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Abstract

In this paper, we address the challenging uncon-
strained set-based face recognition problem where
each subject face is instantiated by a set of me-
dia (images and videos) instead of a single im-
age. Naively aggregating information from all the
media within a set would suffer from the large
intra-set variance caused by heterogeneous factors
(e.g., varying media modalities, poses and illumina-
tion) and fail to learn discriminative face represen-
tations. A novel Multi-Prototype Network (MP-
Net) model is thus proposed to learn multiple pro-
totype face representations adaptively from the me-
dia sets. Each learned prototype is representative
for the subject face under certain condition in terms
of pose, illumination and media modality. Instead
of handcrafting the set partition for prototype learn-
ing, MPNet introduces a Dense SubGraph (DSG)
learning sub-net that implicitly untangles incon-
sistent media and learns a number of representa-
tive prototypes. Qualitative and quantitative exper-
iments clearly demonstrate the superiority of the
proposed model over state-of-the-arts.

1 Introduction

Recent advances in deep learning have remarkably boosted
the performance of face recognition. Some approaches claim
to have achieved [Taigman et al., 2014; Li et al., 2016; Zhao
et al., 2017; Zhao er al., 2018a)] or even surpassed [Schroff
et al., 2015; Wang et al., 2018b; Zhao et al., 2018b] hu-
man performance on several benchmarks. However, these
approaches only recognize faces over a single image or video
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as a short-term “Texpert” research scientist at Tencent FiT DeepSea
Al Lab, Shenzhen, China.
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Figure 1: Difference between (a) face recognition over a single im-
age per subject and (b) unconstrained set-based face recognition. For
unconstrained set-based face recognition, each subject is represented
by a set of mixed images and videos captured under unconstrained
conditions. Each set contains large variations in face pose, expres-
sion, illumination and occlusion. Existing single-medium based
recognition approaches cannot successfully address this problem.
Best viewed in color.

sequence. Such scenarios deviate from the reality. In practi-
cal face recognition systems (and arguably human cortex for
face recognition), each subject face to recognize is often en-
rolled with a set of images and videos captured with varying
conditions and acquisition methods. Intuitively such rich in-
formation can benefit face recognition performance, which
however has not been effectively exploited.

In this paper, we address the challenging task of uncon-
strained set-based face recognition, which was firstly intro-
duced in [Klare et al., 2015] and is more consistent with real-
world scenarios. In this task, the minimal facial representa-
tion unit is defined as a set of images and videos instead of a
single medium. It requires solving a more difficult set-to-set
matching problem, where both the probe and gallery are sets
of face media. This task raises the necessity to build subject-
specific face models for each subject individually, instead of
relying on a single multi-class recognition model as before.
An illustration is given in Fig. 1 to show the difference be-
tween traditional face recognition over a single input image
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and the targeted face recognition over a set of unconstrained
images/videos. The most significant challenge in the uncon-
strained set-based face recognition task is how to learn good
representations for the media set, even in presence of large
intra-set variance of real-world subject faces caused by vary-
ing conditions in illumination, sensor, compression, efc., and
subject attributes such as facial pose, expression and occlu-
sion. Solving this problem needs to address these distracting
factors effectively and learn set-level discriminative face rep-
resentation.

Recently, several set-based face recognition methods have
been proposed [Chen er al., 2016; Chowdhury et al., 2016;
Hassner et al., 2016]. They generally adopt the following
two strategies to obtain set-level face representation. One is
to learn a set of image-level face representations from each
face medium in the set individually [Chowdhury et al., 2016;
Masi et al., 2016], and use all the information for follow-
ing face recognition. Such a strategy is obviously computa-
tionally expensive as it needs to perform exhaustive pairwise
matching and is fragile to any outlier medium captured under
unusual conditions. The other strategy is to aggregate face
representations within the set through simple average or max
pooling and generate single representation for each set [Chen
et al., 2016; Sankaranarayanan et al., 2016]. However, this
obviously suffers from information loss and insufficient ex-
ploitation of the image/video set.

To overcome the limitations of existing methods, we pro-
pose a novel Multi-Prototype Network (MPNet) model. To
learn better set-level representations, MPNet uses a Dense
SubGraph (DSG) learning sub-net to implicitly factorize each
face media set of a particular subject into a number of dis-
entangled sub-sets, instead of handcrafting the set partition
using some intuitive features. Each dense subgraph corre-
sponds to a sub-set (representing a prototype) of face me-
dia that are with small intra-set variance but discriminative
from other subject faces. MPNet learns to enhance the com-
pactness of the prototypes as well as their coverage of large
variance for a single subject face, through which heteroge-
neous attributes within each face media set are sufficiently
considered and flexibly untangled. This significantly helps
improve the unconstrained set-based face recognition per-
formance by providing multiple comprehensive and succinct
face representations, reducing the impact of media incon-
sistency. Compared with existing set-based face recogni-
tion methods [Chen et al., 2016; Chowdhury et al., 2016;
Hassner et al., 2016], MPNet effectively addresses the large
variance challenge and offers more discriminative and flexi-
ble face representations with lower computational complex-
ity. Also, superior to naive average or max pooling of face
features, MPNet effectively preserves the necessary informa-
tion through the DSG learning for set-based face recognition.
Main contributions of this work can be summarized as below:

e We propose a novel and effective multi-prototype dis-
criminative learning architecture MPNet. To our best
knowledge, MPNet is the first end-to-end trainable
model that adaptively learns multiple prototype face rep-
resentations from sets of media. It can effectively ad-
dress the large intra-set variance issue that is critical to
set-based face recognition.
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Figure 2: The proposed Multi-Prototype Network (MPNet) for un-
constrained set-based face recognition. MPNet takes a pair of face
media sets as input and outputs a matching result, i.e., same person
or not. It adopts a modern deep siamese CNN architecture for deep
set-based facial representation learning, and adopts a new DSG sub-
net to learn discriminative prototypes for each set. MPNet is end-to-
end trainable through the ranking loss and auxiliary DSG loss. Best
viewed in color.

e A Dense SubGraph (DSG) learning sub-net is used in
MPNet to automatically factorize each face media set
into a number of disentangled prototypes representing
consistent face media with sufficient discriminativeness.
Through the DSG sub-net, MPNet is capable of untan-
gling inconsistent media and dealing with faces captured
under challenging conditions robustly.

e DSG provides a general loss that encourages compact-
ness around multiple discovered centers with strong dis-
crimination. It offers a new and systematic approach for
large variance object recognition in the real world.

With the above technical contributions, our proposed model
gains high performance for unconstrained set-based face
recognition. It achieves currently best results on IJB-A [Klare
et al., 2015] benchmark dataset with significant improve-
ments over state-of-the-arts.

2 Related Work

Recent top performing approaches for face recognition of-
ten rely on deep CNNs with advanced architectures. For in-
stance, the VGGface model [Parkhi ef al., 2015; Cao et al.,
2018], as an application of the VGG architecture [Simonyan
and Zisserman, 2014], provides state-of-the-art performance.
The DeepFace model [Taigman et al., 2014] also uses a deep
CNN coupled with 3D alignment. FaceNet [Schroff et al.,
2015] utilizes the inception deep CNN architecture for un-
constrained face recognition. DeepID2+ [Sun et al., 2015b]
and DeepID3 [Sun et al., 2015a] extend the FaceNet model
by including joint Bayesian metric learning and multi-task
learning, yielding better unconstrained face recognition per-
formance. SphereFace [Liu er al., 20171, CosFace [Wang
et al., 2018b], AM-Softmax [Wang et al., 2018a] and Arc-
Face [Deng et al., 2018] exploit margin-based representation
learning to achieve small intra-class distance and large inter-
class distance. These methods enhance the overall perfor-
mance via carefully designed architectures, which are how-
ever not tailored for unconstrained set-based face recognition.

With the introduction of IJB-A benchmark [Klare et al.,
2015] by NIST in 2015, the problem of unconstrained set-
based face recognition attracts increasing attention. Recent
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solutions to this problem are also based on deep architectures,
which are leading approaches on LFW [Huang et al., 2007]
and YTF [Wolf er al., 2011]. Among them, B-CNN [Chowd-
hury er al., 2016] applies a new Bilinear CNN (B-CNN) ar-
chitecture for face identification. Pooling Faces [Hassner et
al., 2016] aligns faces in 3D and partitions them according to
facial and imaging properties. PAMs [Masi et al., 2016] han-
dles pose variability by learning Pose-Aware Models (PAMs)
for frontal, half-profile and full-profile poses to perform face
recognition in the wild. These methods often employ separate
processing steps without considering the modality variance
within one set of face media and underlying multiple proto-
type structures. Therefore, much useful information may be
lost, leading to inferior performance.

Our proposed MPNet shares a similar idea as subcategory-
aware object classification [Dong et al., 2013] that considers
intra-class variance in building object classifiers, and [Das
and Lee, 2018a; Das and Lee, 2018b] that consider to con-
struct a graph-matching metric for domain adaption. Our
method differs from it in following aspects: 1) the “proto-
type” is not pre-defined in MPNet; 2) MPNet is based on deep
learning and can be end-to-end trainable. It is also interest-
ing to investigate the application of our MPNet architecture
in generic object recognition tasks.

3 Multi-Prototype Networks

Fig. 2 visualizes the architecture of the MPNet, which takes
a pair of face media sets as input and outputs a matching re-
sult for unconstrained set-based face recognition. It adopts
a modern deep siamese CNN architecture for set-based fa-
cial representation learning, and uses a new DSG sub-net for
learning the multi-prototype that models various representa-
tive faces under different conditions for the input. MPNet
is end-to-end trainable by minimizing the ranking loss and a
new DSG loss. We now present each component in detail.

3.1 Set-based Facial Representation Learning

Different from face recognition over a single image, the task
of set-based face recognition aims to accept or reject the
claimed identity of a subject represented by a face media set
containing both images and videos. Performance is assessed
using two metrics: percentage of false accepts and that of
false rejects. A good model should optimize both metrics
simultaneously. MPNet is designed to nonlinearly map the
raw sets of faces to multiple prototypes in a low dimensional
space such that the distance between these prototypes is small
if the sets belong to the same subject, and large otherwise.
The similarity metric learning is achieved by training MPNet
with two identical CNN branches that share weights. MPNet
handles inputs in a pair-wise, set-to-set way so that it explic-
itly organizes the face media in a way favorable to set-based
face recognition.

MPNet learns face representations at multi-scale for gain-
ing strengthened robustness to scale variance in real-world
faces. Specifically, for each medium within a face media set,
a multi-scale pyramid is constructed by resizing the image or
video frame to four different scales. To handle the error of
face detection, MPNet performs random cropping to collect

4399

local and global patches from each scale of the multi-scale
pyramid with a fixed size, as illustrated in supplementary ma-
terials' App. A. To mitigate the imbalance of realistic face
data (e.g., some subjects are enrolled with scarce media from
limited images while some with redundant media from redu-
plicative video frames), the data distribution within each set
is adjusted by resampling. In particular, the set containing
scarce media (i.e., less than an empirically pre-defined pa-
rameter R) is augmented by duplicating and flipping images,
which is intuitively beneficial with more relevant informa-
tion. The large set with redundant media (i.e., more than R)
is subsampled to the size of R. The resulting input streams to
MPNet are tuples of face media set pairs and the associated
ground truth annotations {(X?!, X?? y?)}, where XP! and
XP2 denote the two sets of the p-th pair, and 3 denotes the
binary pair-wise label.

The proposed MPNet adopts a siamese CNN architec-
ture in which two branches share weights for pairwise set-
based facial representation learning. Each branch is initi-
ated with VGGface [Parkhi et al., 2015], including 13 con-
volutional layers, 5 pooling layers and 2 fully-connected lay-
ers. We make the following careful architectural design for
each branch to ensure that the learned deep facial represen-
tations are more suitable for multi-prototype representation
learning. 1) For activation functions, instead of using ReLU
to suppress all the negative responses, we adopt the PReLLU
to allow negative responses. PReLU improves model fitting
with nearly zero extra computational cost and little overfit-
ting risk, benefiting convergence of MPNet. 2) We adopt two
local normalization layers after the 2" convolutional layer
and the 4" convolutional layer, respectively. The local nor-
malization tends to uniformize the mean and variance of a
feature map around a local neighborhood. This is especially
useful for correcting non-uniform illumination or shading ar-
tifacts. 3) We adopt an average operator for the last pooling
layer and a max operator for the previous 4 pooling layers
to generate compact and discriminative deep set-based facial
representations. Note that our approach is not restricted to
the CNN module used, and can also be generalized to other
state-of-the-art architectures for performance boosting.

The learned deep facial representation for each face me-
dia set is denoted as {f1, fa,--- , fr}. Here recall R is the
specified size of the face media set after distribution balance.

3.2 Multi-Prototype Discriminative Learning

Throughout this paper, a prototype is defined as a collection
of similar face media that are representative for a subject face
under certain conditions. Face media forming the same pro-
totype have small variance and one can safely extract repre-
sentation by pooling approaches without worrying about in-
formation loss.

To address the critical large variance issue in set-based
face recognition, we propose the multi-prototype discrimi-
native learning. With this component, each face media set
is implicitly factorized into a certain number of prototypes.
Multi-prototype learning encourages the output facial repre-

"https://github.com/IJCAI19-ID110/Supplementary-Materials/
blob/master/ijcail9-supp.pdf
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sentations to be compact w.r.t. certain prototypes and mean-
while discriminative for different subjects. Thus, MPNet is
capable of modelling the prototype-level interactions effec-
tively while addressing the large variance and false matching
caused by untypical faces. MPNet dynamically offers an opti-
mal trade-off between facial information preserving and com-
putation cost. It does not require exhaustive matching across
all of the possible pairs from two sets for accurately recog-
nizing faces in the wild. It learns multiple prototypes through
a dense subgraph learning as detailed below.

To discover the underlying multiple prototypes of each face
media set instead of handcrafting the set partition, we propose
a novel DSG learning approach. DSG formulates the similar-
ity of face media within a set through a graph and discovers
the prototype by mining the dense subgraphs. Each subgraph
has high internal similarity and small similarity to the outside
media. Compared with clustering-based data partition, DSG
is advantageous in terms of flexiblity and robustness to out-
liers. Each subgraph provides a prototype for the input sub-
ject faces. We then perform face recognition at the prototype
level, which is concise and also sufficiently informative.

Given a latent affinity graph characterizing the relations
among entities (face media here), denoted as G=(V, £), each
dense subgraph refers to a prototype of the vertices () with
larger internal connection (&) affinity than other candidates.
In this work, learning DSG within each face media set implic-
itly discovers consistent faces sharing similar conditions such
as age, pose, expression, illumination and media modality,
through which heterogeneous factors are flexibly untangled.

Formally, suppose the graph G is associated with an affin-
ity A, and each element of A encodes the similarity between
two face media: a;; = aff(f;, f;). Let K be the number
of prototypes (or equivalently, number of dense subgraphs)
and Z = [z1,...,2K] € R™ K be the partition indicator:
zir, = 1 indicates the i-th medium is in the k-th prototype.
The DSG aims to find the representative subgraph via opti-
mizing Z through

mgxtr(ZTAZ), st.,zik € {0,1}, 21 =1, )

where 1 is an all-1 vector. Here the 2"¢ constraint guaran-
tees that every medium will be allocated to only one pro-
totype. The allocation after learning would maximize the
intra-prototype media similarity. This is significantly differ-
ent from k-means clustering which needs to learn the centers
and defines similarity based on the distance to the center.

This problem is not easy to solve. We therefore carefully
design the DSG layers that form the DSG sub-net to optimize
it end-to-end. This sub-net consists of two layers, which takes
the set-based facial representations f;’s as input and outputs
the reconstructed discriminative features.

The 1°¢ layer makes the prototype prediction. Given the
input deep facial representation f;, this layer outputs its indi-
cator z; € {0, 1} by dynamically projecting each input latent
affinity graph to K prototypes, z; = o(W T f;), where o is the
sigmoid activation function to rectify inputs to [0, 1] and W is
the DSG predictor parameter. Given the predicted z; and in-
put f;, the 2"¢ layer computes the DSG loss (see Sec. 3.3)

to ensure the reconstructed representation f; form reason-
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ably compact and discriminative prototypes. fi is obtained
by element-wisely multiplying the output of the 2"% layer of
the DSG sub-net with the predicted multi-prototype indicator
Z from its 1% layer. More details are given in Sec. 4.

3.3 Optimization

We optimize MPNet by minimizing the following two loss
functions in a conjugate way.

Ranking Loss

A ranking loss is designed in MPNet to enforce the distance
to shrink for genuine set pairs and increase for imposter set
pairs, so that MPNet explicitly maps input patterns into the
target spaces to approximate the semantic distance in the in-
put space.

We first ¢5-normalize the outputs from the DSG sub-net,
so that all the set-based facial representations are within the
same range for loss computation. Then, we use Euclidean dis-
tance to measure the fine-grained pairwise dissimilarity be-

tween fi and f]‘:
diy = |1fi = fil13, 2)
where i,j € {1, ..., R}.
We further make an ensemble of the R? distances into one
energy-based matching result for each coarse-level set pair:

20 dij x exp(Bdiy)
Yot exp(Bdi;)

where ( is a bandwidth parameter.
Our final ranking loss function is formulated as

E ; 3)

LRanking (fi) £ mEin{(1 —y")E + ¢y’ max(0,7 — E)}. (4

Here 7 is a margin, such that Eq + 7 < Ej; Eg is the
distance for genuine pair; E; is the distance for imposter
pair; and yP is the binary pairwise label, with 0 for gen-
uine pair (Lranking = g in Eq. (4)) and 1 for imposter pair
(ERanking = maX(O, T — E[) in Eq (4))

Dense SubGraph Loss
We propose to learn dense prototypes via solving the problem
defined in Eq. (1). Expanding the objective in Eq. (1) gives

n K
tr(ZTAZ) = Z Zzikaijzjk‘ ®)]

i,j=1k=1

Since Zik, Zjk € {0, 1}, we have Ef:l ZikQij ik = Qij
only if z;; = z;, = 1 for some £, i.e., the face media 4 and j
are divided into the same prototype. Maximizing the trace
in Eq. (1) is to find the partition of samples (indicated by
z) to form subgraphs such that the samples associated with
the same subgraph have the largest total affinity (i.e., den-
sity) ZZM#O’ZM#O a;;. In practice, maximizing tr(Z " AZ)

would encourage contributions of the representations fz be-
longing to the same prototype to be close to each other and
each resulted cluster to be far away from others, i.e., they
form multiple dense subgraphs.
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Verification

Identification

Method } TARGFAR=0.10 | TAR@FAR=001 | TARGFAR=0.001 % % FNIR@FPIR=0.10 | FNIRG@FPIR=0.01 | Rankl
OpenBR [Klare ef al., 2015] 0.4331+0.006 0.2364-0.009 0.10410.014 0.85140.028 0.93410.017 0.24610.011
GOTS [Klare et al., 2015] 0.627+0.012 0.4064-0.014 0.1984-0.008 0.76510.033 0.953+0.024 0.4334-0.021
BCNNs [Chowdhury et al., 2016] - - - 0.65940.032 0.8571+0.024 0.5884-0.020
Pooling faces [Hassner et al., 2016] 0.631 0.309 - - 0.846
Deep Milti-pose [AbdAlmageed er al., 2016] 0.991 0.787 0.250 0.48 0.846
DCNN,,, o 11 al+metric [Chen et al., 2015] 0.94740.011 0.787-£0.043 - - - 0.852:£0.018
Triplet Similarity [Sankaranarayanan et al., 2016] 0.94540.002 0.7904-0.030 0.5904-0.050 0.24610.014 0.4444-0.065 0.88040.015
PAMs [Masi et al., 2016] - 0.82640.018 0.65240.037 - - 0.84040.012
DCNN¢ysion [Chen et al., 2016] 0.9674-0.009 0.8384:0.042 - 0.2104:0.033 0.4234-0.094 0.90340.012
Triplet Embedding [Sankaranarayanan et al., 2016] 0.9644-0.005 0.900£0.010 0.8134:0.002 0.13740.014 0.2474-0.030 0.93240.010
All-In-One [Ranjan et al., 2016] 0.97640.004 0.92240.010 0.8234:0.020 0.11340.014 0.20840.020 0.94740.008
Template Adaptation [Crosswhite et al., 2017] 0.97940.004 0.93940.013 0.8364:0.027 0.11840.016 0.2264-0.049 0.928+0.001
NAN [Yang et al., 2017] 0.97940.004 0.94140.008 0.88140.011 0.08340.009 0.18340.041 0.95840.005
DA-GAN [Zhao et al., 2017] 0.9914-0.003 0.97640.007 0.93040.005 0.05140.009 0.11040.039 0.97140.007
£5-softmax [Ranjan et al., 2017] 0.98440.002 0.97040.004 0.94340.005 0.04440.006 0.08540.041 0.97340.005
3D-PIM [Zhao et al., 2018b] 0.99640.001 0.989+40.002 0.97740.004 0.01640.005 0.06440.045 0.990+40.002
baseline 0.96840.009 0.87140.014 0.73540.031 0.18840.011 0.37240.045 0.90740.010
w/o DSG 0.97140.006 0.88740.012 0.74340.027 0.18240.010 0.36740.041 0.91240.008
MPNetg —3 0.97140.006 0.86340.019 0.7344:0.033 0.18940.013 0.3864-0.043 0.909+40.007
MPNetg —10 0.97140.007 0.880£0.015 0.74040.026 0.17940.009 0.36140.044 0.91340.009
MPNetk —200 0.97940.004 0.92440.013 0.76440.022 0.17140.012 0.3504-0.046 0.92340.008
MPNetk —500 0.98040.005 0.91940.013 0.77940.021 0.1694-0.009 0.33740.042 0.93240.008
MPNetk —1000 0.97540.008 0.90940.017 0.75740.025 0.16410.011 0.359+0.040 0.92640.010
MPNet (Ours) 0.99710.002 0.991+0.003 0.98440.005 0.01140.005 0.0591-0.040 0.994+0.003

Table 1: Face recognition performance comparison on IJB-A. The results are averaged over 10 testing splits.

reported. Standard deviation is not available for some methods.

In Eq. (5), each element of the affinity A encodes similarity
between two corresponding media, i.e.

i

5 ) ©6)
Equivalently, the DSG learning can be achieved through

the following minimization problem:

aij 2 exp{

mZintr(ZTDZ), st zi; €{0,1}, 21 =1, @)

where D is the Euclidean distance matrix computed in
Eq. (2).

Then we define the following DSG loss function to opti-
mize the learned deep set-based facial representations:

Losa(fi) 2 {mzintr(zTDZ), st ozi; €{0,1},21 = 1} . (®)

Thus, minimizing the DSG loss would encourage contribu-
tions of the representations fi’s belonging to the same proto-
type to be close to each other. If one visualizes the learned
representations in the high-dimensional space, the learned
representations of one face media set form several compact
clusters and each cluster may be far away from others. In this
way, a face media set with large variance is distributed to sev-
eral clusters implicitly. Each cluster has a small variance. We
also conduct experiments for illustration in Sec. 4.1.

To simplify the above optimization, we propose to relax
the constraint of z;; € {0,1}to 0 < zi; < 1 by a sigmoid
activation function. Thus, the DSG loss is re-defined as

Losc(fi) 2 {mzintr(ZTDZ), SL0< 2 <1,21 = 1} . 9)

We adopt the joint supervision of ranking and DSG losses
to train MPNet for multi-prototype discriminative learning:

L = LRanking + ALDsG,
where ) is a weighting parameter among the two losses.
Clearly, MPNet is end-to-end trainable and can be opti-
mized with BP and SGD algorithm. We summarize the learn-
ing algorithm of MPNet in supplementary materials App. B.

(10)

@ 2

means the result is not

4 Experiments

We evaluate MPNet qualitatively and quantitatively under
various settings for unconstrained set-based face recognition
on IJB-A [Klare er al., 2015]. See supplementary materials
App. C for full implementation details. For details of the
datasets and evaluation metrics, please see App. D, E and F.

4.1 Evaluations on 1JB-A Benchmark

Ablation Study and Quantitative Comparison

We first investigate different architectures and losses of MP-
Net to see their respective roles in unconstrained set-based
face recognition. We compare 8§ variants of MPNet, i.e.,
baseline (siamese VGGface [Parkhi et al., 2015]), w/o DSG,
MPNCtKE{3’10’200,500’1000}, and MPNet (backbone: ResNet-
101 [He et al., 2016]).

The performance comparison in terms of TAR@FAR,
FNIR@FPIR and Rank1 on IJB-A is reported in the lower
panel of Tab. 1. By comparing the results from w/o DSG
vs. the baseline, around 1% improvement for overall evalua-
tion metrics can be observed. This confirms the benefits of
the basic refining tricks in terms of the network structure.
Compared with w/o DSG, MPNetk_50 further boosts the
performance by around 3%, which speaks well for the su-
periority of using the auxiliary DSG loss to enhance the deep
set-based facial representation learning. It simplifies uncon-
strained set-based face recognition, yet reserves discrimina-
tive and comprehensive information. By varying the numbers
of prototypes, one can see that as K increases from 3 to 1,000,
the performance on the overall metrics improves consistently
when K < 500. This demonstrates that the affinity-based
dense subgraph learning of the proposed DSG sub-net can ef-
fectively enhance the deep feature representation capacity of
unconstrained set-based face recognition. However, further
increasing K does not bring further performance improve-
ment and may even harm the performance on the overall met-
rics. This can be explained as follows. An appropriately large
value of K will predict a sparse prototype partition indicator
matrix Z, which helps reach an optimal trade-off between fa-
cial information preserving and computation cost for address-
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ing the large variance and false matching caused by untypi-
cal faces. However, an oversize value of K will enforce the
learned filters to all zero ones, which always produces invari-
ant performance without any discriminative information. We
hence set K to 500 in all experiments.

For fair comparison with other state-of-the-arts (upper
panel of Tab. 1), we further replace the backbone from VG-
Gface to ResNet-101 (bottom row) while keeping other set-
tings the same. Our MPNet achieves the best results over 10
testing splits on both protocols. This superior performance
demonstrates that MPNet is very effective for the uncon-
strained set-based face recognition in presence of large intra-
set variance. Compared with existing set-based face recogni-
tion approaches, our MPNet can effectively address the large
variance challenge and offer more discriminative and flexi-
ble face representations with small computational complex-
ity. Also, superior to the naive average or max pooling of face
features, MPNet effectively preserves necessary information
through the DSG learning for set-based face recognition.

Moreover, compared with exhaustive matching strategies
(e.g., DCNN [Chen et al., 2016]) which have O(mn) com-
plexity for similarity computation (m, n are media numbers
of each face set to recognize) and take ~1.2s for recogniz-
ing each probe set, our MPNet is more efficient as it operates
on prototype level, which significantly reduces the computa-
tional complexity to O(K?), K? << mn (K is the prototype
number) and takes ~0.5s for recognizing each probe set. Al-
though naive average or max pooling strategies (e.g., Pooling
faces [Hassner er al., 2016]) are slightly advantageous in test-
ing time (~0.3s for recognizing each probe set), they suffer
from information loss severely. Our MPNet effectively pre-
serves the necessary information through DSG learning for
unconstrained set-based face recognition.

Qualitative Comparison

We then verify the effectiveness of our deep multi-prototype
discriminative learning strategy. The predicted prototypes
with relatively larger affinities within the set 1311 and set
3038 from the testing data of IJB-A split] are visualized using
t-SNE [Maaten and Hinton, 2008] in Fig. 3. We observe that
MPNet explicitly learns to automatically predict the proto-
type memberships within each coarse-level face set reflecting
different poses (e.g., the first 6 learned prototypes), expres-
sions (e.g., the 1% and the 7*" learned prototypes), illumi-
nation (e.g., the 2"¢ and 5" learned prototypes), and media
modalities (e.g., the 5" and 6" learned prototypes). Each
learned prototype contains coherent media offering collective
facial representation with specific patterns. Outliers within
each face set are detected by MPNet (e.g., the last learned
prototypes). MPNet is learnt to enhance the compactness of
the prototypes as well as their coverage of large variance for
a single subject face, through which the heterogeneous at-
tributes within each face media set are sufficiently considered
and flexibly untangled. Compared with clustering-based data
partition, MPNet with DSG learning is advantageous since
it is end-to-end trainable, can learn more discriminative fea-
tures and is robust to outliers. Learning DSG maximizes
the intra-prototype media similarity and inter-prototype dif-
ference, resulting in discriminative face representations. This
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(a) Prototypes of set 1311. (b) Prototypes of set 3038.
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Figure 3: Visualization of learned prototypes within set 1311 (a) and
set 3038 (b) by MPNet, from the testing data of IJB-A splitl. Each
colored cluster shows a learned prototype. One sampled face within
each prototype is shown for better illustration. Best viewed in color.

is significantly different from clustering (e.g., k-means) meth-
ods where only the similarity defined based on the distance to
the center is considered during learning.

Finally, we visualize the verification results for IJB-A
splitl to gain an insight into unconstrained set-based face
recognition. Please refer to supplementary materials App. G
for fully detailed visualization results in high resolution and
relevant discussions.

5 Conclusion

We proposed a novel Multi-Prototype Network (MPNet) with
a new Dense SubGraph (DSG) learning sub-net to address
unconstrained set-based face recognition, which adaptively
learns compact and discriminative multi-prototype represen-
tations. Comprehensive experiments demonstrate the superi-
ority of MPNet over state-of-the-arts. The proposed frame-
work can be easily extended to other generic object recogni-
tion tasks by utilizing the area-specific sets. In future, we will
explore a pure MPNet architecture where all components are
replaced with well designed MPNet layers, which can hierar-
chically exploit the multi-prototype discriminative informa-
tion to solve complex computer vision problems.
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