

′′
i )

))
+

+ γ
∑n

i,j=1
Āij (yi − yj)2 ≤ α+ β, (34)

whenω is set to 0. Since each term in (34) is nonnegative, we
can get an upper bound for ‖ω‖2, which implys that ‖ω‖2 ≤
2α+ 2β.

Now we are going to bound Rp(`
ρ(p) ◦H1) and Ru(`ρ(u) ◦

H1). Specially, since the function `(x) is 1/ρ-Lipschitiz, by
using Lemma 4, we have Rp(`

ρ(p) ◦ H1) ≤ Rp(H1)/ρ(p)
and Ru(`ρ(u) ◦ H1) ≤ Ru(H1)/ρ(u). For any family of
hypothesis mapping h : X ×Y → R, we define Π1(H) =
{x 7→ h(x, y) : y ∈ Y, h ∈ H}. Based on the theo-
rem 8.1 in [Mohri et al., 2018], we can directly get the up-
per bounds for Rp(H1) and Ru(H1), which are Rp(H1) ≤
4Rp(Π1(H)) and Ru(H1) ≤ 4Ru(Π1(H)). Next we are go-
ing to upper bound Rp(Π1(H)) and Ru(Π1(H)). By noting
that E[σiσj ] = 0 for i 6= j, we have

Rp(Π1(H)) = E
[

sup
y∈Y

1

p

∑p

i=1
σiω

>Φ (xi, y)

]
1
≤ 1

p
‖ω‖E

√∑p

i=1
E [‖xi‖2] ≤ b

√
2α+ 2β

p
,

(35)

where the Inequality 1 holds because of the Jensen’s Inequal-
ity and the concave property of the square-root function.

Similarly, we have

Ru(Π1(H)) ≤ b
√

2α+ 2β

u
. (36)

By combining the formulation (31) and the upper bound for
(32) and (33), it is easy to get that for any learned classifier ĥ,
with probability at least 1− δ, we have

R(ĥ)−R̂ρ(ĥ)≤
8b
√

2(α+β)

ρ(p)
√
p

+
8b
√

2(α+β)

ρ(u)
√
u

+

√
ln(1/δ)

2n
,

(37)
which concludes the proof of Theorem 1.

Theorem 1 shows that by either increasing the sample size
of positive or unlabeled data, the generalization error bound
of PULD decreases, which justifies the usefulness of positive
and unlabeled data in PU learning. This also guarantees the
generalization ability of the proposed learning algorithm.

4 Experiments
To demonstrate the superiority of our proposed PULD to the
existing PU methods, we perform intensive experiments on
both benchmark and real-world datasets in this section.

4.1 Benchmark Datasets
In this section, we compare our PULD with state-of-
the-art PU learning algorithms such as Weighted SVM
(WSVM) [Elkan and Noto, 2008], Unbiased PU risk [Du P-
lessis et al., 2015], Non-Negative PU risk (NNPU) [Kiryo et
al., 2017], and Loss Decomposition and Centroid Estimation
(LDCE) [Shi et al., 2018] on OpenML1 benchmark dataset-
s. Specifically, five binary datasets are adopted for algorithm
evaluation including vote, diabetes, wdbc, fri, and phishing,
and their configurations are listed in Table 1.

For each dataset, we randomly choose r = 20%, 30%,
and 40% positive examples as well as all negative exam-
ples as unlabeled and leave the rest positive examples as
labeled. Under each r, we conduct five-fold cross valida-
tion on every compared method and report the average ac-
curacy over the five independent implementations. Note that
all data features have been normalized in advance, and the
selected positive examples and the dataset splits are kep-
t identical for all compared methods. In our experiments,
the proportion of positive examples in unlabeled set c is
assumed to be known during training for all the compared
methods, which is also assumed by the existing PU learning
works such as [Du Plessis et al., 2015; Kiryo et al., 2017;
Shi et al., 2018]. Practically, it can be efficiently estimat-
ed by the methods such as [Liu and Tao, 2016; Christof-
fel et al., 2016]. The parameters of every algorithm have
been carefully tuned on the validation set to achieve the best
performance. To be specific, the parameter β of NNPU
is tuned to the default value 0 on all benchmark dataset-
s. For LDCE, we choose regularization parameter λ from
{2−4, . . . , 24} and β from {0.1, 0.2, . . . , 0.9} according to
[Shi et al., 2018]. Moreover, for the proposed PULD, K is
chosen from the candidate set {6, 8, 10, 12, 14}, δ is chosen
from {10−2, . . . , 101}, and the trade-off parameters µ, γ, and
λ in (10) are turned by searching the grid {10−4, . . . , 101}.
Furthermore, we also adopt the t-test with significance level
0.05 to investigate whether our PULD is significantly better
than other baselines.

The test accuracies of all methods on the five benchmark
datasets are reported in Table 1. We can find that PULD gen-
erally achieves the best classification accuracy compared with
the baselines. Besides, the accuracies obtained by PULD on
the five datasets are all above 75%, which suggests that PULD
generates very impressive classification results although it is
trained without negative data.

4.2 Real-world Datasets
Here we investigate the performance of WSVM, UPU, N-
NPU, LDCE, and PULD on the practical image classification
task, and CIFAR-10 [Krizhevsky and Hinton, 2009] and SVH-
N [Netzer et al., 2011] datasets are chosen to test their per-
formance. CIFAR-10 consists of 60000 32×32 natural im-

1https://www.openml.org/
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Dataset (n, d) r WSVM UPU NNPU LDCE PULD

vote (435,16)
0.2 0.961±0.017 0.943±0.014 0.868±0.032

√
0.902±0.013

√
0.959±0.019

0.3 0.941±0.020 0.905±0.022
√

0.900±0.009
√

0.892±0.010
√

0.955±0.014
0.4 0.918±0.044 0.911±0.012

√
0.891±0.033

√
0.907±0.032

√
0.948±0.023

wdbc (569,30)
0.2 0.943±0.020 0.899±0.023

√
0.877±0.026

√
0.954±0.015 0.963±0.021

0.3 0.939±0.018
√

0.911±0.036
√

0.933±0.016
√

0.950±0.014
√

0.974±0.006
0.4 0.911±0.010

√
0.911±0.019

√
0.939±0.010

√
0.925±0.005

√
0.967±0.011

diabetes (768,8)
0.2 0.751±0.040 0.651±0.003

√
0.730±0.014

√
0.749±0.020

√
0.787±0.039

0.3 0.714±0.017
√

0.686±0.031
√

0.714±0.036
√

0.751±0.017
√

0.791±0.027
0.4 0.730±0.035

√
0.697±0.037

√
0.651±0.003

√
0.734±0.019

√
0.781±0.040

fri (1000,25)
0.2 0.675±0.015

√
0.563±0.002

√
0.732±0.013

√
0.521±0.008

√
0.779±0.006

0.3 0.657±0.026
√

0.579±0.021
√

0.720±0.011
√

0.498±0.034
√

0.773±0.012
0.4 0.630±0.025

√
0.571±0.020

√
0.720±0.011

√
0.485±0.025

√
0.757±0.029

phishing (11055,68)
0.2 0.928±0.002

√
0.872±0.004

√
0.904±0.005

√
0.901±0.005

√
0.939±0.005

0.3 0.928±0.006
√

0.897±0.007
√

0.921±0.004
√

0.792±0.006
√

0.941±0.006
0.4 0.919±0.004

√
0.907±0.010

√
0.927±0.008 0.796±0.011

√
0.931±0.007

Table 1: The accuracies of various methods on five OpenML benchmark datasets when r = 20%, 30%, and 40%. The best record under each
r is marked in bold. “

√
” indicates that PULD is significantly better than the corresponding methods via paired t-test.

Dataset r WSVM UPU NNPU LDCE PULD

CIFAR-10
0.2 0.829 0.749 0.752 0.772 0.834
0.3 0.820 0.810 0.771 0.761 0.861
0.4 0.787 0.836 0.748 0.701 0.860

SVHN
0.2 0.794 0.728 0.779 0.785 0.851
0.3 0.786 0.769 0.810 0.776 0.852
0.4 0.776 0.790 0.828 0.748 0.850

Table 2: The test accuracies on the adopted real-world datasets and
the best record under each r is marked in bold.

ages in 10 classes with each class containing 6000 images.
We choose the images of ‘airplane’, ‘auto mobile’, ‘ship’,
and ‘truck’ as negative, and regard the images of ‘bird’, ‘cat’,
‘deer’, ‘dog’, ‘frog’, and ‘horse’ as positive. Therefore, there
are 24000 positive examples and 36000 negative examples.
SVHN contains 99289 32×32 digit images belonging to 10
classes, i.e. the digits ‘0’-‘9’, where the negative set is formed
by the digit images ‘1’-‘5’, and the rest digit images compose
the positive set. As a result, we get 34699 positive examples
and 64590 negative examples.

In our experiment, we extract the 512-dimensional GIST
features for each image. Similar to the above experiments,
for each image dataset, the situations of r = 20%, 30%, and
40% are particularly studied. Note that the training set and
the test set are split in advance with 50000 training examples
and 10000 test examples for CIFAR-10, and 73257 training
examples and 26032 test examples for SVHN. The test accu-
racies achieved by the compared methods on the two datasets
are presented in Table 2, where we can clearly see that our
PULD achieves the highest classification accuracy among al-
l comparators on both CIFAR-10 and SVHN. Therefore, the
proposed PULD is effective in handling real-world data.

4.3 Parametric Sensitivity
The model (10) of our PULD contains three trade-off param-
eters µ, γ, and λ. Therefore, this section examines the para-
metric sensitivity of our model to them. The two real-world
datasets CIFAR-10 and SVHN are adopted here. Figure 1

(a) (b) (c)
 γ  λ μ

Figure 1: The parametric sensitivity of (a) µ, (b) γ, and (c) λ of our
PULD on CIFAR-10 and SVHN datasets.

shows the test accuracies of our method on these two datasets
when r= 20%. We change µ from 10−3 to 100, and γ and λ
from 10−4 to 10−1. From Figure 1, we observe that the three
parameters have very slight effect on the accuracy, therefore
they can be easily tuned for practical implementations.

5 Conclusion
This paper proposed a novel PU learning algorithm named
“Positive and Unlabeled learning with Label Disambigua-
tion” (PULD). Specifically, we convert PU learning to a par-
tial label learning problem, and use the disambiguation tech-
nique to efficiently identify the ground-truth labels. The pro-
posed model can be easily solved via an alternative optimiza-
tion process, and its generalization bound has also been theo-
retically proved. The experimental results on both benchmark
and real-world datasets clearly show that PULD is superior to
the state-of-the-art PU methods.
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