Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Accelerated Inference Framework of Sparse Neural Network Based on Nested
Bitmask Structure

Yipeng Zhang' , Bo Du'*, Lefei Zhang', Rongchun Li’ and Yong Dou?

1School of Computer Science, Wuhan University
2National Laboratory for Parallel and Distributed Processing, National University of Defense Technology

{zyp91, remoteking, zhanglefei } @ whu.edu.cn, {rongchunli, yongdou} @nudt.edu.cn

Abstract

In order to satisfy the ever-growing demand for
high-performance processors for neural networks,
the state-of-the-art processing units tend to use
application-oriented circuits to replace Processing
Engine (PE) on the GPU under circumstances where
low-power solutions are required. The application-
oriented PE is fully optimized in terms of the cir-
cuit architecture and eliminates incorrect data de-
pendency and instructional redundancy. In this pa-
per, we propose a novel encoding approach on a
sparse neural network after pruning. We partition
the weight matrix into numerous blocks and use a
low-rank binary map to represent the validation of
these blocks. Furthermore, the elements in each
nonzero block are also encoded into two subma-
trices: one is the binary stream discriminating the
zero/nonzero position, while the other is the pure
nonzero elements stored in the FIFO. In the experi-
mental part, we implement a well pre-trained sparse
neural network on the Xilinx FPGA VC707. Exper-
imental results show that our algorithm outperforms
the other benchmarks. Our approach has success-
fully optimized the throughput and the energy ef-
ficiency to deal with a single frame. Accordingly,
we contend that Nested Bitmask Neural Network
(NBNN), is an efficient neural network structure
with only minor accuracy loss on the SoC system.

1 Introduction

Neural Network first appears as a biologically inspired soft-
ware algorithm in the artificial intelligence [LeCun et al., 1990;
Krizhevsky et al., 2012]. Human organs perceive stimulation
from the exterior environment and transmit related information
to the corresponding brain section. The neurons in the brain
undertakes a role of a intermediate messaging agent connect-
ing the sensors (Finger, Eyes) with the processor (Brains). The
working mechanism of neurons involves passing along the bio-
electric signal to the right section in the brain; subsequently,
the brain uses the prior accumulated knowledge to predict
the outcome. Computer scientists generalize this process by

*Corresponding Author

4355

means of linear algebra and formulize it using a combination
of various layers (convolution layer, fully connected layer, etc).
This happens to produce unexpected efficacy with the layers
going deeper: the structure can be easily piled up, with the ac-
curacy escalating tremendously. The layers are designed as an
independent module and make it very easy for the designer to
customize their own network. The DNN has therefore become
ubiquitous in different scenarios[Liu ef al., 2019], including
object tracking, instance segmentation, and has received ac-
knowledgements from institutes and corporations worldwide.

However, as the Al task becomes more complicated, the
prevailing neural network, whether AlexNet or ResNet, is of
far larger size than the initial neural network. The overwhelm-
ing size of the neural network overruns the finite resources
on the CPU. The conventional CPU-compiler structures are
incapable of dealing with the massive incoming amount of
repetitive data. Moreover, CPUs have some fatal drawbacks
compared to the GPU, the most common computing platform
nowadays in the DNN:

1. CPUs have fewer ALUs compared to the GPUs. CPU
bears the task of coordinating the whole system. There-
fore, the CPU is not supposed to undertake too much
arithmetic computation. The role of CPU is more in-
volved with instruction scheduling and optimization with
finite arithmetic ability. Inversely, the GPU has abun-
dant on-board ALUs and can concurrently handle multi-
channels repetitive streaming data.

2. GPUs do not follow a stringent instruction order. As
the GPU is not sensitive to the orders of the instruction,
so it takes less time to arrange the executive order. In the
training process, all training samples share a joint neural
network model and there is no strict executive order for
the dataset. Accordingly, the training samples can be sent
into GPU’s shared memory and concurrently executed.

3. GPUs exhibit supreme arithmetic ability. The GPU is
specifically oriented at a highly competitive float point
calculation, so the number of float registers in GPU is
greater than that for CPUs. Moreover, ALU on GPU is
also targeted at the float point operation and especially
optimized for float point multiplication.

We can learn a lesson from the above aspects: GPU takes the
place of the CPU due to its superior processing mechanism and
architecture, but is it the very architecture that most suitable

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

to the neural network task? Many studies have shown that
the GPU is also not flawlessly in every Al scenario: GPU
consumes too much energy, whereas in most daily cases, we
only use the pretrained inference framework to deal with the
data streaming. This implies that a low power alternative
solution should be found to complement GPU functionality.

In this paper, we propose a Nested Bitmask structure for
use on the sparse neural network. Although there are many
well pretrained sparse models provided on Github, we should
not directly deploy the model on the SoC, as in the case for
FPGA, the platform we are using in the experimental part. The
numerous Os in the hardware invariably occupy a bandwidth
of 32 bits, and every operation instruction treats 0 as a float
point number. Therefore, we should skip the operation over
the 0 operand. The following list summarizes our work on the
sparse neural network model:

1. We introduce the partitioned matrix technique into the
encoding process. In the fully connected layer, the weight
matrix is huge and exerts critical demand on the proces-
sor. In our design, we fully consider the reconfigurable
mechanism and component reuse on the FPGA, then pati-
tion a single matrix into multiple uniform submatrices.
These blocks can share the processing unit in a sequen-
tial pipeline structure, and fully improve the on-board
utilization rate.

2. After the partioning of the weight matrix, we carefully
examine the content in each block. This then gives rise
to the following question: can we simply skip these zero
blocks in order to save energy and access time? Here
we bring in the Binary Decision concept[Liu and Tsang,
2017]: a prefixed bit is the premise of validation for the
subsequent processing. If the prefixed bit is 1, the PE
on the FPGA is informed that this block requires the
computing and transmits the dataset into the FIFO. By
contrast, if the prefixed bit is 0, the zero blocks will
be directly discarded, which would save a tremendous
number of time slots to be used for other blocks.

3. Moving down to the inside of the submatrice, we have
found that the Bitmask format is preferable to the Rela-
tive Index format[Han et al., 2015]. Relative Index is a
very important sparse matrix format and has been widely
adopted in many practices, but it inevitably has some
scenarios for which it is unfit: the stride length should
be moderate. Large stride imposes a longer bit length
on the relative address, while conversely, a small stride
would waste too many time slots for the inserting the 0.
Accordingly, in our experiment, we replace the relative
index with the bitmask to represent the nonzero element.

The remainder of the paper is organized as follows. Section
2 briefly introduces the relevant works. Section 3 illustrates
the strategy we take to build the nested-bitmask neural net-
work and includes strict mathematical derivations regarding
the appropriate block size and the resource consumption esti-
mation. In section 4, we discuss the implementation of nested
structure on the FPGA, including the inner design of PE and
its pipelined deployment. Section 5 summarizes the paper
and outlines some prospects for sparse neural networks in the
future.

4356

2 Related Works

Al SoC[Sharma et al., 2016b; Sharma et al., 2016a] is aimed
at building a highly coherent Neural Network(NN) oriented
circuit to improve performance of NN task[Zhang et al., 2016].
Giant corporations have already incorporated the Al neural
network IP into their chipsets[Guo er al., 2016; Han et al.,
2015; Han et al., 2016al. Studies of how to improve the
performance of neural networks on SoC are the spotlight in
the recent years. There are several trends in the neural network
designed on the chip:

e Network Compression. The compression of the neural
network[Han et al., 2015] incorporates two classic and
efficient approaches: Pruning and Quantilization. Net-
work pruning, in brief, involves trimming the weight and
neurons of no great importance and iteratively carrying
out this operation. Lightweight neural network is of great
significance for portable devices. So the trend in pursuing
lightweight networks is a long lasting process.

e Network Acceleration. The neural network is never
satiated with the current speed[Lu and Liang, 2018; Yu
et al., 2017; Wang et al., 2017; Zhao et al., 2017]. At the
moment of the advent of the neural network, the research
on the accelerating these networks also began[Posewsky
and Ziener, 2018; Jain er al., 2018; Zhang et al., 2015].
The representative acceleration methods are mainly built
on the FFT[Mathieu et al., 2013], which fully utilizes the
component reuse in the frequency domain.

Although the compression and acceleration are the high-
lights in today’s research of Neural Network, in most cases,
they are studied independently and moving on separate ways.
Only a few works dabble in the research on how to simultane-
ously deal with those two before our work[Han et al., 2016a;
Lu and Liang, 2018]. Our work aims at giving considerations
to both, accelerating the calculation while maintaining the
high sparsity rate. In the next section, we would discuss the
theoretic support behind our proposed model.

3 Mathematical Model of Nested-Bitmask NN

3.1 Network Pruning

Firstly, we dedicate some space to simply review the available
knowledge regarding network pruning[Han et al., 2016b; Fujii
et al., 2018]. Neural Network pruning is a milestone work in
neural network compression. The pruning can ensure the same
performance is retained while reducing much of the inessential
computational workload. There are two aspects in the pruning:
Edge Pruning and Neuron Pruning. The specific difference
between two is shown in Figure 1.

As Figure 1 depicts, current algorithm is actually within
the scope of the Edge Pruning. In the process of pruning,
the weight matrix is generalized into the loss function as a
regularizer and it can be formulated as follows:

Loss:f(wl,wg,...,wn)—i—ZLm(wi) (D
i=1

where L, denotes the regulations on the weight matrix; it
could be either Ly, L1, Ly or L norm, but the primary objec-
tive is to obtain the sparse formation of the weight matrix. At

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

o

Edge Pruning

Original

Neuron Pruning

Figure 1: Comparison of pruning definition

the beginning of training, the weight matrix can be expressed
via the expression W; prior = [Wo, W1, Wa, W3, ..., Wr—1, Wk],
where 7 indicates the loop index. Presuming there are ¢ loops in
the training process, in the loop 1, let us suppose ws is below a
certain threshold, |ws| < Thres, such that its value would be
clear to zero. The weight matrix can thus be rewritten into the
another expression: W1 _post = [wo, w1, w2, 0, ..., We—1, Wk].
Based on the weight matrix obtained in the loop 1, the loss
function in the loop 2 will be overwritten into the following
formula:

n

Lossy = f(wi,ws,0,...,w,) + Z L,(w;) (2)
i=1,i#3

With the increasing iterations of the loops, the matrix’s
sparse degree gradually accumulates, and only a small fraction
of elements with nonzero value will contribute to the final re-
sult. However, in the edge pruning phase, disconnected values
are represented by 0. But in the scope of Computer Aided
Design (CAD), FPGA treats every number as float equally,
and every number takes 32 bits by default if no specific format
is defined. Accordingly, while the edge pruning has significant
mathematical meaning and works well on the software end, if
we want to achieve the accelerating function on the hardware
end, we are required to tailor the shape of the weight matrix.
This process is referred to as Neuron Pruning. Neuron Pruning
can tailor the shape of the weight matrix and make the matrix
more compact than ever. We can use two simple examples to
illustrate this point: in Figure 2, the matrix on the left is the
edge pruned matrix, whereas on the right is the neuron pruned
matrix, where the unnecessary neurons are eradicated.

We can use Figure 2 to discuss the necessity of Neural
Network Pruning. If we use the pruning approach to get a
sparse weight matrix on the left, the matrix multiplication
formula can be rewritten as the following:

Y = Relu(WX +b) = Relu(qu‘;gfcg i @wuﬁij) &)

where the wogxg and wy12; equal O, and do not contribute
to the final result, but the hardware would treat them equally
and consistently spare on-board resources for the computation.
However, the neuron pruning has foreseen this situation and

has tailored the shape of the weight matrix in order to skip
the All-Zero Block. The neuron pruning only conserves the

4357

W0 wia wio X0
o ooolo1o 2 lo 10 2 1
00001210 1210 0
00005000 15000 5
QQQQ\QQQQH,,,,.’9003.7
10200000 1020 0
03000000 0300, 0
00020000 0002 5
21400000 2140, 1
wio W11 W10 X1
Edge Pruning Neuron Pruning

Figure 2: Comparison of the multiplications after pruning

nonzero block; respectively in the neuron pruning, the formula
is demonstrated as follows:

Wo1T1

Y = Relu(WX +b) = Relu([wloxo]) 4)
Although the final outcomes of formulas 3 & 4 are equal,
the computational workload of formula 4 has grossly been
compressed to the half of the origin. So it fully demonstrates
the necessity of deployment of the neuron pruning instead
of edge pruning on the SoC. The thorough compression of
the neuron pruning can not only reduce the RAM storage,
but also speed up the computation in the meantime. In the
next subsection, we would further explain how to partition the

block and encode the neuron-pruned matrix.

3.2 Analysis of Weight Matrix Partitioning

As we have mentioned in the previous section, partitioning is
the first step towards the our proposed model. But we have just
encountered a problem on the size of the partitioning kernel.
Here we would like to discuss in details on the mathematical
derivations on the selection of right kernel size. Our approach
to partition the block is not complicated, and we just follow
two simple rules: 1. Partitioning the matrix, II. Encoding the
Nonzero Block. Let us take the example in the figure 2 to
illustrate our point: the edge pruning do not change the forma-
tion of the matrix, and just leave the unnecessary weight as
zero. However, at the neuron pruning stage, we have to find a
efficient way to compress the neuron-pruned matrix. Here we
adopt the bitmask technique to the post-partitioned operation.
In the Figure 2, at the edge pruning section, the total weights
storage are 256 bytes. Assuming the matrix is decomposed
by the red-dashed line, the representative bitmask can be ex-

pressed as the following matrix [(1) (1)] , then the subsection

of w1 and wy; is also encoded into the two consecutive con-
tainer: Bitmask Stream Container(BSC) and Nonzero Value
Container(NVC). The nonzero block wy; can be interpreted
into two joint matrix: the flattened bitmask vector and the
nonzero value container.

Firstly, let us assume a weight matrix with dimensions
M x N; the total float point storage is therefore 4M N bytes.
Moreover, we should also consider the operations to com-
plete the multiplication and accumulative add-up. We can
instantiate an IP from Vivado to acquire the basic parameters
required to proceed with the approximation. A simple expres-
sion can be used, such as float-point multiplication add-up

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

logic, d = a x b+ ¢, which is an indispensable core part of the
fully connected layer. In the Xilinx VC707 series, this simple
combination takes five cycles to process. If there is a sequence
of flattened image with length N, this process can be general-
ized as a linear multiplication of two matrices of sizes M x N
and N x 1; the FLOPs can then be calculated accordingly as
2MN + M for the WX part. So far, we have finished the
storage and OPs analysis on the normal fully connected layer.
By introducing a factor of k to control the sparse degree of the
W, typically the sparse degree can be as high as 90% and even
above, so the immediate storage space for the weight value
drops to E[kw] = kM N. But there is an additional expendi-
ture for the storage, namely the block bitmask matrix, which is
strongly related to the factor k. We presume the block kernel
is of size p X ¢ and can be divided into % X % parts. There-

fore the total weight storage for the sparse fully-connected
. _LPaY)\
layer is Ef. {Byte} = 4(1 — k)MN + 4N 4 U=COMN
By comparing the inequation of the E. {Byte} < 4MN,
we can briefly estimate the kernel size pq’s relation to the

sparsit;\l] degree. Accordingly, the blocked neural network OPs
are 208 4 (1 — kP9)MN + 2(1 — k)M N + M, such that

% + (1 —kP?) M N denotes the OPs for the block-level scan-

ning and 2(1 — k)M N + M is the computational workload
for the float-point operation. Across the formula, the M N
is the largest term and far greater than the other terms, and
we can see that the OPs is reduced to approximately 1 — &
times the size of the original one. We can therefore see that the
nested-block structure is very efficient for the sparse neural
network model.

Moreover, we can carry out the latency estimation accord-
ingly. In the branch prediction stage, we adopt the static
branch prediction, which implies that the default block binary
representative is 0, and it usually takes approximately 2 clock
cycles to decide which way to proceed. In the mathematical
derivations, we assume the delay in the branch prediction is
tdelay» the multiplication is t,,,;¢ and the add-up is t4qq. If
the sparsity degree is k, which can be greater than 90%, the
time interval for a single block operation could be written in
the following formula:

M N
ESGL {t} = / / [(1 - k)(thelay + trmult
i=1Jj=1

+ tadd) + ktdeiay)didj

Simplifying the above, formula gives us the below:

&)

Esar {t} = MN[(]- - k) (tmult + tadd + tdelay) + tdelay]

Thus, the above formula demonstrates the expectation of the
time latency on the direct implementation of the single layer
of bitmask on the sparse neural network. 4.4, denotes the
latency to fetch the instruction and operand, and we also have
to consider the process time for the static branch prediction
unit. Considering that the degree of sparsity in the model
is large, we set the default path to skip as many elements
as possible. When the pointer is confronted with a nonzero
value, the register would be flushed to reconsider the case. We

4358

can use a schematic graph (see Figure 3) from the scope of
hardware constitution to help us understand this problem.

We promote this architecture to multiple layers and can thus
see that in the matrix with high sparse degree rate, the multiple
layers could be more efficient in the FPGA-based calculation.
It is noted that in the scope of a single block, the time latency
obeys a binomial distribution. Firstly, we are looking for the
probability of skipping a block. Only in the circumstance
that all the elements are 0 can the computational unit skip the
block. Each element has a probability of k of being zero, and
inversely the probability of a nonzero element is 1 — k. Statis-
tically, a block filled entirely with the O has a probability of
P {skip} = kP?, and respectively the probability that not all
elements are equal to zero is P {no_skip} = 1 —kP9. Accord-
ing to the definition of binomial distribution, the expectation
of the binomial distribution to happen once is shown in the
following:

Epri {t} = P{skip} tskip + P {no_skip} tnoskip (6)

As we can see from the above formula, the expectation time
latency of a single block is composed of two parts, namely the
expected latency to skip and not to skip the block. We would
like to expand the 414, and t,,,_skip in detail. In fact, if the
decoded instruction tells us that the block could be discarded
during the computation, the ¢4, could be very straightfor-
ward, in that ¢, = tgeiay. Otherwise, the expression of
tno_skip could be rather complicated compared to that of ¢y,
This is because we not only have to consider the delay during
the binary decision chain, but also spend considerable time on
the multiplication and accumulative add-up. The ¢,,,_sx:p can
be expressed via the following formula in detail:

tno,stop = pqtdelay + E {elem! = 0} (tmul + tadd + tdelay)

Noting that E {elem! = 0} is the expectation of the number
of nonzero values in a single block, it can be inferred that:

E {elem! = 0} = pqgk (7)

So the above formula can be further simplified as follows:

tno,stop = pqtdelay +pQ(1 - k) (tmul + tadd + tdelay) ®)

Substitute the t,,,_stop into Formula 11, and we can obtain
the final result as follows::

Epri {t} = kP%eray + (1 — k) [pataciay

)
+ pq(l - k)(t’ﬁnd + tadd + tdelay)]
M N
P q
Eyurr {t} = / / Epri {t}didj (10)
i=1 Jj=1

Subsequent analysis will discuss the circumstance that the
multiple bitmask outperforms the single layer, and that could
be expressed under the following formula:

Escr{t} > Enurr {t} (11)

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Loop Done: Mo?

[ofolt
D‘I - @' Insiruction
fofr)
[nz

Inst1

[tFEoExMEM[WE]

Solution

IFipExMEM[WR] L
Fiplx] x [x
IFIDEMEM[WE]

Figure 3: Sketch map of proposed approach in hardware constitution

Input Image
[
ofof1] [ofofl
olo]o]— [ofo]D
1]o]1 [1fo]1 FIFD
Kemnel Bitmask Bitmask Scan
22 T T—
21
187
16 7] 5 —
{ -
E g 14 | /
F4 L/ /
412 c Y /
1 / : 1
(¥ [- s6L [‘
081 /‘ | MSP-80% |
|t | MSP-85%
06 y | MSP-90% | 4
: [msp.os |
0.4 — EYE o ks o L n o
0 10 20 30 40 50 60 70 80 20 100

Kernel Size(p*q)

Figure 4: Kernel size vs. different sparsity degree

We are looking for an appropriate kernel size to partition the
weight matrix in order to efficiently accelerate the inference
process. Our first step is to set the pq as a unity variable, by
controlling the pq to obtain the best partitioning outcome. In
the following paragraph, we will compare the curve of the
Esgr and Epppr in a single graph. We can observe that un-
der different degrees of sparsity, if an appropriate kernel size is
picked up, the expectation time for the multiple layers can be
much less than the case for the single layer. Figure 4 depicts
the curve of the time latency corresponding to the increase of
kernel size. The curve of single layer of bitmask (SGL) is a
flat line, underlying the baseline of the our experiment. The
time latency for multiple layers of bitmask (MSP) first reaches
a bottom and then rebounds to a steady extreme value, over-
lapping the single layer’s curve. This implies only appropriate
kernel can have an apparent acceleration phenomenon. Figure
4 depicts the performance of different degrees of sparsity un-
der the multiple bitmask layers. We can notice a interesting
fact that with higher sparsity rates, the nested bitmask is more
likely to reduce the time latency during the operation. In Fig-
ure 4, the weight matrix with a sparsity rate of 95% has the
minimal time latency. Accordingly, thanks to the advanced
pruning approach enabling the deep compression of the neural
network, the pruning rate is usually above 90%. Therefore
it does not have to take too much time in seeking the opti-

4359

mum point. In our experiment, the compression rate of the
first fully-connected layers could reach as much as 2%, and
the second fully-connected layer is 7%. Both fully-connected
layer are applicable for the nest-bitmask structure.
Subsequently, we carefully devise our experiment, however,
we do not bring convolution layers into consideration at this
time, since the existing pruning approach is far from perfect
and the pruning rate for the convolution layer is unsatisfactory.
With the emergence of deeply compressed neural network
model in the forseeable future, our proposed structure will be
applied on the convolutional layers in the follow-up work.

4 Experimental Part

4.1 Experimental Settings

In our proposed model, we employ a well pretrained sparse
LeNet model [Zhang et al., 2018] and make full use of the
parallelism and reconfigurability of the FPGA. The default
setting of the HLS assumes the PE number is only one. We can
unroll the loops to execute iterations concurrently due to the
PE numbers we have set. A single PE cell in the convolutional
layer is consisted in the following way. The register fetches the
data from the selected ROI (Region of Interest), and transfers
it to the processing unit, then passes it along to the neuron of
the next layer. The independent working mechanism of PE can
concurrently deal with massive throughput. In Table 1, vanilla
LeNet-5 is the normal or edge-pruned model’s direct deploy-
ment on FPGA and we have pipelined the convolutional layer
in the same manner on both structures®2. In the Vanilla® struc-
ture, we have also pipelined the fully connected layer, whereas
we do not apply any optimization on the fully-connected layer
of Nested Bitmask? for two reasons: 1. Hierarchical Bitmask
structure has great potential for the SNN even without any
optimization provided by FPGA; II. Pipeline structure is inap-
plicable for the architecture with comprehensive use of if-else
structure® (see Table 2).

4.2 Experimental Results

Direct implementation of Neural Network on the FPGA is
often not acceptable because in most cases that the pre-and
post-optimization latency and intervals are totally different. It
is observed from the table 1 that if we treat the sliding kernel
as a PE, a system with multiple PEs simultaneously working
can achieve an acceleration rate approximately 12.6X.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Vanilla Vanilla® Nested Nested Bitmask?
Structure | LeNet-5 | LeNet-5 |y N5 | (Multi PEs) | BitMask (Multi PEs)
Platform Intel GTX Virtex-7 Virtex-7 Virtex-7 Virtex-7
i7-8700 1060 VX485T VX485T VX485T VX485T
Freq(Hz) | 3.2GHz | 1.5GHz | 117.6MHz 100MHz 110.65MHz 100MHz
Clock(s) 0.31ns 0.66ns 8.49ns 10.5ns 9.04ns 10.5ns
le“amlc 65W | 120W | 21.65W | 21.65W 21.65W 21.65W
ower(W)
(RO | j0.2us | 14.2us | 1610Ims | 1276ms | 14224ms 10.76ms
atency(s)
Table 1: FPGA performance compared to the advanced CPU and GPU
Layer Vanilla | Vanilla | Nested | Nested and could be discarded right away after the comparitor tells us
FCO FCl1 FCO FCl1 the choice. So the nested bitmask structure is a very promising
Unpipelined 29.2ms 365us 161us 25.2us technique on the FPGA.
Min Latency(s) i) Although the FPGA’s computational ability cannot be com-
Pipelined 221ms | 30.2us | N/A3 N/A3 pared to the state-of-the-art CPU and GPU (FPGA'’s latency
Min Latency(s) ' i is greater than those two), it is a compatible solution for cir-
) cumstances in which power requirement is low. The power
Table 2: Latency comparison requirements of the CPU and GPU are rigorous compared
to the FPGA. Moreover, FPGA is usually the prototype and
Resource BRAM DSP FF LUT testing board of the ASIC design. Despite the FPGA’s pro-
Vanilla PE 7,4 120 48 28630 91662 cessing speed being constrained by its working frequency, or
Nested PE pruit 118 30 14222 44075 more precisely, the crystal oscillator, the Xilinx HLS provides

Table 3: Resource consumption.

We have also noticed that the Nested Bitmask with multi-
ple PEs in CONV layer can eliminate the min latency even
further than the vanilla neural network with fully pipelined
structure and also consumes less in the way of on-board re-
sources (see Table 3). We must also point out an interesting
phenomenon: in the nested bitmask’s fully connected layer,
we do not bring in any optimization approach and the results
are already better than the optimized vanilla architecture, be-
cause the Look-Up-Table contains the ingredients of both the
comparitor and concurrent Process Engine(PE). Economically,
the comparitor is cost-efficient compared to the PE on the
pipeline structure. This is because the PE structure is mul-
tifaceted and tries to fit in different demands, including the
basic addition, multiplication, and complicated function, like
accumulative-addtion,etc, whereas the comparitor’s structure
is relatively simple, as it only compares the prefixed bit with
1/0 and decides whether or not there should be a branch jump.
At this point, some would question why we are stressing the
minimum latency here. Should we consider the maximum
latency on our design? We should not deny the potential im-
pact of the maximum latency on our design, because it could
happen in reality. However, there is a premise for this paper
that we adopt a model with a degree of sparsity above 90%),
and the sparsity degree of the fully connected fcl is in fact
above 98%. So even if the range of the latency of the nested
bitmask is from 10.76ms ~ 43.51ms, where 43.51ms is the
upper bound, the maximum latency. But this would only occur
in the extremely rare cases, namely in those where there are
too many values in the subblock needed for the computation.
In a highly sparse matrix, many blocks are actually all-zero

us a powerful C programming tool that enables us to quickly
develop a customized circuit to satisfy our need and the actual
designed ASIC could be better than the results obtained on
the FPGA, not to mention that our model is actually not an
example of extreme performance; the BRAM_18K, DSP48E,
FF and LUT are not exploited to 100% capacity. The advanced
technology could radically improve the performance obtained
via our algorithm.

5 Conclusion

In this paper, we have proposed a hierarchical bitmask struc-
ture for the placement of the sparse neural network on the SoC
(FPGA). We have proven it that there is a strong relationship
between the sparsity degree and the partitioning kernel size
in terms of the probability theory, and we also compare the
latency curves of single layer of bitmask vs. double layers,
which demonstrates the validity of our proposed model. The
experimental part has also emerged as a solid evidence to back
up our theory from the quantitative analysis, which suggests
that the nested bitmask structure is a very promising technique
for the highly sparse neural network.

Acknowledgements

This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61822113 and Grant
61771349, alongside with National Key R & D Program of
China under Grant 2018YFA0605501 and Natural Science
Foundation of Hubei Province under Grant 2018CFA050 and
2018CFB432. Without the provided support, we would have
been unable to proceed with our experiment and make this
work known to the public.

4360

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Fujii et al., 2018] Tomoya Fujii, Shimpei Sato, and Hiroki
Nakahara. A threshold neuron pruning for a binarized
deep neural network on an fpga. IEICE Transactions on
Information and Systems, 101(2):376-386, 2018.

[Guo et al., 2016] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu,
Song Yao, Song Han, Yu Wang, and Huazhong Yang. From
model to fpga: Software-hardware co-design for efficient
neural network acceleration. In Hot Chips 28 Symposium
(HCS), 2016 IEEE, pages 1-27. IEEE, 2016.

[Han et al., 2015] Song Han, Huizi Mao, and William J Dally.
Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015.

[Han et al., 2016a] Song Han, Xingyu Liu, Huizi Mao, Jing
Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. FEie: efficient inference engine on compressed
deep neural network. In Computer Architecture (ISCA),
2016 ACM/IEEE 43rd Annual International Symposium on,
pages 243-254. IEEE, 2016.

[Han et al., 2016b] Song Han, Jeff Pool, Sharan Narang,
Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter
Vajda, Manohar Paluri, John Tran, et al. Dsd: Dense-sparse-
dense training for deep neural networks. arXiv preprint
arXiv:1607.04381, 2016.

[Jain er al., 2018] Animesh Jain, Amar Phanishayee, Jason
Mars, Lingjia Tang, and Gennady Pekhimenko. Gist: Ef-
ficient data encoding for deep neural network training. In
2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), pages 776—789. IEEE,
2018.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural in-
formation processing systems, pages 1097-1105, 2012.

[LeCun et al., 1990] Yann LeCun, Bernhard E Boser, John S
Denker, Donnie Henderson, Richard E Howard, Wayne E
Hubbard, and Lawrence D Jackel. Handwritten digit recog-
nition with a back-propagation network. In Advances in

neural information processing systems, pages 396-404,
1990.

[Liu and Tsang, 2017] Weiwei Liu and Ivor W. Tsang. Mak-
ing decision trees feasible in ultrahigh feature and label di-
mensions. Journal of Machine Learning Research, 18:81:1—
81:36, 2017.

[Liu et al., 2019] Weiwei Liu, Donna Xu, Ivor W. Tsang, and
Wenjie Zhang. Metric learning for multi-output tasks. IEEE

Transactions on Pattern Analysis and Machine Intelligence,
41(2):408-422, 2019.

[Lu and Liang, 2018] Ligiang Lu and Yun Liang. Spwa: an
efficient sparse winograd convolutional neural networks ac-
celerator on fpgas. In 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC), pages 1-6. IEEE, 2018.

4361

[Mathieu et al., 2013] Michael Mathieu, Mikael Henaff, and
Yann LeCun. Fast training of convolutional networks
through ffts. arXiv preprint arXiv:1312.5851, 2013.

[Posewsky and Ziener, 2018] Thorbjorn Posewsky and
Daniel Ziener. Throughput optimizations for fpga-based
deep neural network inference. Microprocessors and
Microsystems, 60:151-161, 2018.

[Sharma et al., 2016a]l Hardik Sharma, Jongse Park, Em-
manuel Amaro, Bradley Thwaites, Praneetha Kotha, An-
mol Gupta, Joon Kyung Kim, Asit Mishra, and Hadi Es-
maeilzadeh. Dnnweaver: From high-level deep network
models to fpga acceleration. In the Workshop on Cognitive
Architectures, 2016.

[Sharma et al., 2016b] Hardik Sharma, Jongse Park, Divya
Mahajan, Emmanuel Amaro, Joon Kyung Kim, Chenkai
Shao, Asit Mishra, and Hadi Esmaeilzadeh. From high-
level deep neural models to fpgas. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture,
page 17. IEEE Press, 2016.

[Wang et al., 2017] Chao Wang, Lei Gong, Qi Yu, Xi Li,
Yuan Xie, and Xuehai Zhou. Dlau: A scalable deep learning
accelerator unit on fpga. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 36(3):513—
517, 2017.

[Yu et al., 2017] Jincheng Yu, Yiming Hu, Xuefei Ning,
Jiantao Qiu, Kaiyuan Guo, Yu Wang, and Huazhong Yang.
Instruction driven cross-layer cnn accelerator with wino-
grad transformation on fpga. In Field Programmable Tech-
nology (ICFPT), 2017 International Conference on, pages
227-230. IEEE, 2017.

[Zhang et al., 2015] Chen Zhang, Peng Li, Guangyu Sun, Yi-
jin Guan, Bingjun Xiao, and Jason Cong. Optimizing
fpga-based accelerator design for deep convolutional neu-
ral networks. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Ar-
rays, pages 161-170. ACM, 2015.

[Zhang et al., 2016] Shijin Zhang, Zidong Du, Lei Zhang,
Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen,
and Yunji Chen. Cambricon-x: An accelerator for sparse
neural networks. In The 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, page 20. IEEE
Press, 2016.

[Zhang ef al., 2018] Tianyun Zhang, Shaokai Ye, Yipeng
Zhang, Yanzhi Wang, and Makan Fardad. Systematic
weight pruning of dnns using alternating direction method
of multipliers. arXiv preprint arXiv:1802.05747, 2018.

[Zhao er al., 2017] Ritchie Zhao, Weinan Song, Wentao
Zhang, Tianwei Xing, Jeng-Hau Lin, Mani Srivastava, Ra-
jesh Gupta, and Zhiru Zhang. Accelerating binarized con-
volutional neural networks with software-programmable
fpgas. In Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays,
pages 15-24. ACM, 2017.

