Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Taming the Noisy Gradient: Train Deep Neural Networks with Small Batch Sizes

Yikai Zhang'*, Hui Qu'*, Chao Chen?, Dimitris Metaxas'

'Department of Computer Science, Rutgers University
2Departments of Biomedical Informatics, Stony Brook University

{yz422, hui.qu, dnm} @cs.rutgers.edu, chao.chen.cchen@gmail.com

Abstract

Deep learning architectures are usually proposed
with millions of parameters, resulting in a mem-
ory issue when training deep neural networks with
stochastic gradient descent type methods using
large batch sizes. However, training with small
batch sizes tends to produce low quality solution
due to the large variance of stochastic gradients. In
this paper, we tackle this problem by proposing a
new framework for training deep neural network
with small batches/noisy gradient. During opti-
mization, our method iteratively applies a proximal
type regularizer to make loss function strongly con-
vex. Such regularizer stablizes the gradient, leading
to better training performance. We prove that our
algorithm achieves comparable convergence rate
as vanilla SGD even with small batch size. Our
framework is simple to implement and can be po-
tentially combined with many existing optimiza-
tion algorithms. Empirical results show that our
method outperforms SGD and Adam when batch
size is small. Our implementation is available at
https://github.com/huiqul18/TR Algorithm.

1 Introduction

Recent years have witnessed the rapid development of deep
neural networks in a wide range of applications. The success
of neural networks should be partially attributed to optimiza-
tion algorithms such as stochastic gradient descent (SGD)
and its variants [Kingma and Ba, 2014]. These popular op-
timization methods, widely adopted in practice, have been
proved to be extremely efficient and effective for finding
the local minima of the objective function [Bottou, 2010;
Bottou, 2012; Le et al., 2011]. SGD exploits the finite
sum structure of the objective function, avoids the expen-
sive computation of exact gradient, and thus provides a fea-
sible and efficient optimization solution in practice [Bot-
tou, 2012]. The stochastic nature also helps escaping sad-
dle points, when Newton method cannot [Ge et al., 2015;
Jin et al., 2017]. 1t has also been shown both empirically and

*equal contribution

4348

theoretically that SGD and its variants improve the general-
ization performance of the trained models [Hardt er al., 2016;
Chaudhari et al., 2017].

Despite the above advantages, one limitation with SGD
type methods has manifested in recent years. Calculated
using partial data, the stochastic gradient tends to fluctuate
[Ruder, 2016] and deviate from the full gradient descent di-
rection, causing deteriorated optimization efficiency. This is-
sue becomes more serious when researchers continuously de-
velop powerful yet large size networks to address big data
challenges. With large networks, we are often forced to use
small batch size due to the memory constraints. For exam-
ple, in the high resolution image synthesis task [Wang et al.,
2018], it requires a GPU of 24GB memory to train a genera-
tive adversarial network (GAN) using full resolution images
with batch size 1. Such scenario demands small batch sizes,
causing large variance in stochastic gradients, and thus inef-
ficient optimization.

Variance reduction techniques have been developed to al-
leviate such issue [Johnson and Zhang, 2013; Reddi et al.,
2016; Lei and Jordan, 2017]. These techniques reduce the
noise of stochastic gradient by progressively estimating the
difference between noisy and noiseless gradient. However,
these techniques require the access to gradient computed by
full batch or large batch size, and thus is impractical in the
limited memory/small batch size scenario.

In this paper, we propose a new optimization method
to reduce the variance of stochastic gradients with small
batch size. Our method, called Trajectory Regularized Al-
gorithm (TRAlgo), computes each stochastic gradient by lo-
cally adding a proximal type regularizer. The locally reg-
ularized loss function becomes strongly convex and can be
solved efficiently [Rakhlin et al., 2012]. The local regularizer
stabilizes the stochastic gradient, and thus reduces its vari-
ance. We prove that with small batch size, our method can
achieve a much better stochastic gradient variance compared
with SGD, and thus a better convergence rate. Our algorithm
is fairly general and in principle can be combined with many
existing SGD type methods. It opens the door toward novel
optimization techniques that uniquely suit the big data world.
In summary, our main contributions include:

e We propose a new algorithm using proximal regularizer
to address the issue of noisy stochastic gradients, due to
small batch size.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

e We prove that our algorithm converges no slower than
SGD. Furthermore, under the constraint of small batch
size, our method reduces the variance of stochastic gra-
dients, and thus has a better convergence rate than SGD.

e We combine our algorithm with various state-of-the-art
optimization algorithms (vanilla SGD and Adam). We
empirically show that the proposed method improves
the optimization performance when training deep neu-
ral networks with small batch sizes.

Note that the power of a proximal type regularizer has been
exploited [Allen-Zhu, 2018; Lin et al., 2015]. However, ex-
isting works only focus on the optimization efficiency. To the
best of our knowledge, TRAIgo is the first to use such tech-
nique to address noisy gradients, under the small batch size
constraint.

The remainder of this paper is organized as follows. We in-
troduce our notation and TRAIgo in Section 2. In Section 3,
we combine TRAIlgo with SGD (called TRSGD) and analyze
the gradient complexity of both TRSGD and SGD. Experi-
mental results are presented in Section 4. Finally, we con-
clude our work in Section 5.

2 Preliminary

We introduce the notations, assumptions, as well as our pro-
posed TRAIlgo framework. Throughout this paper, we denote
by f(w) = + 37 | fi(w) the loss function, where w € R?
represents parameters in the optimization problem. We use
|l - || to denote the L norm. In this paper, we only consider
convergence to a first order stationary point : |V f(z)]|? < e.

The following assumptions are widely adopted in the anal-
ysis of convex and non-convex optimization algorithms. They
regulate the behavior of zero-th order, first order and second
order derivatives of f(z).

Assumption 1. We assume following conditions hold:

e Function f(z) is ¢-Lipschitz smooth: ||V f(z) —
VIl <tz =yl
e Function f(z) is G-Lipschitz continuous: ||f(x) —

fWl < gllz—yl.
e Function f(z) is B bounded: |f(x)| < B

In following assumption we apply J to describe how ‘non-
convex’ f(x) is.

Assumption 2 (-non-convex). We assume function f(z) is
s-non-convex : f(z) > £(y) + (Vf(y), x—) — 21y — o]

In general, § is uniformly bounded by Hessian upper bound
¢ and could be equivalent to ¢ in the worst case. We can view
§ as the minimum value of \ so that f(w)+ 3 ||w]|? is convex.

Assumption 3 (Variance bounded SGD). We assume func-
tion f(z) is o variance bounded: <37 [V fi(w) —
Viw)|? <o

The last assumption regulates the variance of stochastic
gradient which is common in analyzing the convergence be-
havior of Stochastic Gradient Descent.

Algorithm 1 presents our Trajectory Regularized frame-
work. It run for 7T iterations. At iteration ¢, we will construct

4349

Algorithm 1 TRAlgo (T, A, wy, S)

1: Input: Number of iterations 7', Regularizer weight A,
Initialization wy

2: fort=0,---,T—1do

3 Gi(w) = fw) + 3w —w?

: Run stochastic gradient type method with
decreasing step size on G¢(w) for S iterations to
compute w41

Option I:

Pick w = wp

return w

Option IT:

Pick w uniformly randomly from wy, .., wp
return w > For analysis

> In practice

SeXIW

—_

an auxiliary function G¢(w) by adding a regularization term
to f(z), and run stochastic gradient type optimization algo-
rithm on G(w) for S iterations. The result w after S steps
is the next gradient step, wy41. After T iterations, depend-
ing on the context, we may return wr as the final output (in
practice), or return a random sample from all previous w, (for
analysis).

The key idea of TRAIgo is to apply a proximal type reg-
ularizer %||w — wy|?> with A > 25 to make the loss func-
tion f(z) strongly convex. The regularizer stablizes the gra-
dient and thus reduces its variance, as we will prove in the
next section. To avoid introducing bias as a fixed regular-
izer does [Hoerl and Kennard, 19701, the regularizer is locally
adaptive (centered at current wy). Quadratic proximal regu-
larizer has been used before [Parikh er al., 2014], but only for
better optimization of non smooth £; loss function. Instead,
TRAIgo uses the it for a trajectory regularization purpose. In
TRAIlgo, the choice of the stochastic gradient method in each
iteration is flexible. One can apply a vanilla SGD or its vari-
ants: Adam [Kingma and Ba, 2014] and AMSGrad [Reddi
et al., 2018]. In next section, we use SGD as an example to
analyze the benefits of TRAIgo, while in Section 4, we em-
pirically apply TRAIgo to both SGD and Adam.

3 Analysis

In this section we incorporate SGD into our framework
TRAIlgo (called TRSGD) and compare it with Vanilla SGD.
In Section 3.1 we review SGD and restate some known results
of SGD for a direct comparison with analysis for TRSGD. In
Section 3.3 we formally define TRSGD and analyze its con-
vergence rate using batch size 1. While TRSGD achieves
comparable gradient complexity with Vanilla SGD in general
it attains a better convergence rate when batch size is con-
strained. The analysis focuses on quantifying how number of
iterations .S run on auxiliary function G, (w) affects the con-
vergence. Our analysis demonstrates even when batch size is
limited, TRSGD could still control variance.

3.1 SGD

In Algorithm 2 we describe the Stochastic Gradient Descent
method. We use I¥ C [n] to denote the random sampled

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Algorithm 2 SGD(S, wo, 10.5_1)

1: Input: Number of iterations S'; Initial value wq; Step size

To:5—1

fork=0,---,5—1do
Wit1 = Wi — NV f1, (W)

Option I:

Pick w = wg

return w

Option II:

Pick @ uniformly randomly from wy, .., wg

return w > For analysis

> For practice

VR AU hR 2N

small batch and V f, (wg) = ﬁ > ier, Vfi(wg) to de-
note the stochastic gradient in k-th iteration. The SGD up-
date step is w**! = wy, — NV fr, (wy). Compared to full
gradient update w**t! = wy — nVf(wy), the difference
V f1,(wr) — V f(wyg) is known as noise in stochastic gra-
dient. Next we introduce some well known results about the
convergence behavior of SGD and demonstrate how the noise

affects the convergence. One can find similar statements in
[Allen-Zhu, 2018; Ge et al., 2015; Reddi et al., 2016].

Lemma 1. Under assumpttons 1 and 3, the iterative update
of SGD with step size n < 55 and batch size M satisfies the
following inequality:

VI (w)l® _ no?
2 AM

Proof: By smoothness of f(x) we have f(wi41) < f(w) +
(Vf(wy), w1 — wy) + Sllwepr — wel|?. Recall that
the SGD update rule is w1 = wy — n(Vf(wy) + oy)
where o; represents noise in the Stochastic Gradient with

Elo:] = 0,E[|o:]?] < %&. We have:E [f(wyi1)|w] <

E[f(we) = f(wigr)|we] >)]

Flwn) + E[(VF (), wip =) + §lwe —wil?] <
Flwe) = |V F) + ST) + o0l < fun) -
BV A) 2 + 357 =

3.2 Intuition: Noisy Gradient Slows Down
Convergence

The left hand side of Eq. (1) is the improvement made in each
iteration in expectation and the right hand side gives a guaran-
tee on the progress for iteration ¢. One can observe that large
variance will slow down the improvement brought by gradi-
ent. To alleviate this issue, one may increase batch size M.
However, in our setting, when M is restricted to small, we
cannot mitigate the negative impact of variance. Such phe-
nomenon is shown in Figure 1.

By telescoping Lemma 1 and using the fact that
f(z) = f(y) < 2B, we have the convergence rate of SGD.

Theorem 1. Under assumptions 1 and 3, for SGD with step
size n = 1/(20), batch size M, and any T, it holds that:

2

T 4B o
2:: ||Vf] T + Vi 2

'ﬂ \

Train loss and accuracy per iteration Test loss and accuracy per iteration

|| loss_bs=8
loss_bs=32
"l—loss_bs=128
---acc_bs=8 -
---acc_bs=32 |
---acc_bs=128

train accuracy

test loss
test accuracy

train loss

iteration iteration

Figure 1: Noisy gradient slows down convergence. The train and
test curves of running SGD with batch sizes of 8, 32, 128 for 5000
iterations using ResNet18 on CIFAR10 are presented. Smaller batch
size (larger gradient variance) has higher train and test losses and
lower accuracies.

In particular, denote by N = T M the total number of gradi-
ent calls applied in the algorithm, picking T = 4v{BN /o,
the gradient complexity to reach E |||V f(w)|?] < e is:
N=0(%).

Above Theorem suggests that if picking the output of
SGD uniformly randomly over wj.p, one can achieve

E[IVf(w)|*] =0
ing iteration 7" and batch size M so that the expected gradi-
ent squared norm meets the first order stationary point crite-
rion. An optimal choice balancing (¢B) /T and (02T) /N

would be T' = 4V/¢{BN/o. Although the above statements
reveal the power of SGD in efficiency, it is not realistic to set
M = Q(v/N) in training large size deep neural network.

Indeed, in the practical setting we are addressing, M may
be a small constant (say 1). The right hand side of Eq. (2)
can be arbitrarily bad with noisy gradients. In next section,
we will show how TRAIgo addresses the issue and still keep
a tight bound even with M = 1.

3.3 TRSGD

Our method TRAIgo requires the choice of a base optimiza-
tion algorithm. In this section, we instantiate our method
using the Vanilla SGD. We analyize the convergence perfor-
mance of this instantiation, called TRSGD.

Definition 1. TRSGD is defined as applying SGD in
TRAIlgo: wiy; = SGD(S,w,m = 1/((A — §)k)) where
k € [S] represents k-th iteration in SGD.

While the advantage of decreasing stepsize (usually set
to be 1/k) for SGD type methods has been well studied
in strongly convex case [Rakhlin et al., 2012; Shamir and
Zhang, 2013], it remains unclear how to properly apply such
strategy in non-convex stochastic optimization. In the rest of
this section we show one can benefit from such strategy due
to the convexity of auxiliary function G¢(w).

First we state a technical lemma which follows [Rakhlin
et al., 2012]. We use the following lemma to quantify the
progress made by running SGD for S iterations with decreas-
ing step size.

Lemma 2. [f one runs SGD on G¢(w) = f(w)+ 2 ||w—w;||?
for S iterations with step size ni, = 1/((A — 5)k3 and batch

2 . .
% + % . One could increase train-

4350

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Method CIFAR10 CIFAR100

ResNetl8 ResNetl01 DenseNetl21 ResNetl8 ResNetl01 DenseNetl21
SGD 0.9467 0.9383 0.9390 0.7625 0.7439 0.7499
TRSGD 0.9522 0.9560 0.9537 0.7811 0.8008 0.8001
Adam 0.9250 0.9146 0.9242 0.7235 0.6918 0.7226
TRAdam 0.9453 0.9466 0.9472 0.7599 0.7812 0.7773

Table 1: Test accuracies on CIFAR datasets using batch size 8. The values are averaged using five repeated experiments.

4+ (g+0°)

(=3)25 where

size 1, one have ||wy41 — wi,||* <
wy,, = argmin,, {G¢(w)}.

Now we are ready to prove the key lemma which describes
one round progress of TRSGD. One can make a direct com-
parison between the following lemma and Lemma 1 by set-
ting n = 1/(2¢) in Eq. (1).

Lemma 3. Under assumptions 1, 2 and 3, the iterative up-
date of TRSGD with A = 2{ and batch size 1 satisfies the
following inequality:

7202(0? 4 ¢?)
S
3)

Proof: By picking A = 2/, § < éi‘i’(\%z < 9. By Lemma

2 we have E [V f(w;) + Afw, — wy_1][[?] < 2Lt
which implies: E [55||Vf(we)||? + 3w — we1]?] —
WG4 < B[(Vf(wy), w1 —wy)]. Combined with
Assumption 2: f(wi—1) > f(w) + (Vf(we), w—1 —wy) —
¢ ||we—1 — w||? we can derive (3). O

E [IIVF(we)?] < 4E[f(we-1) — f(we)] +

While in Eq. (1) the issue of variance could be alleviated
by increasing the batch size M for SGD, one can alleviate
such issue by increasing the number of iterations S in Eq. (3)
for TRSGD. One can set S = ©(M) so both algorithms have
a comparable one round convergence progress. However, in
practice the choice of M is limited due to the memory re-
striction but the choice of S is not. We choose batch size to
be 1 for simplicity and the analysis can be generalized to any
batch size.

We finish this section by telescoping Eq. (3) to derive
the following theorem. The inequality bounds the expected
squared norm of gradient of TRSGD, similar to Theorem 1.

Theorem 2. Under assumptions 1, 2 and 3, the TRSGD with
batch size 1, A\ = 2{ achieves the following convergence rate:

N 4B 720%(02 + g2
LY E[IvFw?) < 22 RO R
t=1

In particular, let N = TS be the total number of gra-
dient call applied in the algorithm, by picking T =
4v/BN / \/W, the gradient complexity to reach
E[IVf(w)*] <eis N =0 ().

By setting the batch size to be 1, the gradient complexity
of TRSGD is comparable to SGD in arate of N = O (1/62)
to meet the criterion E [[|V f (w;)[|*] < e.

4351

Interpretation of theorems. We can now explicitly com-
pare Eq. (4) and Eq. (2). While the function loss term ¢{B/T
appear in both inequality the o2 term appears in different
fashion due to their strategies in monitoring variance. When
gradient is associated with big variance, SGD increases batch
size M and TRSGD runs more iteration on auxiliary function
Gt(w). The strategy of TRSGD is not restricted by memory
which is adorable in training huge network. The choice of .S
depends on the batch size restriction. In the case where one
only affords to set M = 1, one can take S = O(v/N) to
optimally balance ¢B/T and (¢?(c + ¢?)T')/N in the gra-
dient complexity. On another hand, when it is possible to set
M = ©(v/N), the TRAIgo framework will not be the first
choice as there is no need for variance control.

4 Experiments

In this section we apply the proposed framework to mo-
mentum SGD and Adam algorithms, called TRSGD and
TRAdam, respectively, and empirically illustrate the effec-
tiveness of our methods when training deep neural networks
with small batch sizes. We first compare the performance
of different algorithms on image classification tasks on CI-
FAR10 and CIFARI100 datasets, and then show the applica-
tion of our framework in the training of GANs using an image
to image translation task on the Cityscapes dataset [Cordts er
al., 2016]. We also perform ablation study on the batch size
and iteration number S on TRSGD.

4.1 Implementation Details

Image classification. Three different deep neural networks
are adopted in the image classification tasks: ResNet18 [He
et al., 2016], ResNetl101 [He et al., 2016] and DenseNet121
[Huang et al, 2017]. Four algorithms (TRSGD, SGD,
TRAdam, Adam) are used to train these networks on CI-
FARI10 and CIFAR100. In all experiments, the number of
epoch is 200 and the batch size is 8. For TRSGD and SGD,
the momentum is 0.9, the learning rate is initially set to 0.1
and decayed to 0.01, 0.001 at epoch 100 and 150, respec-
tively. For TRAdam and Adam, 5, = 0.9, B2 = 0.999, the
learning rate is initially set to 0.001 and decayed to 0.0001,
0.00001 at epoch 100 and 150, respectively. For both TRSGD
and TRAdam, A = 0.1 and S = 10.

Image to image translation using GAN. In this task we
follow the network structure and parameter settings of [Isola
et al., 2017] to train a model that generates images from se-
mantic labels on Cityscapes dataset. The only difference is

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

i —train loss TRSGD|

'\ |—train loss SGD

L {-- -test loss TRSGD
i ---test loss SGD

loss
accuracy

’ train acc TRSGD| |
J—train acc SGD

i |-~ -testacc TRSGD |-
---testacc SGD

epoch

(b) CIFAR10-accuracies

epoch

(a) CIFAR10-losses

loss

"\—(rain loss SGD
---test loss TRSGD ||
---test loss SGD

accuracy

—train acc TRSGD|
sahy|—train acc SGD
---testacc TRSGD
---testacc SGD

epoch

(d) CIFAR100-accuracies

epoch

(c) CIFAR100-losses

Figure 2: Train and test curves on ResNet101 and CIFAR datasets using SGD and our TRSGD with a batch size of 8.

—train loss TRAdam
—train loss Adam
- -test loss TRAdam
---test loss Adam

loss
accuracy

—train acc TRAdam
—train acc Adam
---test acc TRAdam |-
---test acc Adam

0w w0

) epc;ch 7

(b) CIFAR10-accuracies

7 epéch 7

(a) CIFAR10-losses

loss

—train loss TRAdam
—train loss Adam

-~ -test loss TRAdam |
---test loss Adam

accuracy

—train acc TRAdam
—train acc Adam
---test acc TRAdam
---test acc Adam

03 .
w0 20 e 2 e w

6w e w
epoch

(d) CIFAR100-accuracies

6w we w
epoch

(c) CIFAR100-losses

Figure 3: Train and test curves on ResNet101 and CIFAR datasets using Adam and our TRAdam with a batch size of 8.

that we replace the Adam optimizer with our TRAdam algo-
rithm. In TRAdam, A = 0.1, S = 10 and the other parame-
ters are the same as Adam.

4.2 Results

Image classification. The train and test curves of SGD
vs. TRSGD, and Adam vs. TRAdam using a batch size of 8
are shown in Fig. 2 and Fig. 3, respectively. Only results of
ResNet101 are presented due to the space limitation. We can
observe that our TRSGD and TRAdam achieve faster conver-
gence and better accuracies compared to SGD and Adam on
both datasets. The test accuracies of all models are reported
in Table 1. It is evident that our TRSGD and TRAdam outper-
form SGD and Adam in all cases. Because of the large gradi-
ent variance when the batch size is small, SGD and Adam
are not able to obtain better performance with deeper net-
works. However, our algorithms can handle the noisy gra-
dients by the regularizer, thus achieving higher accuracies us-
ing ResNet101 and DenseNet121, especially on CIFAR100
dataset.

Image to image translation using GAN. To evaluate the
image quality generated by the model, we use the “FCN-
score” as in [Isola et al., 2017]. It evaluates how realistic
the generated images are based on the semantic segmenta-
tion results using a pre-trained fully convolutional neural net-
work. The pre-trained model predicts labels from the syn-
thesized images. Then the labels are compared with the
ground-truth labels those images were synthesized from. We
adopt two pre-trained semantic segmentation models to com-

4352

Method Per-pixel acc. Per-class acc. Class IOU
GT 0.70 0.26 0.19
Adam 0.64 0.24 0.17
TRAdam 0.66 0.24 0.17

Table 2: Performance of label—photo on Cityscapes using FCN-8s:
Ground-truth (GT), Adam, and our TRAdam.

pute “FCN-score”: FCN-8s [Long et al., 2015] and DPC-
xception71 [Isola et al., 2017]. FCN-8s is used in Isola et
al. [2017] while DPC-xception71 has the state-of-the-art per-
formance on the Cityscapes dataset thus is more reliable than
FCN-8s to compute the score. The evaluation results using
two models are reported in Table 2 and Table 3. For the results
evaluated by FCN-8, TRAdam is only slightly better in the
per-pixel accuracy compared to Adam. However, TRAdam
outperforms Adam in all three metrics when evaluated by
DPC-xception71. The ground-truth metrics (GT in the tables)
using original images for segmentation are also provided for
reference. When computing the ground-truth values, we use
the resized 256256 version of original images because the
resolution of synthesized images is 256x256. Some synthe-
sized images are presented in Fig. 4.

4.3 Ablation Study

In this section we explore the effect of batch size and inner
iteration number S on our TRSGD algorithm. ResNet18 and
CIFARI10 dataset are used in all experiments of this section.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

(a) Input (b) Ground-truth (c) Output using Adam (d) Output using TRAdam
Figure 4: Example results of Cityscapes labels—photo using Adam and our TRAdam.
Method Per-pixel acc. Per-class acc. Class IOU Method 1 5 10 20 50
GT 0.81 0.71 0.56 TRSGD 0.9499 09522 0.9522 0.9523 0.9472
Adam 0.48 0.31 0.19) . L
TRAdam 0.59 0.32 022 Table 5: Test accuracies of TRSGD on CIFAR10 using different .S.

Table 3: Performance of label—photo on Cityscapes using DPC-
xception71: Ground-truth (GT), Adam, and our TRAdam.

Batch Size 2 8 32 128

SGD 0.8569 0.9467 0.9518 0.9436
TRSGD 09131 0.9522 0.9473 0.9361

Table 4: Test accuracies of TRSGD and SGD on CIFAR10 using
different batch size.

The other settings are the same as previous except the batch
size or S.

Batch size. Theoretically, our framework works well no
matter what the batch size is. This is supported by the exper-
imental results in Table 4. TRSGD has better performance
when the batch size is small (2, 8), and comparable to SGD
in batch size 32 and slightly worse than SGD when batch size
is 128. This observation is consistent with our analysis in
Section 3. Recall that the gradient complexity measures the
number of gradient calls applied by the algorithm which is the
number of epoch in this case. When M = 128, the loss func-
tion term /B /T dominates the right hand side of Eq. (2) thus
we did not benefit from applying TRAIgo framework. On the
contrary, in the cases M = 2 or M = 8, the variance o? /M
becomes the dominant term thus TRSGD has advantage over
SGD.

Iteration number S. Recall that S represents the number
of iteration of SGD to optimize the auxiliary function G (w).
As discussed in Section 3.3, a proper choice of S depends on

4353

the variance of stochastic gradients. In Table 5 we test the per-
formance of TRSGD under different values of S. The perfor-
mance of TRSGD is not sensitive with regard to the value of
S, One can also observe that when S = 50, the accuracy be-
comes slightly worse than other cases. This is because when
gradient complexity is fixed, large S will results in small T’
(number of total iterations of TRSGD) thus a under fitting
phenomenon may happen, as shown in Theorem 2.

5 Conclusion

In this paper we present a Trajectory Regularization frame-
work to train deep neural network with noisy gradients. We
combine our framework with SGD and show it relaxes the
batch size constraint of SGD, while achieving a compara-
ble gradient call complexity. Our theoretical analysis is sup-
ported by the empirical evidence. Besides, we illustrate that
our framework can be applied to improve the performance
of a popular SGD type algorithm Adam in the small batch
size setting, on both image classification tasks and image-to-
image translation task using GAN. The proposed framework
may be applied to other GAN-related tasks because of the
large memory requirements of these tasks. We leave this for
the future work.

Acknowledgements

We thank anonymous reviewers for helpful comments. This
work was partially supported by NSF IIS-1855759, CCF-
1855760, and CCF-1733843.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Allen-Zhu, 2018] Zeyuan Allen-Zhu. How to make the gra-
dients small stochastically: Even faster convex and non-
convex sgd. In Advances in Neural Information Process-
ing Systems, pages 1165-1175, 2018.

[Bottou, 2010] Léon Bottou. Large-scale machine learn-
ing with stochastic gradient descent. In Proceedings of
COMPSTAT 2010, pages 177-186. Springer, 2010.

[Bottou, 2012] Léon Bottou. Stochastic gradient descent
tricks. In Neural networks: Tricks of the trade, pages 421—
436. Springer, 2012.

[Chaudhari ef al., 2017] Pratik Chaudhari, Anna Choroman-
ska, S. Soatto, Yann LeCun, C. Baldassi, C. Borgs,
J. Chayes, Levent Sagun, and R. Zecchina. Entropy-sgd:
Biasing gradient descent into wide valleys. In Interna-

tional Conference on Learning Representations (ICLR),
2017.

[Cordts et al., 2016] Marius Cordts, Mohamed Omran, Se-
bastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
The cityscapes dataset for semantic urban scene under-
standing. In CVPR, pages 3213-3223, 2016.

[Ge er al., 2015] Rong Ge, Furong Huang, Chi Jin, and Yang
Yuan. Escaping from saddle points—online stochastic gra-
dient for tensor decomposition. In Conference on Learning
Theory, pages 797-842, 2015.

[Hardt et al., 2016] Moritz Hardt, Ben Recht, and Yoram
Singer. Train faster, generalize better: Stability of stochas-
tic gradient descent. In International Conference on Ma-
chine Learning, pages 1225-1234, 2016.

[He er al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770-778, 2016.

[Hoerl and Kennard, 19701 Arthur E Hoerl and Robert W
Kennard. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1):55-67,
1970.

[Huang ef al., 2017] Gao Huang, Zhuang Liu, Laurens Van
Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
47004708, 2017.

[Isola et al., 2017] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou,
and Alexei A Efros. Image-to-image translation with con-
ditional adversarial networks. In CVPR, pages 1125-1134,
2017.

[Jin er al., 2017] Chi Jin, Rong Ge, Praneeth Netrapalli,
Sham M Kakade, and Michael I Jordan. How to escape
saddle points efficiently. In Proceedings of the 34th In-
ternational Conference on Machine Learning-Volume 70,
pages 1724-1732. JMLR. org, 2017.

[Johnson and Zhang, 2013] Rie Johnson and Tong Zhang.
Accelerating stochastic gradient descent using predictive

4354

variance reduction. In Advances in neural information pro-
cessing systems, pages 315-323, 2013.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In ICLR,
2014.

[Le et al., 2011] Quoc V Le, Jiquan Ngiam, Adam Coates,
Abhik Lahiri, Bobby Prochnow, and Andrew Y Ng. On
optimization methods for deep learning. In Proceedings of
the 28th International Conference on International Con-

ference on Machine Learning, pages 265-272. Omnipress,
2011.

[Lei and Jordan, 2017] Lihua Lei and Michael Jordan. Less
than a single pass: Stochastically controlled stochastic gra-
dient. In Artificial Intelligence and Statistics, pages 148—
156, 2017.

[Lin ef al., 2015] Hongzhou Lin, Julien Mairal, and Zaid
Harchaoui. A universal catalyst for first-order optimiza-
tion. In Advances in Neural Information Processing Sys-
tems, pages 3384-3392, 2015.

[Long et al., 2015] Jonathan Long, Evan Shelhamer, and
Trevor Darrell. Fully convolutional networks for seman-
tic segmentation. In CVPR, pages 3431-3440, 2015.

[Parikh et al., 2014] Neal Parikh, Stephen Boyd, et al. Prox-
imal algorithms. Foundations and Trends®) in Optimiza-
tion, 1(3):127-239, 2014.

[Rakhlin et al., 2012] Alexander Rakhlin, Ohad Shamir, and
Karthik Sridharan. Making gradient descent optimal for
strongly convex stochastic optimization. In Proceedings of
the 29th International Coference on International Confer-
ence on Machine Learning, pages 1571-1578. Omnipress,
2012.

[Reddi et al., 2016] Sashank J Reddi, Ahmed Hefny, Suvrit
Sra, Barnabas Poczos, and Alex Smola. Stochastic vari-
ance reduction for nonconvex optimization. In Interna-
tional conference on machine learning, pages 314-323,

2016.

[Reddi ez al., 2018] Sashank J Reddi, Satyen Kale, and San-
jiv Kumar. On the convergence of adam and beyond. In
ICLR, 2018.

[Ruder, 2016] Sebastian Ruder. An overview of gradi-
ent descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[Shamir and Zhang, 2013] Ohad Shamir and Tong Zhang.
Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes. In

International Conference on Machine Learning, pages 71—
79, 2013.

[Wang et al., 2018] Ting-Chun Wang, Ming-Yu Liu, Jun-
Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro.
High-resolution image synthesis and semantic manipula-
tion with conditional gans. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 8798-8807, 2018.

