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Abstract
Modeling patient disease progression using Elec-
tronic Health Records (EHRs) is critical to assist
clinical decision making. Long-Short Term Mem-
ory (LSTM) is an effective model to handle se-
quential data, such as EHRs, but it encounters two
major limitations when applied to EHRs: it is un-
able to interpret the prediction results and it ignores
the irregular time intervals between consecutive
events. To tackle these limitations, we propose an
attention-based time-aware LSTM Networks (AT-
TAIN), to improve the interpretability of LSTM
and to identify the critical previous events for cur-
rent diagnosis by modeling the inherent time ir-
regularity. We validate ATTAIN on modeling the
progression of an extremely challenging disease,
septic shock, by using real-world EHRs. Our re-
sults demonstrate that the proposed framework out-
performs the state-of-the-art models such as RE-
TAIN and T-LSTM. Also, the generated interpre-
tative time-aware attention weights shed some light
on the progression behaviors of septic shock.

1 Introduction
Electronic Health Records (EHRs) are a large-scale and sys-
tematic collection of temporal health information of pa-
tients. The broad adoption of EHRs in medical systems has
promoted the development of various computational meth-
ods for understanding the medical history of patients and
predicting risks [Marlin et al., 2012; Choi et al., 2016a;
Zhou et al., 2013; Choi et al., 2016b]. In this work, we fo-
cus on a task named Disease Progression Modeling (DPM),
which monitors the disease developing process and predicts
future risks based on patients’ historical information. DPM
is crucial for making clinical decisions and providing prompt
medications. A large amount of recent works have been de-
veloped for this task [Choi et al., 2016a; Esteban et al., 2016;
Lipton et al., 2015; Zhou et al., 2013]. Among them, Recur-
rent Neural Network (RNN) is one of the most extensively
researched deep neural networks to handle the sequential
data. As an extension of RNN, the Long-Short Term Mem-
ory (LSTM) is specifically designed to capture long-term pat-
terns that commonly exist over a long period of patients’

records [Sundermeyer et al., 2012]. LSTM-based approaches
have found a huge success in a variety of tasks involving se-
quential data, such as video processing, climate changes de-
tecting, and EHRs representation learning [Jia et al., 2019;
Jia et al., 2017; Lipton et al., 2015; Esteban et al., 2016].

Despite its great success, significant barriers remain when
applying the standard LSTM for modeling EHRs. First, it
cannot interpret prediction results. Second, it does not con-
sider irregular time intervals between consecutive events.

Interpretability of computational models is extremely crit-
ical in healthcare-related domains. In real hospital settings, it
is generally more important to learn about the discriminative
interpretable patterns which capture informative progression
of a disease than to induce an accurate predictive computa-
tional model. Various attention-based neural networks are
widely developed to generate interpretations for EHRs. [Choi
et al., 2016b; Ma et al., 2017; Sha and Wang, 2017]. As fron-
tier work, RETAIN [Choi et al., 2016b] applied a two-level
attention mechanism to identify meaningful visits and spe-
cific features that contribute to the prediction.

Measurements in EHRs are commonly acquired with ir-
regular intervals. For example, when a patient is in a severe
condition, events are likely to be recorded more frequently
than when a patient is in a relatively “healthier” condition.
Hence such varying time intervals can reveal patient’s health
status on certain impending conditions, and it is important
to consider the time intervals between temporal events to
capture latent progressive patterns of a disease. There have
been several previous works on handling the time irregularity
[Baytas et al., 2017; Pham et al., 2016; Choi et al., 2016a;
Che et al., 2017], e.g, Time-aware LSTM (T-LSTM) [Baytas
et al., 2017] transforms time intervals into weights and uses
them to adjust the memory passed from previous moments.

In this work, we propose ATTAIN, an attention-based
time-aware disease progression model, that incorporates the
attention mechanism and models the time irregularity be-
tween events. Specifically, we adjust the memory of LSTM
when accumulating previous information. Instead of adding
memory from one previous event, we retrospect memories
of all/several previous events and discount them by weights
generated from attention mechanism and the time intervals
between those events and current event. The overall weights
represent how important each previous event is for the current
event to identify the progressing condition. Three attention
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mechanisms are explored: global (g), local (l), and flexible
(f ), to generate the attention weights. On the other hand, the
time intervals are transformed to decay weights through a de-
cay function so that the outdated events are more likely to
play a less important role than recent events for predicting
the outcome of the current event. We believe the obtained
attention weights together with the decay weights would not
only lead to an effective predictive model but also result in an
interpretable and clinically reasonable model.

We validate the proposed ATTAIN on the task of early pre-
diction of septic shock. Sepsis is a life-threatening organ dys-
function [Singer et al., 2016] and a leading cause of death in
the United States. Septic shock, the most severe complica-
tion of sepsis, leads to a mortality rate as high as 50% and an
increasing annualized incidence [Dellinger et al., 2008]. In
fact, as many as 80% of sepsis deaths could be prevented with
timely diagnosis and treatment [Kumar et al., 2006]. One
major challenge associated with such early prediction is the
subtle but fast progression at early stage. For example, only
minor changes are reflected on white blood cells and body
temperature at early stage [Kumar et al., 2006]. Besides, the
indicators of sepsis are non-specific, such as infection or fast
heart rate. Hence, patients with such symptoms are highly
likely to progress to other disease. Because of such delicate
progressions, variables in the before-shock stage may either
be measured infrequently or not measured at all. Therefore,
it is quite critical and challenging to identify previous indica-
tive moments and give accurate predictions of patients’ health
status.

Our experimental results on real-world EHRs show that
ATTAIN outperforms the state-of-the-art models such as RE-
TAIN and T-LSTM . Also, the generated interpretative time-
aware attention weights shed some light on the progression
behaviors of septic shock.

2 Method
2.1 Problem Definition
Our dataset can be represented as X = {x1,x2, ...,xN},
where N is the total number of hospital visits. It is composed
of multi-variate irregular time series data and each visit xk
consists of a sequence of events: xk = {x1

k, ...,x
Tk

k }, where
xtk represents the patient’s records at time step t in xk. We
have xtk ∈ RD, where D is the number of features or mea-
surements recorded at each event and Tk is number of events
in the visit k which varies with different visits.

For each xk, we are provided with the event-level label
yk = {y1k, ..., y

Tk

k } for the sequence of events. ytk = 1 indi-
cates a patient is in septic shock state at a given time t in the
visit xk, otherwise ytk = 0. The goal of this work is to predict
the (t + 1)-th event-level label yt+1

k given the clinical events
from time 1 to t: x1

k,x
2
k, ...,x

t
k in each visit k. For simplicity,

we omit index k hereinafter when it does not cause ambiguity.

2.2 Long Short-Term Memory (LSTM)
In the standard LSTM cell unit, the cell state ct serves as
an internal memory and controls the information flow. It is
generated by forgetting information through a forget gate f t

and most recent cell state ct−1, and adding new information
through an input gate it and a candidate cell state c̃t as listed
in Eq. 1.

it = sigmoid(W i
hh

t−1 +W i
xx

t),

c̃t = tanh(W c
hh

t−1 +W c
xx

t),

f t = sigmoid(W f
hh

t−1 +W f
xx

t),

(1)

where ht−1 is a hidden state output by ct−1, {W h ∈
RH×H ,W x ∈ RH×D} denote network parameters to be
trained and H is the number of hidden nodes. The new cell
state can be obtained as follows:

ct = f t ⊗ ct−1 + it ⊗ c̃t, (2)

where ⊗ denotes entry-wise product.
Finally, we generate the hidden states by filtering the new

cell state through an output gate layer ot, and produce the
probability of each event t at risk of septic shock using a sig-
moid function with parameter U :

ot = sigmoid(W o
hh

t−1 +W o
xx

t),

ht = ot ⊗ tanh(ct),

pt = sigmoid(Uht).

(3)

2.3 ATTAIN Networks
Fig. 1 shows the architecture of proposed ATTAIN frame-
work. In the original LSTM, the cell state of current event
ct obtains memory from its most recent event i.e., ct−1 as
shown in Eq. 2. Due to the well-known vanishing gradi-
ent problem [Baytas et al., 2017], the learning of each cell
state still heavily depends on most recent events. However, in
disease progression, relationships of events are non-trivial in
that the current condition is often not impacted only by recent
moments. Single memory-reading also brings that it cannot
interpret how critical of each past event. Conversely in prac-
tice, doctors usually review the patient’s records to identify
the critical previous events.

Figure 1: Illustration of proposed ATTAIN model. ATTAIN accu-
mulates the cell states from all the previous events and regularize
the old memories through two sources of weights generated from
attention mechanism (α) and time intervals (∆).
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Here we propose to use attention mechanism to collect
multiple previous memories and explore the relationships of
events in patient trajectories. We expect it can help doctors
make prompt decisions and achieve a better prediction.

The standard LSTM implicitly assumes that intervals be-
tween time steps, or events, in a sequence are uniformly dis-
tributed, whereas the frequency of collecting patients’ records
often vary greatly based on many factors. The interval be-
tween two consecutive events during a patient’s visit can span
from minutes to several weeks. In general, the events that
occur long time ago tend to have less impact to the current
event and thus we should properly reduce their contributions.
Therefore, it is important to consider the elapsed time when
predicting the current event’s output. In addition, these ir-
regular time intervals might be indicative for patients’ health
status on certain impending conditions. For example, when a
patient is in a more severe condition, events are likely to be
recorded more frequently than when a patient is in a relatively
“healthier” condition.

To incorporate the elapsed time into the standard LSTM,
we feed the intervals into a monotonic decreasing function.
In specific, for each event, the memories collected from its
previous events are discounted by a decay factor, which is
estimated based on the time intervals between previous events
and the current event. In this way, if the previous event occurs
a long time ago, the dependency from the previous moment
would not play an active role for predicting the current event’s
output.

As shown in Fig. 1, in the proposed ATTAIN, instead of
reading the information from just one previous cell state, we
collect all/some previous cell states and regularize these old
memories by weights generated by attention mechanism and
time intervals as follows:

Ct−1 =

t−1∑
i=t−m

αti · ci · g(∆tti), (4)

where αti is the attention weight from i-th event to the current
event t, ∆tti is the time interval between i-th event to the
current event, g(·) is a decay function, and m stands for the
number of events to look backwards. Then we replace ct−1

in Eq. 2 with Ct−1 for generating the new cell state.

Three Attention Mechanisms
To determining m, three ways are explored:
• Global Attention generates attention weights αti from

all the previous events for the current time step t, , i.e,
m = t− 1 in Eq. 4.

eti = (xi)>W αx
t, for i = 1, ..., t− 1

αt = softmax(et1, et2, ..., et(t−1))
(5)

The advantage of the global attention is that it considers
all past events and its disadvantage is that it is compu-
tationally expensive and attention weights are sparsely
distributed. To address these problems, we also explore
the following two options.
• Local Attention only considers a fixed number of previ-

ous events, m in Eq. 4. The hyperparameter m can be

optimized by grid search or suggested by clinicians.

eti = (xi)>W αx
t, for i = t−m, ..., t− 1

αt = softmax(et(t−m), et(t−m+1), ..., et(t−1))
(6)

• Flexible Attention learns the optimal number of previ-
ous events adaptively for different given events, i.e, m
varies for different time step t. The intuition is that dif-
ferent number of previous events should be considered
for different given events.

m(t) =
⌈
(t− 1) · sigmoid(v>mtanh(Wmx

t))
⌉

αt = softmax(et(t−m(t), et(t−m(t)+1), ..., et(t−1)),
(7)

where Wm and vm are parameters to be learned, and
m(t) ∈ [1, t− 1].

Previously RETAIN [Choi et al., 2016b] introduced atten-
tion mechanism in learning health record representation. RE-
TAIN generated attention weights from the hidden states of
RNN: eti = W>

αh
i, i ∈ [1, t − 1]. However, it does not

capture the relation between the targeting event t and past
events is. Different with RETAIN, the aforementioned three
attention mechanisms incorporate this relation when estimat-
ing attention weights. Additionally, when aggregating previ-
ous information (see Eq. 4), αti measures the weight of event
i for the current event t and hence its computation should
solely depend on the data at events i and t. Therefore we use
the original inputs x (i.e. xt and xi) instead of hidden states
h (i.e. ht and hi) since the pair [xt,xi] extracts immedi-
ate relations among the medical variables of two events while
[ht,hi] encodes the information from multiple events.

Time-aware Decay Function
Time intervals might range from minutes, hours and even to
days in healthcare domain. We integrate the intervals into the
model and make LSTM predict in a time-aware way. As a
guideline, the function in Eq. 8 is validated and suggested by
several prior works for long time periods in EHR data [Pham
et al., 2016; Baytas et al., 2017].

g(∆t) = 1/ log(e+ ∆t) (8)

Previously T-LSTM [Baytas et al., 2017] also integrated
the elapsed time to adjust the cell memory. It divided the
previous cell memory as short-term (ct−1S ) and long-term
(ct−1L ), then discounted only the short-term memory through
the same decay function, i.e., ct = f t ⊗ (ct−1L + ct−1S ·
g(∆t)) + it ⊗ c̃t. T-LSTM depends on only one previous
cell state to adjust the memory and is unable to interpret how
important each event is for predicting the current outcome.

In summary, through the aforementioned memory adjust-
ment, ATTAIN would identify the critical previous moments
and take the effect of elapsed time into account. The two
sources of weights, based on attention mechanism and time
intervals, are simultaneously tuned together. The intuitions
behind ATTAIN can be seen as mimicking doctors reading
records for diagnosing in the real world in that they gener-
ally pay attention to both very important indicative previous
events even though they happened long time ago but also the
most recent events. As a result, we expect ATTAIN can lead
to more reasonable predictions than the standard LSTM.
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3 Experiments
3.1 Data Description
Our EHR data was collected from Christiana Care Health
System Health System (CCHS) from July, 2013 to Decem-
ber, 2015. Each data point is a visit with a series of events(see
2.1). In total, there are 210,289 visits, and 10,412,729 med-
ical events. The study population is patients with suspected
infection, which is identified by the presence of any type of
antibiotic, antiviral, or antifungal administration, or a positive
test result of Point of Care Rapid, and it consists of 52,919
visits and 4,224,567 medical events. The definition of study
population and the following data prepossessing were deter-
mined by leading clinicians from CCHS and Mayo Clinic.

After preprocessing, our final dataset contains 2,100 vis-
its (1,869 positives and 231 negatives) and 209,346 events
(22,430 positives and 186,916 negatives).
Tagging. International Classification of Diseases, Ninth
Revision (ICD-9) are widely used for clinical labeling (i.e.,
septic shock or not). However, as visit-level labels, ICD-9
codes cannot tell when septic shock occurs at event level, and
they are not persistently reliable [Ho et al., 2014]. Therefore
based on Third International Consensus Definitions [Singer
et al., 2016], our clinicians identified septic shock at each
event as having received vasopressor(s) or persistent hypoten-
sion (systolic blood pressure<90 mmHg or mean arterial
pressure<65 mmHg for more than 1 hour). When applying
both ICD-9 and our tagging rule, we identify 1,869 shock
positive visits and 23,901 negative ones.
Sampling. We further conduct stratified random sampling
on negative visits while keeping their underlying distribution
of age, gender, race and length of stay the same as positive
visits, and then get 1,869 negative visits. Given the number
of negative events are dominant in both positive and negative
visits, we randomly sample 231 out of 1,869 negative visits
to maintain the ratio of positive events around 15%.
Data selection. We focus on the visits in range of 3-90 days
since short visits do not hold sufficient information for anal-
ysis and long visits introduce data sparsity. Importantly, we
exclude the visits that developed septic shock within 8 hours
after admission, because our clinicians suggest that such pa-
tients generally already show septic-related symptoms on ad-
mission and doctors can easily catch such cases.
Feature selection. We exclude features with a missing rate
more than 90% and our features can be divided into four cat-
egories: 1) vital signs: heart rate, temperature, etc; 2) lab
results: BUN, creatinine, white blood cell count (WBC), 18
culture tests, etc; 3) interventions: FIO2, oxygen flow, etc; 4)
locations (e.g, emergency or nurse), descriptions, identifiers.
Data aggregation and imputation. We aggregate the
events within an hour to an event and take the mean measure-
ment within 1-hour window. For frequently measured fea-
tures (e.g. vital signs), we add statistical features (e.g. min
and max) measured in the 1-hour window. Suggested by
our clinicians, we impute missing values with the last value
within the fixed length of forward time window (8 hours for
vital signs and 24 hours for lab tests) and impute the remain-
ing ones with feature-wise mean values.

3.2 Experimental Setup
Baseline Approaches
We compare ATTAIN with three baselines: 1) LSTM without
either attention or time-aware mechanisms; 2) RETAIN [Choi
et al., 2016b] with a two-level attention mechanism at both
the event-level and the variable level; 3) T-LSTM [Baytas et
al., 2017] with time-aware mechanism only.

Our Approaches
We integrate three attention mechanisms with the standard
LSTM: LSTMg , LSTMl, LSTMf . The attention weights are
generated by Eq. 5 - 7 respectively. Old memory is obtained
by accumulating all or selective previous cell states:

Ct−1 =

t−1∑
i=t−m

αti · ci. (9)

Specifically for local attention, we find the optimal set-
ting of m by grid search on a validation set (described later).
Fig. 2(a) shows the model achieves competitive performance
using tenth-interval m ∈ {20, 30, 40}. We hence further ex-
plore the performance for m ∈ [20, 40] incremented by 1 and
Fig. 2(b) shows that the optimal values are m ∈ {22, 26}.
Here we use m = 24.

Furthermore, we add the time-aware mechanism to the
three models above resulted in three ATTAIN models named
ATTAINg , ATTAINl, ATTAINf respectively. The Ct−1 is
calculated based on Eq. 4 in a way that the old memory is
regularized by both attention weights and decay weights.

Figure 2: AUC and F1 score of LSTMl when: (a) m is taken from
[1, 199] with interval 10. (b) m ∈ [20, 40].

Evaluation and Setting
Our evaluation metrics include sensitivity/recall, specificity,
precision/positive predictive value (PPV), F1-score, and area
under the ROC (receiver operator characteristic) curve (AUC)
[Nachimuthu and Haug, 2012]. Precision, recall, F1 and AUC
are widely used for evaluating machine learning approaches.
In healthcare domain, researchers commonly refer to sensi-
tivity, specificity and PPV for the annotation performance.

In our implementation, all the models are updated using
mini-batch stochastic optimizer and the batch size is 50. The
training epochs is 50 with early stopping, the learning rate
is 0.01, and the number of hidden units for LSTM is 72. In
training process, we randomly divide the data sets into the
training, validation and testing set with the ratio of 70%, 15%,
and 15%. Each experiment is repeated 10 times with random
model initialization and we report the average values with
standard deviation for each evaluation metric.
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Method A T Sensitivity/Recall Specificity PPV/Precision F1-score AUC
LSTM - - 0.627(±0.023) 0.632(±0.021) 0.635(±0.020) 0.631(±0.021) 0.716(±0.020)
RETAIN X - 0.618(±0.015) 0.654(±0.016) 0.651(±0.016) 0.634(±0.016) 0.732(±0.010)
T-LSTM - X 0.643(±0.009) 0.680(±0.012) 0.702(±0.013) 0.671(±0.010) 0.745(±0.013)
LSTMg X - 0.628(±0.013) 0.798(±0.015) 0.747(±0.018) 0.682(±0.016) 0.748(±0.014)
LSTMl X - 0.684(±0.007) 0.742(±0.013) 0.707(±0.012) 0.695(±0.011) 0.763(±0.008)
LSTMf X - 0.667(±0.022) 0.731(±0.017) 0.726(±0.016) 0.695(±0.019) 0.755(±0.016)
ATTAINg X X 0.636(±0.016) ? 0.818(±0.008) ? 0.803(±0.010) 0.710(±0.014) 0.782(±0.015)
ATTAINl X X ? 0.695(±0.014) 0.746(±0.012) 0.744(±0.015) 0.718(±0.014) 0.804(±0.010)
ATTAINf X X 0.686(±0.018) 0.767(±0.016) 0.758(±0.016) ? 0.720(±0.017) ? 0.811(±0.011)

· The best values of each metric within the session are in bold, and the best values of each metric across all the models are labeled with ?.

Table 1: Performance (±standard deviation) of baselines and our approaches on septic shock overall prediction.

4 Results
4.1 Results of Overall Prediction
Table 1 shows the performance of all the models and from top
to bottom, we have three baseline models, our proposed three
attention mechanisms with LSTM, and the three correspond-
ing ATTAIN models. Columns ‘A’ and ‘T’ indicate whether
attention or time-aware mechanisms are used in the models.
For each sub-session, the best results are marked in bold and
the best model across all methods are labeled with ?.

Among the three baselines, both RETAIN and T-LSTM
outperform the standard LSTM on almost all the evaluations,
which shows that either the attention mechanism or time-
aware mechanism can lead to a better prediction of the disease
progression. As in the original work [Choi et al., 2016b], RE-
TAIN does not boost from LSTM much and this might come
from two reasons. First, their attention mechanism did not
incorporate the relation between the previous events and the
current event. Second, due to high missing rate of features,
the variable-level attention did not take into full effect.

All three attention-based models (in the middle sub-
session) outperform three baselines across all evaluations
with only one exception that LSTMg has worse recall than
T-LSTM. When comparing the three attention mechanisms,
LSTMl performs more stably than LSTMg and LSTMf , i.e.,
0.695 vs. 0.682 and 0.695 (larger std) for F1 score and 0.763
vs. 0.748 and 0.755 for AUC. We found that the attention
weights of LSTMg are sparsely distributed in long sequences
and cannot effectively detect critical moments. The result of
LSTMl validates that m = 24 is clinically reasonable. When
only using attention mechanism, though close, LSTMf , de-
ciding how many previous events to pay attention in a data-
driven manner, is not as competitive as LSTMl.

Except that ATTAINg has a worse recall than T-LSTM, all
three ATTAIN models (in the bottom sub-session) outperform
three baselines with obvious improvement. Moreover, when
comparing between ATTAIN and our three attention-based
models, ATTAINg outperforms LSTMg , and the same obser-
vation on ATTAINl over LSTMl and ATTAINf over LSTMf

. Thus, when integrating both attention and time-aware mech-
anisms , the two sources of weights allow the model to com-
prehensively identify the meaningful previous events in terms
of medical relation and time effect. For example, if attention
weights indicate two previous events are equally important,
we pay attention to the recent event first, exactly as doctors

perform in real world.
Overall, ATTAINf achieves the best F1-score and AUC.

ATTAINl is close to ATTAINf , i.e. 0.718 vs. 0.720 on F1 and
0.804 vs. 0.811 on AUC and gets the best recall. Since our
data are aggregated at hourly rate, 24-event retrospect guaran-
tees attending the last 24 hours of a patient status. In practice
the clinicians prefer this local-based model because previous
information can be sufficiently obtained with certainty.

Figure 3: (a) F1-score of early prediction at different hours. (b) AUC
of early prediction at different hours.

4.2 Results of Early Prediction
Our best attention-based model LSTMl and our best approach
ATTAINf are compared against three baselines: LSTM, RE-
TAIN and T-LSTM for early prediction, i.e. to detect the pa-
tients who are developing septic shock in advance. To do so,
we utilize the future diagnostic condition as labels for each
current event in training process. For example, in previous
setting, we use {xik}ti=1 to predict the (t + 1)-th event-level
label yt+1

k , one event in advance. In early prediction setting,
we will use {xik}ti=1 to predict yt+η , η events in advance.
Since our data is aggregated on an hourly basis, η-event early
guarantees at least η-hour ahead. We track the performance
of each model on F1-score and AUC from one-event earlier
up to 24 incremented by 1.

Fig. 3 shows the results of early prediction on five models.
As expected, as η increases, the early prediction tasks become
more and more challenging in that the performance of all the
models has gradually degraded. Despite this, ATTAINf has
been decreasing much slower and steadily staying on the top
of all other models in terms of both AUC and F1. LSTMl fol-
lows ATTAINf to be the second best model and the standard
LSTM performs the worst.
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Figure 4: Attention weights for the 11th and 12th events achieved from (a) RETAIN; (b) LSTMl; (c) ATTAINl.

4.3 Case Study
To illustrate the interpretability, Fig. 4 shows a case study by
comparing the weights learned from RETAIN, LSTMl and
ATTAINl for a sample patient’s visit. To simplify, we fix
m = 10 for all three models and the weights are normalized.
The patient is in septic shock at events 11 and 12. For event
11, we expect the models can identify some critical previ-
ous event(s). We consider three prior events with the highest
weights to be critical events. At event 12, septic shock con-
tinues, we expect a reliable model: a) identifies event 11 to be
critical for event 12, because the former clearly explains why
the patient was still in septic shock at event 12, and b) iden-
tifies the same critical events (other than event 11) as those
for event 11 for event 12. Fig. 4 shows that RETAIN indeed
identifies that event 11 is critical for event 12, but it discov-
ers different sets of critical events for the two events. LSTMl

consistently detects the same set of critical events, {4, 5, 8},
for both events 11 and 12, but it fails to identify that event 11
is critical to event 12. Finally, our ATTAIN model success-
fully identify that event 11 is important and besides event 11,
event 12 has the same critical set: {4, 5, 8} as event 11.

5 Related Work
EHRs have been a popular research platform with increasing
availability to develop predictive models for tasks of disease
progression [Zhang et al., 2017; Wang et al., 2014], pheno-
typing [Che et al., 2015; Baytas et al., 2017; Liu et al., 2015;
Li et al., 2015], diagnosis prediction [Choi et al., 2016b],
etc. However, EHRs also pose numerous challenges, such
as they are noisy, fragmental and high dimensional. To this
end, deep learning networks, such as RNN [Che et al., 2018]
and LSTM [Lin et al., 2018; Yang et al., 2018] can assist in
learning complex relationships among medical events.

In recent years, attention mechanisms are extensively ex-
plored to interpret the model output and greatly improve the
prediction performance. For example, RETAIN applies a
reverse time attention mechanism in an RNN [Choi et al.,
2016b] and Dipole [Ma et al., 2017] uses the similar atten-
tion networks for diagnosis prediction. Another challenge as-

sociated with EHR data, time irregularity, has also been tack-
led. T-LSTM [Baytas et al., 2017] divides short-term from
the previous cell memory, and adjusts it with a time-aware
mechanism. In [Pham et al., 2016], the time intervals are
used to modify the forget gate of LSTM. In [Che et al., 2018],
time gaps are made regular through data imputation methods.
Finally, Health-ATM [Ma et al., 2018] extracts patient infor-
mation patterns with attentive and time-aware models through
RNN and Convolutional Neural Networks (CNN). Compared
with the prior works, our proposed method explores different
attention mechanisms to generate weights for the past events
while handling the time irregularity in EHRs. For acute medi-
cal conditions such as septic shock, it is extremely significant
to identify critical and timely meaningful events.

6 Conclusion
Disease progression modeling is an important task especially
for acute medical conditions such as septic shock. In this
work, we propose ATTAIN, an attention-based time-aware
LSTM networks to effectively improve the interpretability of
LSTM while also modeling the irregular time intervals. In
specific, ATTAIN employs attention weights combining with
time decay function to identify the contributions of the histor-
ical events to the current event. The experimental results on
a real EHR dataset demonstrate the effectiveness of ATTAIN
compared with state-of-the-art baselines. One limitation of
this work is not generating feature-level attentions at each
event, since the feature-level attentions can vary drastically
over multiple events in acute disease conditions, especially
given the impact of high missing rate in real-world EHRs.
We keep this challenging task as our future work. We will be
working on imputing realistic missing data for heterogeneous
patient groups through domain adaptation and generative net-
works. Also, we will validate ATTAIN on other EHRs such
as MIMIC-III and for other disease prediction tasks.
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