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Abstract
Task Relation Discovery (TRD), i.e., reveal the re-
lation of tasks, has notable value: it is the key
concept underlying Multi-task Learning (MTL) and
provides a principled way for identifying redundan-
cies across tasks. However, task relation is usually
specifically determined by data scientist resulting
in the additional human effort for TRD, while trans-
fer based on brute-force methods or mere train-
ing samples may cause negative effects which de-
grade the learning performance. To avoid nega-
tive transfer in an automatic manner, our idea is to
leverage commonly available context attributes in
nowadays systems, i.e., the metadata. In this pa-
per, we, for the first time, introduce metadata into
TRD for MTL and propose a novel Metadata Clus-
tering method, which jointly uses historical sam-
ples and additional metadata to automatically ex-
ploit the true relatedness. It also avoids the neg-
ative transfer by identifying reusable samples be-
tween related tasks. Experimental results on five
real-world datasets demonstrate that the proposed
method is effective for MTL with TRD, and partic-
ularly useful in complicated systems with diverse
metadata but insufficient data samples.

1 Introduction
Task Relation Discovery (TRD), i.e., reveal the relation of
tasks, has notable value: it is the key concept underlying
Multi-task Learning (MTL) and provides a principled way
for identifying redundancies across tasks, e.g., to seamlessly
reuse supervision among related tasks or solve many tasks
in one system without piling up the complexity [Zhang and
Yang, 2017a; Zamir and others, 2018].

To automatically extract the task relation, historical train-
ing samples are commonly leveraged and heavily relied
on [Liu and others, 2017; Zhang et al., 2016]. Neverthe-
less, in many real-world applications, training samples cap-
ture merely partial relation. For example, when inferring task
relation for thermal comfort prediction (i.e., whether one is
comfort, cold or hot), if similar tasks are clustered merely us-
ing samples of sensing data (e.g., temperature and humidity),
it can miss some intrinsic domain information (e.g., climate,

building information like whether the building is equipped
with air-conditioner or not). In such cases, merely using
samples for TRD easily leads to incorrect task relation con-
struction and transferring knowledge between unrelated tasks
degrades the MTL performance, which is referred to as the
negative transfer [Pan and Yang, 2010]. That is especially
critical in multi-task transfer learning scenarios where data
samples of targeted tasks are usually insufficient due to sens-
ing networking, or privacy issues, i.e., the data size is too
small to automatically extract reliable and valuable intrin-
sic information without integrating additional domain knowl-
edge. However, in real-world applications, TRD with do-
main knowledge as apriori information requires non-trivial
human effort, bringing difficulties to the wide use of such
approaches [Evgeniou and others, 2005; Kato et al., 2008;
Han and others, 2014].

In this paper, we, for the first time, leverage metadata
to handle the commonly existing negative-transfer issue in
TRD literature. Metadata, i.e., the context attribute in the
database of real-world systems [Balaji and others, 2016;
Choi and others, 2017], is usually designed by domain ex-
perts for daily operations of the system and available before
the learning and prediction process. Metadata usually contain
intrinsic task information, such as the climate in the above
example. Using metadata, we are able to extract task relation
with domain knowledge (but at the same time) in an auto-
matic manner and delivers a punch on the automatic TRD.

Metadata helps to avoid the negative transfer and reduce
human effort. However, there are mainly three challenges to
further release the potentials of metadata in MTL: (1) The
first challenge lies in the representation generation. Origi-
nally, Metadata is developed by domain experts for the pur-
pose of daily operations of modern systems, instead of de-
signed by data scientists for the targeted prediction task. Due
to the different objectives, simply leveraging all raw metadata
in the database can lead to a negative transfer. (2) The second
challenge lies in the different types and contents of metadata.
In TRD, we need to quantify the task similarity with the in-
troduced metadata representation. However, straightforward
1-hot encoding or Gower’s coefficient methods on metadata
can introduce false information when metadata are incompa-
rable and cooperate for task relation discovery. (3) The final
challenge is that directly adding metadata may not fully avoid
negative transfer when additional constraints with metadata
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are not considered and properly integrated into the system.
In this paper, we propose a novel Metadata-driven TRD for

MTL, which can automatically and effectively capture task
relation through not only historical samples but also addi-
tional metadata. The contributions of the paper can be sum-
marized as:

1. We are the first to introduce metadata into TRD. We
propose the collection, and selection of metadata, which aims
to automatically select useful metadata as task attributes to
avoid negative transfer.

2. We leverage the common neighbor characteristic for
distance measurement to tackle incomparable metadata. We
discuss the interaction between metadata and data samples.
We propose a two-phase clustering taking metadata as apriori
constraints for regularization.

3. We evaluate the proposed method on five real-world
datasets. We also discuss the advantages, limitations and ap-
plication scenarios at the end of the paper.

We offer our approach as an attractive mechanism for MTL
researchers and application developers who are on the look-
out for automatic and effective approaches in MTL, espe-
cially for complicated systems with diverse metadata but in-
sufficient data samples.

2 Related Work
Task Relation Discovery (TRD) is the key issue and the fo-
cus of recent works in transfer learning and multi-task learn-
ing [Zhang and Yang, 2017a], including mainly two types:

The first is to conduct TRD through apriori information
with additional human effort. Task similarity graphs are given
and leveraged to make the model parameters of similar tasks
close to each other, based on domain knowledge [Evgeniou
and others, 2005; Kato et al., 2008; Han and others, 2014].
However, in real-world applications, such apriori information
constructed according to domain knowledge may not be easy
to obtain, bringing difficulties to the wide use of such ap-
proaches. Few Shot Learning (FSL) [Larochelle et al., 2008;
Isele et al., 2016] focus on transferring knowledge to tasks
with little or no training sample, by merely leveraging task
descriptors for TRD in MTL. However, human effort is still
needed for data scientists to determine the specific task de-
scriptors and their values. When it comes to TRD, FSL also
ignores the interaction between training samples and task at-
tributes, due to its assumption of little or no training sample.

Second, historical samples are used in MTL for automatic
TRD which reduces the human effort [Zhang et al., 2016; Liu
and others, 2017]. However, these methods merely rely on the
training samples of the task for relation discovery, which can
result in missing intrinsic information in complex systems, as
reported in [de Roux and others, 2018].

Multi-task Learning (MTL) [Caruana, 1997] is developed
to improve the performance of targeted tasks using informa-
tion from the source tasks. In this sense, MTL is related to
transfer learning [Pan and Yang, 2010], but the targeted tasks
in MTL are learned simultaneously, whereas those tasks in
transfer learning are learned independently. A survey is avail-
able in [Zhang and Yang, 2017b].

There are mainly two ways to transfer knowledge in MTL.

For targeted tasks, 1) Instance Transfer groups and reuses
samples of the other tasks, e.g., Clustered MTL (CMTL) [Liu
and others, 2017; Xu and others, 2015; Wang et al., 2009],
while 2) Feature Representation Transfer groups and learns a
common feature representation among the related tasks, e.g.,
Alternating Structure Optimization [Ando, 2006]. Particu-
larly, our attention has been drawn to the study of instance
transfer, i.e., CMTL, which naturally adapt to different fea-
ture engineering and learning models. But unlike traditional
CMTL, we explicitly model the relations among tasks and
extract meta-structure in an automatic manner. It is also pos-
sible to maintain a multi-task network.

3 Metadata-driven TRD Problem
In this section, we first give the notations and definitions
used in the paper, especially the concept and collection of
metadata. Then we formally define the problem of metadata-
driven TRD for MTL.

Let xi
v ∈ R denote the ith feature at index v, where i ∈

[1,m],m,∈ N; Let yv denote the predicted label at index v.
A sample sv of task j includes the corresponding feature and
the predicted label, i.e., sv = (Xv, yv) ⊂ Rm × R, v ∈ Vj .
Definition of Task. A task is an abstraction read from raw
data. Traditionally, each task t is associated with a set of
training sample lt = [lv], ∀v ∈ Vti , and a learning function
fΘ
t (·) where Θ denotes the model parameter and the inferred

result ŷv = fΘ
t (Xv). We additionally associate each task

with task attributes at. Thus, a task in our paper is a three-
tuple t = {at, l

t, fΘ
t (·)}.

3.1 Metadata
TRD is well-known as the key issue in MTL, which heavily
relies on the task attribute. To extract the attributes, we in-
troduce a new data source of metadata which helps to better
identify, organize and describe the context of varying tasks.

Metadata is the descriptor of information about one or
more aspects of a dataset, i.e., data about data [Wikipedia,
Accessed 2 DEC 2018]. It is used to summarize basic in-
formation about data which can make tracking and working
with specific data easier in a real-world system. Many distinct
types of metadata exist, including descriptive metadata, struc-
tural metadata, administrative metadata, reference metadata,
and statistical metadata [Riley, Accessed 5 DEC 2017].

Table 1 shows the collected metadata of thermal comfort
tasks mentioned in the Introduction. It shows the season and
building where historical samples of tasks are collected. Each
metadata record consists of the identity (e.g., Task 11-1), the
information type (e.g., Season) and value (e.g., Summer).

Task (#Samples) Season Building Type Year Hour
Task 3-1 (377) Summer / Rainy Centralized System 1990 11
Task 11-1 (43) Summer Centralized System 1985 11
Task 12-4 (74) Summer Natural Ventilation 1985 11
Task 19-1 (470) Winter Natural Ventilation 1993 12
Task 22-3 (1026) Winter Natural Ventilation 1993 12

Table 1: Collected Metadata Examples of Thermal Comfort.

Note that metadata is designed to manage the dataset for
various daily operations in modern systems. It is thus com-
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mon that metadata is already collected and directly available
in the database for a running system, serving as a hyper table
used to manage other tables of samples. That is especially
true for a public database with various datasets, e.g., an ex-
ample of such a hyper table for the thermal comfort database
of ARP-884 is in [The University of Sydney, 2018]. Thus, the
first way to collect the metadata is to find and visit the hyper
table for the database.

Another way is to collect metadata from those attributes in
the samples. Table 2 shows the metadata in samples of ther-
mal comfort tasks. It shows the season, duration of hours and
the year when historical samples of tasks are collected. We
see that the value of metadata for a specific task/ context is
consistent regardless of time changes, e.g., a certain thermal
comfort dataset of a task has a fixed value of the year of data
collection. Accordingly, we observe a common characteristic
that the metadata usually has duplicated values in a table of
samples and merely a few values across all tables of samples.
This characteristic can be used to detect and collect metadata,
of which those samples are commonly regarded as informa-
tionless and even discarded in practice. For interested read-
ers, more metadata extraction techniques can be found in [Liu
and others, 2007].

Task ID Season Hour Year
Task 3-1 600721 Summer / Rainy 11 1990
Task 3-1 600722 Summer / Rainy 11 1990
Task 3-1 600723 Summer / Rainy 11 1990
Task 19-1 620144 Winter 12 1993
Task 19-1 620145 Winter 12 1993

Table 2: Examples of Metadata in Samples of Thermal Comfort.

3.2 Problem Definition
The output of our TRD problem is the Metadata-driven Task
Mapping. It is a computationally found hypergraph with an
emphasis on metadata of tasks. The metadata is used to in-
fer the edge in the hypergraph. An edge between a group of
source tasks and a target task represents a feasible transfer
case and its weight is the prediction of its performance. We
use these edges to estimate the globally optimal transfer pol-
icy to solve tasks. The final metadata-driven task relation pro-
duces a family of such graphs, parameterized by the chosen
tasks, transfer orders, and transfer functions’ expressiveness.

Formally, the task mapping is the match of transfer-able
source and target tasks, which is defined as Θ = {T : S}
where T is the set of tasks which we want to solve (target),
and S is the set of tasks that can be trained (source).

Our problem of Metadata-driven TRD for MTL is infer-
ring a task mapping Θ which maximizes the collective per-
formance on a set T of tasks t ∈ T , given training samples
and metadata of tasks.

It is critical to note the task mapping is meant to be a sam-
pled set, not an exhaustive list, from a denser space of all
conceivable tasks. This gives us a tractable way to sparsely
model a dense space, and the hypothesis is that (subject to a
proper sampling) the derived model should generalize to out-
of-mapping tasks. The more-regular-sampled the space, the
better the generalization. To this end, our task mapping with

metadata is, in fact, a regularization on the space which fa-
cilitates a more general transfer process. We show this in the
Evaluation Section.

4 Methodology
The task mapping is built using a three-step process. In stage
I, a metadata graph for each task in S is generated and effec-
tive metadata is selected for each task. In stage II, the task
affinities acquired using metadata are computed and normal-
ized, and in stage III, we synthesize a hypergraph by cluster-
ing which can gather similar tasks, use multiple inputs task
to transfer to one target, and avoid negative transfer with both
metadata and training samples.

4.1 Stage I: Task-specific Sampling
As the base of the task mapping, we establish a knowledge
graph using metadata to organize tasks and task attributes,
named metadata graph. Based on the existing work [Balaji
and others, 2016] and [Xie et al., 2016], we denote the meta-
data as a triple {task, information type, information value}.
For example, “Task 19-1 is conducted in the Season of Win-
ter” can be denoted as {Task 19-1, Season, Winter}. For-
mally, let the nodes M,T ∈ U in the graph, i.e., G(U,E), de-
note the metadata and task, respectively, where U = M ∪ T ;
the edge E in the graph represents the information type be-
tween nodes. Note that the edge weight w ∈ [0, 1] on the
metadata graph refers to the relatedness between the task and
metadata. E.g., it is 1 if nodes are related and otherwise 0,
which can be determined using the performance improvement
in the task attribute selection.

Raw metadata is not necessarily related to the targeted pre-
diction task since it is designed by domain experts to serve
various daily operations instead of our targeted prediction
tasks. Both the objectives and approaches are significantly
different when designing task attributes and metadata. We
select metadata as a task attribute if it brings improvement of
collective performance for tasks.

4.2 Stage II: Affinity Measurement with Metadata
We want an affinity matrix of transfer abilities across tasks
based on the metadata graph. We focus on discussing the dis-
tance measurement of metadata and omit that of samples in
existing works due to page limitations. Between nodes of nu-
merical and ordinal metadata, the distance can be computed
using cosine similarity, with normalization to tackle the value
in vastly different scales. An analytic hierarchy can be used
to facilitate more effective normalization.

When it comes to nodes of categorical metadata, there are
quantifying approaches including the straightforward 1-hot or
1-of-K encoding, the more-widely-used Gower’s similarity
coefficient [Gower, 1971] and its extensions [Legendre and
Legendre, 2012; Podani, 1999]. However, these approaches
basically treat categorical metadata as constant ordinal or nu-
merical ones, which encodes a hidden ranking/ order rela-
tion across the metadata and brings noise to the final distance
function. They also simply assume that different categories
are independent and unrelated. Thus the above metadata pro-
cessing methods are not suitable for MTL.
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Figure 1: Example of Prior Distance Measurement. It infers the
distance matrix between tasks from the metadata graph.

To capture the cooperation and avoid encoding a addi-
tional ranking relation, our idea is to leverage the number of
common neighbors for distance measurement. The hypoth-
esis is that a task should be more similar to another task,
if it has higher numbers of shared metadata with another
task. We compute Jaccard Distance [Jaccard, 1908], to com-
pare the number of common categorical neighbors for task
nodes a, b and jointly consider different metadata Na ∪Nb:
dinc(a, b) = 1 − |Na ∩Nb|/|Na ∪Nb|, where Na,Nb are
categorical metadata and neighbors of a, b.

For all possible pair task nodes (a, b), the output is named
prior distance matrix, which is computed using metadata, i.e.,
dmeta = [dinc(a, b)]. An example of the prior distance ma-
trix is shown in Figure 1.

4.3 Stage III: Metadata-assisted Task Mapping
The final step is to infer task mapping based on the affinity
matrix inferred from weighted metadata and training samples,
e.g., d = w0dmeta + w1dsamp, where dsamp denotes the
distance matrix computed with samples. However, when we
introduce metadata, there is also a risk of introducing more
negative transfers. For example, tasks with quite different val-
ues of metadata, e.g., thermal comfort tasks with completely
different types of buildings and seasons, is likely to be inrea-
sonable to transfer their samples to each other.

To avoid negative sample transfer between completely dif-
ferent tasks, we propose a two-phased clustering, i.e., prior
clustering with metadata and the posterior clustering with
samples. The prior clustering defines clusters using the meta-
data which limitting the variance of task attributes within it.
The posterior clustering conducts further clustering with his-
torical training samples based on the prior clusters, i.e.,

Θ = c1( s,dsamp | c0(dmeta) ),

where Θ denotes the allocation of sample index for nc clus-
ters, i.e., the matrix of V k

j = {v|v ∈ cluster k for taskj}, k ∈
[0, nc], j ∈ [1, J ]; c0(·) and c1(·) denote the prior and poste-
rior clustering function. In this rest of this section, we focus
on discussing the metadata clustering and omit the traditional
clustering with merely samples due to page limitations.

As for the prior clustering, we propose to use Normalized
Minimum Cut [Shi and Malik, 2000] for clustering given the
distance matrix. The Normalized Minimum Cut can naturally
adopt the case when the metadata graph is unconnected.

Consistent with our Thermal Comfort Dataset in previ-
ous sections, we also provide examples of prior-and-posterior
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Figure 2: Example of Metadata-assisted Task Mapping. In this step,
it infers the task mapping by clustering with the distance matrix.

phase clustering in Figure 2.

5 Evaluation
5.1 Experimental Setup
For the parameters, we apply grid searching [Gu and Zhou,
2009] to identify the optimal values. For all clustering algo-
rithms, the number of nearest neighbors is set by searching
the grid {d ns

2×nc
e, dns

nc
e, min(d 2×ns

nc
e, ns)}, where ns and nc

are the number of training samples and clusters. The number
of clusters is set as the number of classes in each dataset. For
SAMTL and our posterior-phase clustering, cosine similarity
is used to compute nearest neighbors as [Zhang et al., 2016].

To capture the predictive capabilities of our approach, we
use three metrics: Error Rate (ER), Root-mean-square er-
ror (RMSE) and Symmetric Mean Absolute Percent Error
(SMAPE) for evaluation.

ER =
1

J

J∑
j=1

∑N
n=1 |ŷjn − yjn|∑N

n=1 y
j
n

;

SMAPE =
2

J ·N

J∑
j=1

N∑
n=1

|ŷjn − yjn|
ŷjn + yjn + 1

;

RMSE =
1

J

J∑
j=1

√∑N
n=1(ŷjn − yjn)2

N

where N is the number of testing data; ŷn and yn are the es-
timation and the ground truth of the nth sample, respectively.

5.2 Datasets
The dataset is shown in Table 3. We use the following real-
world datasets for our experiments on the baseline methods
and the proposed method.

Hong Kong Industry Chiller Data (HK-BCOD) is used to
predict the efficiency of different chillers, which are machines
to generate cooling power for office buildings. The higher ac-
curacy means more energy saving for cooling load allocation.
For three office towers located in Hong Kong, chiller sensor
data were collected from the building management system for
four years at daily intervals.

ASHRAE RP-884 Thermal Comfort Data (ARP-884) is
used to predict occupants’ feeling of comfort, cold or hot.
The data we use in this study is from a Public dataset of
ASHRAE, which is a global professional association seeking
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Dataset Task Profile (Relation: Metadata) #Samples

HK-BCOD

Chiller 1 ModelType: CDHG2250 Location: Pacific Place II Function: Regular 1460
Chiller 2 ModelType: CDHG2250 Location: Pacific Place II Function: Regular 1460
Chiller 3 ModelType: CDHG2250 Location: Pacific Place II Function: Regular 1460
Chiller 4 ModelType: CVHG780 Location: Pacific Place II Function: Backup 1460
Chiller 5 ModelType: CVHG780 Location: Pacific Place II Function: Backup 1460

ARP884

Task 3-1 Season: Summer / Rainy BuildingType: Centralized System Hour: 11 377
Task 11-1 Season: Summer BuildingType: Centralized System Hour: 11 43
Task 12-4 Season: Summer BuildingType: Natural Ventilation Hour: 11 74
Task 19-1 Season: Winter BuildingType: Natural Ventilation Hour: 12 470
Task 22-3 Season: Winter BuildingType: Natural Ventilation Hour: 12 1026

CHM-BST

Huamudui Road Type: Road Function: Street 665
Xiangdongnan Cross Type: Road Function: Street 665
Jinianguan Road Type: Road Function: Street 665
Xihe Bridge Type: Road Function: Bridge 665
Jinqiao Investment Type: Building Function: Business 665

IBM-HWD

Tai Wai Nation: China City:Hong Kong 70080
Tsing Yi Nation: China City: Hong Kong 70080
Kowloon Nation: China City: Hong Kong 70080
Hong Kong Island Nation: China City: Hong Kong 70080

HK-TSD
Road 3470-3006 Nation: China City: Hong Kong 28800
Road 4652-4633 Nation: China City: Hong Kong 28800
Road 46332-46522 Nation: China City: Hong Kong 28800

Table 3: Datasets.

to advance heating, ventilation, air conditioning, and refrig-
eration systems design and construction.

China Mobile Base Station Trace (CHM-BST) is collected
to predict the number of mobile devices in Tianjin, China.
It contains mobile traces collected from five base stations of
China Mobile, a dominant carrier of the local mobile network,
in Tianjin, China from 15th to 30th, August 2016.

IBM HK Weather Data (IBM-HWD) is used to predict the
temperature in different locations of Hong Kong, China. We
collected four-year meteorology data from the Public website
of Weather Underground of IBM.

Hong Kong Traffic Sensing Data (HK-TSD) is used to pre-
dict the traffic speed in Hong Kong, China. We collected the
four-month data in six-minute intervals from the Public gov-
ernment website of data.gov.hk.

5.3 Results on Clustering

To indicate the effect of metadata, Figure 3 compares the
clustering result of Metadata Clustering (on both samples and
metadata) with Sample Clustering (on mere training samples)
in HK-BCOD, where tasks are conducted to predict the ef-
ficiency of chillers. We mark those chillers of two model-
Types, which are supposed to have different models, as 0 and
1. The modelType information is recorded in the metadata. In
Sample Clustering, data samples of different modelTypes are
mixed in the same cluster, which can incur negative transfer;
whereas in Metadata Clustering, all samples in each cluster
will be in the same modelType. That is because Metadata
Clustering not only leverages additional metadata, but also
treats the metadata as clustering constraints by using the Two-
phase Clustering; whereas Sample Clustering heavily relies
on the historical training samples for clustering, which may
result in the missing of some intrinsic information. Other
datasets also reveal similar results and we omit the results
due to page limitations.
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Figure 3: For HK-BCOD, the clustering result for two types of sam-
ples (in numbers of 0 and 1) in the clusters (in different colors) of:
(a) Sample Clustering; (b) Metadata Clustering.

Method HK-BCOD ARP-884 CHM-BST
ER SMAPE RMSE ER SMAPE RMSE ER SMAPE RMSE

STL 1.13 2.27 1.07 0.82 1.00 3.16 0.18 0.36 0.42
IMTL 0.60 1.19 0.77 0.77 1.13 3.06 0.20 0.41 0.45

SAMTL 0.31 0.62 0.56 0.41 0.69 1.57 0.26 0.52 0.51
mCMTL 0.04 0.08 0.20 0.27 0.24 1.03 0.10 0.22 0.32

Table 4: For datasets with different metadata: the performance of
different methods for HK-BCOD, ARP-884, and CHM-BST.

5.4 Results on MTL
With the clustered samples for training tasks, we determine
the learning model to maximize the accuracy of our given
tasks. Let yj = [yv],Xj = [xi

v], v ∈ Vj denote label
and feature vector of task j. Then, formally, we are to
solve the following commonly-accepted MTL optimization
problem [Caruana, 1997; Baxter and others, 2000; Evgeniou
and Pontil, 2004]. Given a loss function l(·, ·), clustering
parameter Θ, historical data of X and y, we are to infer
W = arg min

∑
j∈J 1/|Vj |

∑
v∈Vj

l(fΘ
j (Xv,wv), yv) +

P (W ,Θ), where P (W ,Θ) is the regularization term on pa-
rameters; Note that Θ, X and y are used to train parameters
W , by merely using samples of tasks in the same cluster in
the training process.

To evaluate the proposed method, we employ the follow-
ing state-of-the-art methods as baselines. We compare our
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Method IBM-HWD HK-TD
ER SMAPE RMSE ER SMAPE RMSE

STL 0.09 0.08 1.91 0.11 0.12 6.67
IMTL 0.03 0.02 0.54 0.02 0.01 0.81

SAMTL 0.04 0.05 1.18 0.05 0.04 2.56
mCMTL 0.04 0.04 1.07 0.05 0.05 3.27

Table 5: For datasets with the same metadata: the performance of
different methods in IBM-HWD and HK-TD.

metadata-clustered MTL (mCMTL) with those without us-
ing metadata: (1) Single Task Learning (STL), which learns
a single model by pooling together data from all tasks of
each dataset; (2) Independent Multi-task Learning (IMTL),
which learns each task independently without sharing any
sample or knowledge; (3) the Self-Adapted Multi-task Learn-
ing (SAMTL), which learns the cluster of tasks merely with
historical training samples as in [Zhang et al., 2016].

For all tasks, we use Support Vector Regression (SVR)
model for the baseline prediction of all tasks since it is sim-
ple and allows to see the impact of different MTL methods.
We chronologically order each dataset and use the first 1/2 for
training and the remaining 1/4, 1/4 for evaluation and testing.

We use datasets to construct two typical cases in MTL: 1)
The first case is that the metadata is not completely the same
for all tasks. We use HK-BCOD, ARP-884, and CHM-BST
to represent this case. 2) The second case is that the metadata
are completely the same for all tasks. We use IBM-HWD,
and HK-TSD to represent this case.

All our experiments are conducted in a private cloud with
16 cores of 2.6GHz CPU and 64G memory. The training time
of all tasks is of seconds and the prediction time is even much
less than one millisecond. Table 4 and Table 5 summarize the
overall results of all the compared methods with respect to the
three evaluation metrics. We have the following observations.

The Impact of Metadata. mCMTL generally outperforms
SAMTL. This is because mCMTL considers metadata in-
formation for transfer which also captures different intrinsic
characteristics of tasks, whereas SAMTL captures the related
tasks merely by using the training samples, e.g., sensed from
the outside environment.

The Impact of Multi-task Setting. mCMTL always per-
forms better than Single Task Learning (STL) method, since
mCMTL establishes different models for different tasks,
whereas the single task learning assumes that tasks are of the
same model and does not well capture the intrinsic character-
istic and dynamic environmental difference among the tasks.

The Impact of Transfer. mCMTL always performs better
than IMTL in HK-BCOD, ARP-884, and CHM-BST which
contain less training data samples. This is because mCMTL
exploits the information across the related tasks, whereas the
IMTL only utilizes the information within each task.

The Scope of mCMTL. IMTL can outperform mCMTL
and SAMTL in IBM-HWD and HK-TD. When training sam-
ples are sufficient, transfer between tasks may not be neces-
sary and independent methods like IMTL can also work well.
In addition, since tasks have the same metadata, mCMTL and
SAMTL still keep transferring knowledge between different
tasks which can incur a slight negative effect. mCMTL is

more suitable for cases where samples are insufficient and
the metadata is not completely the same.

6 Discussion
Metadata Management. The proposed method uses meta-
data available from many modern systems. It does not re-
quire any major human effort because we focus on metadata
from one system each time, where the semantics of meta-
data remain consistent. We leave metadata management from
varying systems as future work. Interested readers can re-
fer to specific metadata database, e.g., Project Brick [BETS
Research Group, Accessed 1 DEC 2017], CANSIM [Dunstan
and Humphrey, 2005] and METeOR [Australian Institute of
Health and Welfare, 2018], and metadata standards from ISO
and ANSI, e.g., ISO/IEC 11179 [ISO/ IEC JTC 1, 2018].

Semantics and Semantics Similarities. Semantics was de-
veloped to find the optimal context label and representation.
Applications of semantics have benefitted the constant con-
text adaptation in the domains such as semantic web and
knowledge graph, as correctly pointed out by the reviewer.
Our application differs from semantic web, etc, because, at
least for the time being, metadata usually do not have strong
semantics, and there lacks other information, e.g., an expert
dictionary, to improve semantic analysis. We have tried to use
multi-source semantic analysis for our metadata. We do ob-
serve that results can be slightly improved. Nevertheless, the
improvement is light also because each task has a number of
metadata, and the similarity of two tasks is more influenced
by the number of similar metadata. We believe that we can
find some applications where the semantics of metadata can
have a stronger impact.

7 Conclusion
In this paper, we introduced metadata into TRD for
MTL and proposed Metadata Clustered Multi-Task Learning
(mCMTL). It leverages not only training samples, but also
additional metadata, to automatically exploit the positive re-
latedness between tasks, which reduces human effort for data
scientists in preparing the prior task information and avoids
the negative transfer by identifying the reusable training sam-
ples between such related tasks. Experiments on many real-
world datasets demonstrate the superiority of the proposed
algorithm over existing MTL methods. In general, this study
helps in automatic relation discovery among partially related
tasks and sheds new light on the development of TRD in MTL
through the use of metadata as apriori information.
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