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Abstract
In this paper, we present a neural network (Interac-
tionNN) for sparse predictive analysis where hid-
den features of sparse data can be learned by multi-
level feature interaction. To characterize multilevel
interaction of features, InteractionNN consists of
three modules, namely, nonlinear interaction pool-
ing, layer-lossing, and embedding. Nonlinear inter-
action pooling (NI pooling) is a hierarchical struc-
ture and, by shortcut connection, constructs low-
level feature interactions from basic dense features
to elementary features. Layer-lossing is a feed-
forward neural network where high-level feature
interactions can be learned from low-level feature
interactions via correlation of all layers with target.
Moreover, embedding is to extract basic dense fea-
tures from sparse features of data which can help in
reducing our proposed model computational com-
plex. Finally, our experiment evaluates on the two
benchmark datasets and the experimental results
show that InteractionNN performs better than most
of state-of-the-art models in sparse regression.

1 Introduction
Sparse prediction (sparse predictive analysis), as an important
regression problem in machine learning field [Pearl, 2018],
applies machine learning to estimate the relationships be-
tween features and targets when features of data is in a sparse
representation [Pan et al., 2018]. Sparse data has features
in a sparse representation. Formally, in [Rendle, 2011], we
describe sparse data as follows: Suppose there is a dataset
D = {(x1, y1), (x2, y2), ..., (xn, yn)}, where n is the number
of samples. Let m(xi) be the number of non-zero elements
in the i-th feature vector x and m(x) be the average number
of non-zero elements m(x) of all vector x ∈ D. High spar-
sity (m(xi) � n) appears in many real world data like fea-
ture vectors of event transactions or text analysis. Recently,
sparse prediction becomes more and more interesting since
sparse data widely exists in our real world due to the multi-
field category of practical data. For instance, consider some
data with three multi-field categorical features:
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[Gender=Male, Country=China, Weekday=Thursday],

by using one-hot encoding [Bayer et al., 2017], we can con-
vert it as a sparse representation as follows:

[0, 1]︸︷︷︸
Gender=Male

[0, 0, 0, 1, ..., 0, 0]︸ ︷︷ ︸
Country=China

[0, 0, 0, 1, 0, 0, 0]︸ ︷︷ ︸
Weekday=Thursday

Compared to regression in dense data, it is not easy to ex-
tract hidden features of sparse data due to highly dispersed
distribution of each sample [Juan et al., 2016]. To learn hid-
den features of sparse data, there are recently many exist-
ing works roughly classified as the following three classes:
(1) manually feature engineering; (2) (non)Linear models
for low-level features; and (3) neural networks for multi-
level features. Manually feature engineering is firstly and di-
rectly employed in crafting hidden features such as bid-ask
model and taxonomy-aware FE. Compared to manually fea-
ture engineering, (non)linear models and newly neural net-
works are proposed to extract hidden features automatically.
Linear models and non-linear models mainly extract features
in a low-level such as factorization machines (FM) [Ren-
dle, 2012], field-aware factorization machines [Juan et al.,
2016], even with the help of feature engineering, such as lo-
gistic regression [Cheng et al., 2010], follow the regularized
leader (FTRL) [Mcmahan et al., 2013]. Neural networks-
based models are recently applied to extract hidden fea-
tures of sparse data in a multiple level [Zhang et al., 2016;
Ying et al., 2016; Xiao et al., 2017]. Those neural networks-
based (NN-based) models can learn high & low-level fea-
ture interactions by operating feature vectors [He et al.,
2017]. Wide&deep learning [Cheng et al., 2016] presents a
sum of feature vectors, product-based factorization machines
(PNN) [Qu et al., 2016] product of feature vectors. However,
those existing NN-based models are limited to utilize only
current feature in extracting higher level features [Zhang et
al., 2016]. Thus, it is not easy to characterize the transitivity
and reusability of features due to history features missing.

In this paper, we propose a novel neural network Interac-
tionNN for sparse predictive analysis for learning multilevel
feature interactions by utilizing history features to capture
transitivity and reusability of features. The main contribu-
tions of this paper are summarized as follows:
• We propose a shortcut connection-based hierarchical

structure (NI pooling) to learn low-level feature inter-
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actions by utilizing history features. Experimental re-
sults show that NI pooling outperforms FM with a 3.0%
improvement, and performs better than BI-Interaction
pooling in NFM with a 4.4% improvement.
• We design a fully connected feed-forward neural net-

work (Layer-lossing) to learn the higher level feature in-
teractions from all higher level features in hidden layer.
Experimental results show that layer-lossing performs
better than general NN with a 0.9% improvement.
• We present a hybrid embedding approach to learn ba-

sic dense features from sparse data where two embed-
ding methods are employed to linear and nonlinear fea-
tures respectively. Finally, our experiments on Frappe
and MovieLens show that InteractionNN performs bet-
ter than FM with a 6.3%, DeepFM with a 5.8%, and
NFM with a 0.8% improvement respectively.

2 Related Works
In this section, we compare our approach to existing works.

Neural Network-based Mmodels [Chen et al., 2016]
presents a DeepCTR model based on neural network by con-
catenating image feature vectors at embedding layer. Wide
& deep learning (WDL) [Cheng et al., 2016] presents a
merging strategy for training jointly linear model and deep
learning. Compared to those models with the help of fea-
ture engineering, InteractionNN can constructs features auto-
matically. Factorisation-machine supported neural networks
(FNN) [Zhang et al., 2016] present feature division based
on field to reduce dimension of input, meanwhile combining
embedding vectors to extract basic dense features. Product-
based neural network (PNN) [Qu et al., 2016] presents a
product layer based on product of feature vectors to learn ba-
sic dense features. Compared to those models extracting only
high-level feature interactions, InteractionNN can also extract
low-level feature interactions which is useful to characterize
the semantics of sparse data.

Hierarchical representation model (HRM) [He et al., 2016]
and neural network-based collaborative filtering (NCF) [Liu
et al., 2018] capture the feature interactions via a simply aver-
age of embedding vectors. DeepFM [Guo et al., 2017] com-
bines FM and deep learning, which can obtain feature inter-
actions via inner product and concatenate of feature vectors.
Neural factorization machines (NFM) [He et al., 2017] pro-
poses a BI-Interaction, which computes element-wise prod-
uct and sum of feature interactions. Attentional factorization
machines (AFM) [Xiao et al., 2017] learns feature interaction
contribution via attention mechanism by calculating element-
wise product and weighted sum of feature interactions.

CCPM [Liu et al., 2015], based on CNN, can learn some
feature interactions between local features by convolution
kernel. Deep crossing [Ying et al., 2016] proposes multiple
residual units based on ResNet [He et al., 2016] to learn high-
level feature interactions. Deep cross network (DCN) [Wang
et al., 2017] presents a novel cross network to deepen the low-
level feature interactions learned via product of feature inter-
actions. Compared to those models constructing higher level
features depending on only current features, InteractionNN
can capture the transitivity and reusability of features.

Other Models The family of FM [He et al., 2016; Liu et
al., 2018] can learn feature interactions via inner product of
embedding vectors. FTRL [Mcmahan et al., 2013] presents
a per-coordinate learning rates which has excellent sparsity
and convergence properties. Feature engineering [Shi et al.,
2014], such as bid-ask model and taxonomy-aware FE, manu-
ally design some shallow hidden features. Compared to those
classical machine learning approaches to extracting shallow
features, InteractionNN can also extract high-level features.

3 Overview of InteractionNN
In this section, we introduce the framework of InteractionNN
model that captures multilevel feature interactions by extract-
ing information layer by layer during sparse data modeling.
InteractionNN mainly contains three modules, namely, non-
linear interaction pooling, Layer-lossing, and embedding, as
shown in Figure 1.

Next, we introduce the three modules of InteractionNN as
follows:
• Embedding is to extract basic dense features from sparse

features of data which can help in reducing our proposed
model computational complex.
• NI pooling is a hierarchical structure and, by shortcut

connection [Huang et al., 2017], which constructs low-
level feature interaction from basic dense features in
Embedding.
• Layer-lossing is a feed-forward neural network where

high-level feature interactions can be learned from low-
level feature interactions extracted in NI pooling via cor-
relation of all layers with target.

Besides, the linear model of InteractionNN is to learn lin-
ear features fused together with nonlinear features extracted
in Layer-lossing in the combination layer for regression.

4 InteractionNN for Sparse Prediction
In this section, we introduce InteractionNN in detail.

4.1 Embedding

Embedding contains two layers: the 1st converts the sparse
feature vector into dense vector representation and the 2nd
converts the shared input into concentrated matrix expression.

Formally, let F denote the feature size, K the embedding
size, and FS the number of feature values, the two layers
xem1

∈ RF and xem2
∈ RF×K are defined as follows:

xem1
= xin ⊗ vecem1

, xem2
= xin �matem2

. (1)

Here vecem1
∈ RFS is vector weight parameter, and

matem2
∈ RFS×K is matrix weight parameter. Note that

⊗ and � are used to perform parallel lookups on the list of
tensor in xin [Liu et al., 2018]. Intuitively, xem1

and xem2

represent a dense feature vector and a dense feature matrix,
where an original sparse feature vector xin is input. Note that
xem2

is utilized to learn high-level nonlinear feature interac-
tion while xem1 is used to learn low-level linear feature.
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4.2 Nonlinear Interaction Pooling (NI pooling)
NI pooling is a hierarchical extractor (shown in Figure 2)
where feature vectors (low-level features) are extracted from
feature matrix (sparse features) generated in embedding. NI
pooling consists of two elementary unary operator: column
sum (denoted by ⊕) and hadamard product (denoted by �).

Formally, the two operators column sum (⊕) and Ha-Pro
(�) are defined as follows: Let [Mij ]n×m be a n×m matrix.
• ⊕ [Mij ]n×m = [Mi]m = [

∑n
i=1 Mij ]m.

• � [Mij ]n×m = [M2
ij ]n×m.

Thus NI pooling is formally expressed as the following:
where xp is the output of NI pooling,

xp = [�[⊕(xem2)]+⊕(xem2)]−⊕[�(xem2)+xem2 ], (2)

Equation (2) can be equivalently simplified to the following:

xp = 2
n∑

i,k=1,i 6=k

(Mij ·Mkj) ∝
n∑

i,k=1,i6=k

(Mij ·Mkj).

[He et al., 2017] converts a feature matrix into a feature
vector by introducing a latent semantic space. In this paper,
we consider shortcut connection to capture the transitivity and
reusability of features in pooling.

As a summary of NI pooling, we conclude the followings:
• Column sum (⊕) is to obtain statistical information of

the embedding matrix.
• Hadamard product (�) is to strengthen features based

on matrix factorization. It splits embedding matrix into

two types of matrices. The first represents each row vec-
tor separately, and the second is a diagonal matrix which
can strengthen features. Finally, it merges the feature
vectors together to a matrix. For instance,

�
[

a1 a2
a3 a4

]
=

[
a1 a2
0 0

]
·
[

a1 0
0 a2

]
+[

0 0
a3 a4

]
·
[

a3 0
0 a4

]
=

[
a21 a22
a23 a24

]
Intuitively speaking, each matrix is decomposed into
several sparse matrices. It makes the implicit relation-
ships between features easier to learn.
• “+” is a sum, which adds the previous feature matrices

(or vectors) to current feature matrices (or vectors). In
Figure 2, red arrow above and “+” indicates that the fea-
ture of “column sum” is passed to the current layer, and
red arrow below and “+” denotes that the feature of “in-
put” is passed to the current layer in NI pooling. As a
shortcut connection, it can use history features to cap-
ture the transitivity and reusability of features.
• “-” is a subtraction, which subtracts the results of two

vectors after two conversion methods. It can reinforce
important features and weaken unimportant features.

In a short, each operation of NI pooling is interpretable in
mathematic and then it is also reliable to learn effective low-
level feature interactions. Besides, the computational com-
plexity of NI pooling is O(n). It is easy to update model
parameters with general optimizer and new samples.
Batch Normalization Batch Normalization (BN) [Ioffe et
al., 2015] is an acceleration strategy for neural network,
which can tune the distribution of hidden layer to be the same
during training process. In order to reduce “internal covariate
shift”, we introduce BN in NI pooling to detect the perfor-
mance of NI pooling and whether BN can accelerate the con-
vergence speed of the pooling. We will clarify the impact of
BN on NI pooling by through experiments in Section 5.3. We
utilize BN in NI pooling to make the same distribution of dif-
ferent hidden layers. Essentially, it is the standardization of
information at each layer level. Furthermore, BN can better
extract implicit relationships between features.
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Dropout Dropout [Srivastava et al., 2014] is a regulariza-
tion strategy to prevent over-fitting for neural network, which
can randomly select some features into training process in
each iteration. When neural network propagates forward, a
neuron stops working with a certain probability p. It can en-
hance the generalization ability of model, because it does not
rely too much on local features. In InteractionNN, we in-
troduce dropout on NI pooling to avoid over-fitting. More
importantly, we can find much different crucial information
in each iteration because of randomness of selecting features.
In Section 5.3, our experimental results illustrate the impact
of dropout regularization. Of course, we also employ BN and
dropout strategy on Layer-lossing to learn significant feature
interactions and prevent over-fitting.

Layer-lossing Layer-lossing is a modified neural network
structure, which is responsible for learning high-level and
nonlinear interactions between features (as shown in Fig-
ure 3). Obviously, the linear model plays a key role to model
the relevance between each hidden layer and final target. By
obtaining information of each hidden layer, it can get more
important features. Meanwhile, the model allows the loss of
each hidden layer to be added to the objective loss function.
In Section 4.3, we will introduce the objective loss function
in detail.

...Hidden Layer 1

BAD unit

Hidden Layer 2

BAD unit

Hidden Layer n

BAD unit

Linear Model Linear Model Linear ModelY

Figure 3: The architecture of the Layer-lossing.

Layer-lossing is to extract higher-level feature interac-
tions from each hidden layer, considering the transitivity and
reusability of features. Formally, it is defined as follows:

h1 = bad(w1 × xni + b1)

h2 = bad(w2 × h1 + b2)

· · · · · ·
hL = bad(wn × hL−1 + bL)

(3)

where L is the number of hidden layers, hi is the output of the
i-th hidden layer. wi and bi denote the connection matrix and
bias, respectively. The bad unit means batch normalization,
activation function and dropout, respectively. Among them,
the role of BN and dropout is described in Section 4.2. The
activation function represents the functional relationship be-
tween previous layer and current layer. We extract complex
nonlinear feature interactions by setting a nonlinear activa-
tion at each hidden layer. It can make Layer-lossing more
effective. In this paper, we employ three nonlinear activation
functions (sigmoid, tanh, and relu) to improve the network’s
ability to predict. In Section 5.4, experimental results show
the effects of different activation functions on performance.

The linear model is simple linear regression, which can
predict the output of each hidden layer as accurately as possi-
ble. Formally, the definition of linear regression is as follow:

y = wi × hi + bi (4)
where wi and bi denote the weight and bias vector, and y is
predicted continuous value. Compared with the general neu-
ral network, it can learn more significant feature interactions
from hidden layers.

4.3 Others
The linear model in Figure 1 is wide component in Interac-
tionNN, which can learn essential and linear features. The
combination layer sums the output of wide component and
layer-lossing. For a regression problem, the predicted output
of the model is:

y = hL + xwide + b, (5)

where y is predicted continuous value, b denotes bias, hL and
xwide denote the output of layer-lossing and wide component.

In this paper, we use the square loss as the model’s loss
function, and calculate the loss of each hidden layer in layer-
lossing:

L =
∑
x∈D

(y(x)− y(x))2 +

L∑
i=1

∑
x∈D

(hi(x)− y)2, (6)

where L denotes the numbers of hidden layer, and hi(x) is
predicted target value of the i-th hidden layer.

5 Experiments and Evaluation
We implement InteractionNN by using TensorFlow and con-
struct three sets of experiments to evaluate our proposed
model on learning feature interactions. The first experi-
ment aims to evaluate the effectiveness of InteractionNN by
comparing to the state-of-the-art model. The second aims
to appraise the ability of NI pooling to learn low-level fea-
ture interactions. The third aims to evaluate the availability
of Layer-lossing for learning high-level feature interactions
compared with general neural network.

5.1 Experiment Setup
We perform experiments with two benchmark datasets:
• Frappe: It includes 96,203 applications usage records for

various contexts. It results in 5,382 features via one-hot
encoding. In each sample, only 10 feature values are 1.
• MovieLens: It contains 668,953 applications. It pro-

duces 90,445 features via one-hot encoding. In each
sample, it has only 3 non-zero elements.

We randomly split the datasets into three parts: 70% (train-
ing), 20% (validation), and 10% (test). To evaluate the per-
formance, we employ two evaluation metrics: RMSE (Root
Mean Square Error) and AUC (Area Under ROC). We com-
pare InteractionNN with traditional machine learning meth-
ods and state-of-the-art deep learning models: LR, FM,
DeepFM, PNN, and NFM.

The loss functions of all models are square loss for a fair
comparison. The optimizer is mini-batch Adagrad, which
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can adaptively tune learning rate. The initial learning rate
is searched in [0.001, 0.005, 0.01, 0.05]. The batch size of
both datasets is 128. Except for the size of attention fac-
tor is 64, other embedding size is set to 256. In order to
avoid over-fitting, we use dropout is searched in [0.2, 0.4,
0.6, 0.8] in both NI pooling and Layer-lossing. Besides, we
utilize an early stopping mechanism based on the validation
error, where InteractionNN stops iterating if the validation er-
ror continuously rising in five epochs.

5.2 Performance Comparison
In this section, we compare the performance of different
methods on the test set (as shown in Table 1). For Interac-
tionNN, we only set a hidden layer with bad unit. We have
three major observation as follows:

Method
Frappe MovieLens

RMSE AUC RMSE AUC

LR 0.5832 0.9358 0.5979 0.9255

FM 0.3766 0.9799 0.4649 0.9578

PNN 0.3550 0.9741 0.4587 0.9521

DeepFM 0.3782 0.9631 0.4543 0.9582

NFM 0.3095 0.9810 0.4443 0.9599

InteractionNN 0.3057 0.9838 0.4383 0.9617

Table 1: Test error of different models.

• Firstly, InteractionNN performs best compared to the
other popular models. To be specific, InteractionNN out-
performs FM with a 6.3% improvement. InteractionNN
betters the current best model, NFM, with a 0.8% im-
provement. This confirms the importance of features’
transmissibility and reusability. By extracting features
layer by layer and shortcut connection, InteractionNN
can learn more effective feature interactions.
• Secondly, DeepFM combines FM model and general

neural network, which learn low-level feature interac-
tions and high-level feature interactions, respectively.
As can be seen from Table 1, DeepFM and FM performs
similarly. It demonstrates that reasonable low-level fea-
ture interactions has a crucial role. Meanwhile, it is our
purpose of designing Layer-lossing to learn high-level
feature interactions based on important low-level feature
interactions.
• Finally, shallow models (NFM, InteractionNN) can per-

forms better than deep learning models (PNN, DeepFM)
with a 5.4% relative improvement. This demonstrates
that the better low-level feature interactions is the
premise of extracting high-level feature interactions.
Meanwhile, it can simplify the learning process of deep
learning to extract high-level feature interactions.

5.3 Evaluating NI Pooling
In this section, we will pay attention to analyze the effect of
NI pooling for learning low-level feature interactions. In or-
der to compare the performance of NI pooling to extract low-

level feature interactions separately, we remove wide compo-
nent and Layer-lossing from InteractionNN.

Firstly, we compare different methods for learning low-
level feature interactions on the test set (as shown in Table 2).
The main observations are summarized as follows:

Method
Frappe MovieLens

RMSE AUC RMSE AUC

None(LR) 0.5832 0.9358 0.5979 0.9255

Inner-product 0.3766 0.9799 0.4649 0.9578

Outer-product 0.4732 0.9585 0.4953 0.9482

Ab pooling 0.446 0.9728 0.5370 0.9474

BI pooling 0.3745 0.9795 0.4945 0.9533

NI pooling 0.3390 0.9816 0.4586 0.9598

Table 2: Test error of different methods for learning low-level fea-
ture interactions. (Ab pooling is attention-based pooling in AFM)

• NI pooling achieves the best performance compared to
the other methods. Specially, NI pooling improves per-
formance by 4.8% and 4.0% over the most advanced
method (BI pooling) on Frappe and MovieLens, respec-
tively. It points that NI pooling can effectively learn fea-
ture interactions, and the shortcut connection can auto-
matically learn extra information.
• NI pooling and BI pooling performs much better than in-

ner product and outer product with a great improvement
on Frappe and MovieLens, respectively. It indicates that
the implicit relationship between features is quite com-
plicated, and simple product of feature vectors can only
extract shallow feature interactions.
• All methods for learning feature interactions are much

better than LR. Moreover, LR relies heavily on feature
engineering. Designing effective method to learn more
important feature interactions is a prospective research
direction to ease humans burden.

Besides, we also explore the effect of dropout, batch nor-
malization and embedding size (as shown in Figure 4). We
have the following observations:
• To avoid over-fitting, we use dropout regularization

method in NI pooling (as shown in Figure 4(a)). We can
see that dropout ratio affects the performance of Interac-
tionNN. Specifically, the better optimal dropout ratio is
0.4 and 0.6 on Frappe and MovieLens, respectively. This
verifies that dropout is obligatory to NI pooling, which
increases level of feature interactions. Due the random-
ness of feature selection, NI pooling can combine differ-
ent features to learn various feature interactions.
• Figure 4(b) and 4(c) indicate the validation error of each

epoch of NI pooling with and without BN on Frappe and
MovieLens, respectively. The dropout radio is set to 0.4
and 0.6, and the learning rate is set to 0.001 and 0.005,
respectively. Obviously, BN can speed up the iteration,
which accelerate the convergence of NI pooling. Spe-
cially, on Frappe, when BN is applied, the validation er-
ror of epoch 20 is even lower than that of the same epoch
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Figure 4: The performance of NI pooling using different parameters.

without BN with a 0.05 reduction.
• Figure 4(d) describes the validation error of different

embedding sizes. The dropout radio is set to 0.4 and
0.6, and the learning rate is set to 0.001 and 0.005, re-
spectively. Meanwhile, BN is also applied. We can see
that the larger the embedding size, the better NI pool-
ing performs. This confirms that the more the number
of features, the better the implicit relationship between
features is extracted.

5.4 Impact of Layer-lossing
Layer-lossing of InteractionNN is crucial for learning higher-
level feature interactions. In order to show the effect of Layer-
lossing on the result, we use 1, 3, and 5 hidden layers respec-
tively. We call the model with i hidden layers LL-i, and the
general neural network is named NN-i.

NN
Frappe Frappe

RMSE AUC RMSE AUC

NI pooling 0.3390 0.9816 0.4586 0.9598

NN-1 0.3110 0.9810 0.4413 0.9606

LL-1 0.3057 0.9838 0.4383 0.9617

NN-3 0.3292 0.9757 0.4848 0.9507

LL-3 0.3187 0.9769 0.4732 0.9550

NN-5 0.3338 0.9740 0.5361 0.9500

LL-5 0.3256 0.9752 0.4972 0.9502

Table 3: Test error of Layer-lossing and general neural network.

In order to understand how the depth of neural network af-
fects performance and whether InteractionNN performs bet-
ter than general neural network, we employ LL-1, LL-3, and
LL-5 respectively (as shown in Table 3). To avoid the influ-
ence of NI pooling, we fix hyper-parameters in NI pooling.
For instance, the learning rate is set to 0.001, the dropout ra-
tio in NI pooling is set to 0.4, and the embedding size is set
to 256. Meanwhile, the dropout ratio in each hidden layer is
the same. Obviously, when the number of hidden layers is
the same, Layer-lossing outperforms better than general neu-
ral network. It shows that the features retained in the hidden
layer are important.

There is an interesting appearance that the more hidden
layers, the worse the performance. We believe that the gra-
dient in back propagation is more likely to disappear under
sparse settings. Although we also try other successful mod-
els, the performance of InteractionNN isn’t improved. This
indicates low-level feature interactions play a key role for
Layer-lossing to capture high-level feature interactions.

In addition, Table 4 shows the test error of LL-1 using dif-
ferent activation functions in hidden layer. First and foremost,
we observe that by using different nonlinear activations, LL-1
performs better than NI pooling, respectively. This indicates
LL-1 can learn the higher-level interactions between features
via nonlinear activation function and modeling the relation-
ship between each hidden layer and final target. Among the
three nonlinear activation functions, Relu and Sigmoid per-
form better on Frappe and MovieLens. Note that the nonlin-
ear feature interactions are different for different datasets.

Activation Function
Frappe Frappe

RMSE AUC RMSE AUC

LL-0(NI pooling) 0.3390 0.9838 0.4586 0.9585

LL-1-sigmoid 0.3121 0.9821 0.4383 0.9617

LL-1-tanh 0.3135 0.9826 0.4458 0.9579

LL-1-relu 0.3057 0.9836 0.4403 0.9599

Table 4: Test error of InteractionNN using different activation func-
tions in hidden layers

6 Conclusion
In this paper, we present a novel neural network model In-
teractionNN for sparse prediction, where hidden features of
sparse data can be learned by multilevel feature interactions.
InteractionNN model considers the transitivity and reusability
of features. It provides a promising research direct to improve
NN-based models even general machine learning model.
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