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Abstract
Subspace clustering is a useful technique for many
computer vision applications in which the intrinsic
dimension of high-dimensional data is smaller than
the ambient dimension. Traditional subspace clus-
tering methods often rely on the self-expressiveness
property, which has proven effective for linear sub-
space clustering. However, they perform unsatis-
factorily on real data with complex nonlinear sub-
spaces. More recently, deep autoencoder based
subspace clustering methods have achieved suc-
cess owning to the more powerful representation
extracted by the autoencoder network. Unfortu-
nately, these methods only considering the recon-
struction of original input data can hardly guaran-
tee the latent representation for the data distribut-
ed in subspaces, which inevitably limits the per-
formance in practice. In this paper, we propose a
novel deep subspace clustering method based on
a latent distribution-preserving autoencoder, which
introduces a distribution consistency loss to guide
the learning of distribution-preserving latent repre-
sentation, and consequently enables strong capacity
of characterizing the real-world data for subspace
clustering. Experimental results on several public
databases show that our method achieves signifi-
cant improvement compared with the state-of-the-
art subspace clustering methods.

1 Introduction
In many computer vision applications, such as face recog-
nition [Liu et al., 2013; Zhou et al., 2018a], texture recog-
nition [Lu et al., 2014; Wang et al., 2018] and motion seg-
mentation [Elhamifar and Vidal, 2013], visual data can be
well characterized by subspaces. Moreover, the intrinsic di-
mension of high-dimensional data is often much smaller than
the ambient dimension [Vidal, 2011]. This has motivated the
development of subspace clustering technique which simul-
taneously cluster the data into multiple subspaces and find a
low-dimensional subspace for each class of data.
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Many subspace clustering algorithms have been devel-
oped during the past decade, including algebraic [Vidal et
al., 2005], iterative [Agarwal and Mustafa, 2004], statisti-
cal [Rao et al., 2008], and spectral clustering methods [El-
hamifar and Vidal, 2013; Liu et al., 2013; Lu et al., 2012;
Patel et al., 2013; Lu et al., 2014; Peng et al., 2016a;
Li et al., 2017b; Zhou et al., 2018b]. Among these approach-
es, spectral clustering methods have been intensively studied
thanks to their theoretical soundness and empirical success.
These methods are based on the self-expressiveness property
of data lying in a union of linear subspaces, which states that
each point in a union of subspaces can be written as a linear
combination of other data points in the subspaces. Two typi-
cal methods are sparse subspace clustering (SSC) [Elhamifar
and Vidal, 2013] and low-rank representation (LRR) [Liu et
al., 2013]. SSC uses the `1 norm to enforce the sparsity of
self-representation coefficient matrix. LRR uses nuclear nor-
m minimization to make coefficient matrix low-rank.

Recently, deep neural network based subspace cluster-
ing methods [Peng et al., 2016b; Peng et al., 2017; Li et
al., 2017a; Ji et al., 2017; Peng et al., 2018; Zhou et al.,
2018c] have been proposed to learn better sample representa-
tions for subspace clustering with complex structures rather
than the linear ones. However, like these conventional shal-
low methods [Elhamifar and Vidal, 2013; Liu et al., 2013;
Favaro et al., 2011; Lu et al., 2012], they still hinge on self-
expression as supervision, which may not perform well on da-
ta with inconvenient distributions. This is because both these
shallow and deep subspace clustering methods only reveal the
intrinsic Euclidean structure of data, and do not consider the
intrinsic cluster structure which is often the union of some
non-linear subspaces.

In this paper, in light of the above arguments, we propose
a novel deep subspace clustering method based on a laten-
t distribution-preserving autoencoder, namely, Distribution-
Preserving Subspace Clustering (DPSC). Motivated by the
fact that the data points are drawn from the union of some
low-dimensional subspaces embedded in a high-dimensional
ambient space, and the subspace structure of each cluster can
be described by the distribution of the cluster elements. The
key idea of DPSC is to preserve the intrinsic cluster structure
of data space by minimizing the inconsistency between the
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Figure 1: (a) Architecture of DPSC. The top network is an autoencoder with one self-expressive layer. The bottom diagram shows a distribu-
tion consistency loss which is measured by the KL divergence between the probability density distribution of latent representations and the
original images. (b) Visualization result of MNIST with 5,000 data points on the latent space learned by pre-trained autoencoder and DPSC.

original data distribution and the latent representation distri-
bution. We first utilize a nonparametric technique, i.e. Kernel
Density Estimation (KDE) [Hinneburg and Gabriel, 2007], to
estimate the distribution of the data. Then we design a distri-
bution consistency loss by minimizing the Kullback-Leibler
(KL) divergence between the original data distribution and
the learned latent representation distribution. The architec-
ture of DPSC is shown in Fig. 1(a). It consists of a subspace
clustering autoencoder network and a distribution consisten-
cy loss term that learns to supervise the distribution of latent
representation. As the visualization result shown in Fig. 1(b),
our method can better preserve the cluster structure of the o-
riginal data space by introducing the distribution consistency
loss which leads to a better clustering result.

The main contributions of this paper are as follows:

1. We propose a novel distribution-preserving subspace
clustering method. By developing a latent distribution-
preserving autoencoder, DPSC can preserve the intrinsic
cluster structure of data space and supervise the encoder
to produce more favorable representation for subspace
clustering.

2. We design a simple but effective distribution consistency
loss by minimizing the KL divergence between the origi-
nal data distribution and the learned latent representation
distribution, which is complementary to the autoencoder
induced self-expression loss.

3. Experimental results on several public databases with
different subspace applications show that our method
leads to significant improvement compared with the
state-of-the-arts on both linear and non-linear subspace
clustering problems.

2 Related Works
In this section, we review some works related to the proposed
subspace clustering method.

2.1 Traditional Subspace Clustering
Given a data matrix X that containsN data points drawn from
k subspaces {Si}ki=1, SSC [Elhamifar and Vidal, 2013] aims
to find a sparse representation matrix C showing mutual sim-
ilarity of the points, i.e., X = XC. Since each point in Si can
be expressed in terms of the other points in Si, such a sparse
representation matrix C always exists. As pointed out in LR-
R [Liu et al., 2013], SSC finds the sparsest representation of
each data vector individually. There is no global constraint on
its solution, so SSC method may be inaccurate when it is used
to capture the global structures of data. [Liu et al., 2013] pro-
posed that low rankness can be a more appropriate criterion.
SSC and LRR methods solve the robust subspace clustering
problem by removing the outliers from the original data s-
pace and obtaining a good affinity matrix based on a clean
database. Thus they need prior knowledge on the structures
of the errors, which usually is unknown in practice. [Peng
et al., 2015] proposed a robust subspace clustering method
which overcomes this limitation by eliminating the effect of
errors from the projection space with a model of thresholding
ridge regression (TRR).

2.2 Deep Subspace Clustering
Deep subspace clustering methods have been proposed to
solve the linear subspace assumption. [Peng et al., 2017] si-
multaneously learned a compact representation using a neu-
ral network and a clustering assignment by minimizing the
discrepancy between pair-wise sample-centers distribution-
s. [Ji et al., 2017] proposed a deep autoencoder framework
for subspace clustering by developing a self-expressive lay-
er to mimic the ”self-expressiveness” property of a union of
subspaces. [Peng et al., 2018] proposed a structured autoen-
coder which learns a set of transformations to map input da-
ta points into nonlinear latent spaces. Most recently, [Zhou
et al., 2018c] adopted a GAN-alike model to supervise sam-
ple representation learning for subspace clustering. Different
from these methods, the proposed DPSC introduces distribu-
tion consistency loss between the original data distribution
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and the latent representation distribution to preserve the clus-
ter structure.

3 Distribution-Preserving Deep Subspace
Clustering

We propose a distribution-preserving subspace clustering
(DPSC) method, which can learn more favorable data rep-
resentation for subspace clustering via a latent distribution-
preserving autoencoder. DPSC clusters data in three step-
s: 1) Initializing the parameters of autoencoder with data
reconstruction and latent representations self-expression; 2)
Estimating the distributions of original data and learned la-
tent representation; 3) Updating the network parameters by
adding the distribution consistency constraint, and clustering
the latent data representations into multiple subspaces.

3.1 Subspace Clustering with Self-Expression Loss
Let X = [x1, . . . ,xN ] denote the input data points and
Z = [z1, . . . , zN ] denote their corresponding latent represen-
tation learned by the encoder. The parameters of encoder and
decoder are denoted by Θe and Θd respectively. The number
of clusters is denoted by k.

DPSC first learns the latent representations for the input
data through a traditional autoencoder with the reconstruction
loss:

Lr(Θe; Θd) =
∥∥∥X− X̂

∥∥∥2
F

(1)

where X̂ = Θd(Θe(X)) denotes the reconstruction of X by
the autoencoder. Then the latent representations Z = Θe(X).
As done in [Ji et al., 2017], we add a self-expressive layer
in the autoencoder to learn better latent representations for
subspace clustering. The self-expression loss is defined as:

Ls(C) = ‖Z− ZC‖2F + λ ‖C‖2F (2)
where C ∈ RN×N is the self-expression coefficient matrix.
We adopt an F -norm penalty on C, since compared with the
non-smooth penalty term, e.g. the `1 norm, it can be learned
more easily while also achieving comparable or even better
performance. With the learned latent representations Z, we
can use a spectral clustering algorithm on the affinity matrix
W = 1

2 (|C|+
∣∣CT

∣∣) to obtain the subspace clustering result
ci(i = 1, . . . , k).

3.2 Distribution-Preserving with Distribution
Consistency Loss

To address inconvenient sample distributions, we then design
a distribution consistency loss as a complementary unsuper-
vised solution to the self-expression loss.

The proposed DPSC clusters data by simultaneously learn-
ing a set of k cluster centers {ci}ki=1 in the latent feature s-
pace Z and the parameters Θe of the encoder that map the
data points into Z. Given an initial estimate of the non-linear
mapping Θe, Θd and the initial cluster centroids {ci}ki=1, we
propose to improve the clustering in an unsupervised man-
ner. We first estimate the probability density distribution of
the original data space and the latent representational space
initialized by the autoencoder. Then a distribution consisten-
cy loss between these two distributions is learned to guide the
update of the distribution-preserving autoencoder network.
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Figure 2: Clustering accuracy of the proposed method on the M-
NIST database: (a) different kernel functions; (b) different loss func-
tions.

Kernel Density Estimation
Minimizing the inconsistency of distributions of data between
the original space and the latent representational space is a
challenging task because in practice there is little prior infor-
mation to help us to identify the distribution of the data. To
solve this problem, we propose to use kernel density estima-
tion, which is a nonparametric technique ,to estimate the real
distribution of the data.

The kernel density estimation of a given database X =
{xi}Ni=1 is:

f̂(x) =
1

N

N∑
i=1

κH(x− xi)

=
1

N

N∑
i=1

‖H‖−1/2
κ(H−1/2(x− xi))

(3)

where H = h2I is a matrix of smoothness and specifies the
width of the kernel around each sample point xi, h is the
bandwidth of the neighbourhood. κ(x) is the kernel function.
The experimental result in Fig. 2(a) shows that the Guassian
kernel is better than both the Cauchy kernel and the expo-
nential kernel. Thus the Gaussian kernel is chosen in our
method. Then the kernel density estimation of the database
X = {xi}Ni=1 is:

f̂(x) =
1

N

N∑
i=1

‖H‖−1/2
κ(H−1/2(x− xi))

=
1

Nh

N∑
i=1

κ(

∥∥∥∥x− xi

h

∥∥∥∥)

(4)

Distribution Consistency Loss
Our aim is to find the mapping function to preserve the dis-
tribution of the original database so that f̂(xi) = f̂(Θe(xi))
for each data point in X, where Θe(xi) = zi. This can be
achieved by minimizing the KL divergence based distribution
consistency loss:

Ld(Θe) =
N∑
i=1

f̂(xi) log
f̂(xi)

f̂(zi)
(5)
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(a) MNIST Database (b) CMU PIE Database (c) COIL-20 and COIL-100

Figure 3: Sample images from the MNIST database, CMU PIE database, COIL-20 and COIL-100 Database.

which is a well-known criterion for describing the dissimilar-
ity between two distributions. Here, f̂(xi) and f̂(zi) are the
probability density distributions of X = [x1, . . . ,xN ] and
Z = [z1, . . . , zN ], respectively. Fig. 2(b) shows the superior-
ity of KL divergence compared with squared error. Clearly,
our objective function is proposed to achieve invariance of
distribution by minimizing the discrepancy between the tar-
get distribution f̂(x) and the predicted distribution f̂(z).

3.3 The Formulation and Training Strategy
Finally, we obtain the loss function for the DPSC by combin-
ing the data reconstruction loss, the self-expression loss and
the distribution consistency loss:

L(Θe;C; Θd) = Lr + λ1Ls + λ2Ld (6)

The first term of the loss function denotes the reconstruc-
tion loss of the autoencoder in Eq. (1). The second term cor-
responds to self-expressive loss in Eq. (2). The last term is
the distribution consistency loss as shown in Eq. (5) which p-
reserves the cluster structure between original data space and
latent representational space.

Due to the large amount of parameters, it is intractable to
directly train the network from scratch. To address this, we
design a two-stages training strategy. First we pre-train the
deep autoencoder without considering the distribution consis-
tency loss term, i.e., minimizing the reconstruction loss and
self-expression loss in Eq. (6) while discarding the last term.
In this way, the deep autoencoder can produce a reasonable
good initial representation. After that, we estimate the prob-
ability density distributions of the original data space and the
latent representational space initialized by the deep autoen-
coder. Then a distribution consistency loss between these two
distributions is learned to guide the update of the autoencoder
network. We train the whole DPSC network by minimizing
the loss function (6) with the Adam algorithm [Kingma and
Ba, 2015]. The learning rate is set as 1× 10−3 for all experi-
ments.

After the whole network is trained, we can use the pa-
rameters of the self-expressive layer, i.e. C, to construct
an affinity matrix for spectral clustering. During testing, we
perform spectral clustering on the constructed affinity matrix
W = 1

2 (|C| +
∣∣CT

∣∣). For fairness of comparing with oth-
er methods, we use the NCut algorithm as in [Elhamifar and
Vidal, 2013; Ji et al., 2017].

4 Experiments
We conducted experiments on three subspace clustering
tasks: a) handwritten digit clustering, b) face recognition, and
c) object clustering. The first two tasks are relatively easier
since handwriting digit and face images approximately lie on
a union of linear subspaces. The last task is more challenging
with the non-linear subspace representation.

The baseline subspace clustering methods include sparse
subspace clustering (SSC) [Elhamifar and Vidal, 2013], k-
ernel SSC (KSSC) [Patel and Vidal, 2014], elastic net sub-
space clustering (ENSC) [You et al., 2016], efficient dense
subspace clustering (EDSC) [Ji et al., 2014], low-rank repre-
sentation (LRR) [Liu et al., 2013], low-rank subspace clus-
tering (LRSC) [Favaro et al., 2011], deep subspace clustering
network (DSC-Net) [Ji et al., 2017], structured autoencoder
(StructAE) [Peng et al., 2018], deep adversarial subspace
clustering (DASC) [Zhou et al., 2018c] and SSC with the
pre-trained convolutional autoencoder features (AE+SSC).
Among these methods, AE+SSC only uses the features from
pre-trained autoencoder without self-expression layer and
distribution consistency loss. DSC-Net adds self-expression
layer in autoencoder but has no distribution consistency loss.
These two methods can better show the superiority of our
latent distribution-preserving autoencoder with distribution
consistency loss.

We adopted the following widely used clustering metrics
to measure the clustering performance: accuracy (ACC), nor-
malized mutual information (NMI) and the purity (PUR).

4.1 Handwritten Digit Clustering
We test the proposed method on handwritten digit cluster-
ing using the MNIST database [Lecun et al., 1998]. This
database contains 10 clusters, including handwritten digits 0-
9 as shown in Fig. 3(a). Each cluster contains 6,000 images
for training and 1,000 images for testing, with a size of 28×28
pixels in each image. We randomly selected 1,000 images
from each digit for our experiment. We fixed the number of
clusters k = 10 and chose different numbers of data points
for each cluster. Each cluster contained Ni data points ran-
domly chosen from the corresponding 1,000 images, where
Ni ∈ {100, 500, 1000}, so that the number of total points
N ∈ {1000, 5000, 10000}. For DPSC, we set the bandwidth
h = 2, λ = λ1 = 1 and λ2 = 2. Then we applied all methods
on this database for comparison.
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No. Points 1000 5000 10000
Metric ACC NMI PUR ACC NMI PUR ACC NMI PUR

SSC [Elhamifar and Vidal, 2013] 0.4530 0.4709 0.4940 0.4214 0.4325 0.4510 0.3852 0.3982 0.4045
KSSC [Patel and Vidal, 2014] 0.5220 0.5623 0.5810 0.4715 0.4956 0.5120 0.4421 0.4736 0.4950

ENSC [You et al., 2016] 0.4983 0.5495 0.5483 0.4425 0.4750 0.4802 0.4100 0.4355 0.4382
EDSC [Ji et al., 2014] 0.5650 0.5752 0.6120 0.5312 0.5520 0.5732 0.4910 0.5070 0.5104
LRR [Liu et al., 2013] 0.5386 0.5632 0.5684 0.5122 0.5410 0.5468 0.4871 0.5015 0.5038

LRSC [Favaro et al., 2011] 0.5140 0.5576 0.5550 0.4825 0.5105 0.5082 0.4521 0.4835 0.4802
AE+SSC 0.4840 0.5337 0.5290 0.4512 0.4920 0.4827 0.4250 0.4628 0.4572

DSC-Net-L1 [Ji et al., 2017] 0.7280 0.7217 0.7890 0.7105 0.7067 0.7554 0.6985 0.6921 0.7482
DSC-Net-L2 [Ji et al., 2017] 0.7500 0.7319 0.7991 0.7358 0.7214 0.7746 0.7167 0.7002 0.7621
StructAE [Peng et al., 2018] 0.7832 0.7610 0.8125 0.7615 0.7412 0.7920 0.7438 0.7314 0.7750
DASC [Zhou et al., 2018c] 0.8040 0.7800 0.8370 0.7885 0.7622 0.8145 0.7725 0.7604 0.8120

DPSC 0.8252 0.8014 0.8571 0.8172 0.7924 0.8359 0.8057 0.7912 0.8432

Table 1: Clustering results on the MNIST database with different numbers of data points.

No. Objects 5 10 20
Metric ACC NMI PUR ACC NMI PUR ACC NMI PUR

SSC [Elhamifar and Vidal, 2013] 0.8912 0.9005 0.8924 0.8623 0.8745 0.8662 0.8254 0.8342 0.8276
KSSC [Patel and Vidal, 2014] 0.8041 0.8325 0.7150 0.7822 0.8175 0.7936 0.7563 0.7955 0.7702

ENSC [You et al., 2016] 0.8875 0.9014 0.8927 0.8652 0.8873 0.8720 0.8324 0.8652 0.8465
EDSC [Ji et al., 2014] 0.8337 0.8855 0.8520 0.8150 0.8642 0.8315 0.7920 0.8405 0.8127
LRR [Liu et al., 2013] 0.8950 0.9124 0.8980 0.8735 0.8920 0.8804 0.8468 0.8721 0.8536

LRSC [Favaro et al., 2011] 0.8125 0.8642 0.8355 0.8010 0.8469 0.8152 0.7802 0.8382 0.7968
AE+SSC 0.8924 0.9155 0.9075 0.8724 0.9053 0.8865 0.8505 0.8927 0.8714

DSC-Net-L1 [Ji et al., 2017] 0.9315 0.9426 0.9384 0.9204 0.9352 0.9287 0.9050 0.9168 0.9076
DSC-Net-L2 [Ji et al., 2017] 0.9408 0.9542 0.9465 0.9245 0.9405 0.9327 0.9087 0.9304 0.9185
StructAE [Peng et al., 2018] 0.9215 0.9243 0.9250 0.9027 0.9062 0.9155 0.8905 0.9048 0.9075
DASC [Zhou et al., 2018c] 0.9455 0.9612 0.9637 0.9332 0.9534 0.9487 0.9168 0.9365 0.9250

DPSC 0.9670 0.9824 0.9805 0.9568 0.9750 0.9723 0.9382 0.9620 0.9517

Table 2: Clustering results on the CMU PIE database with different numbers of objects.

Table 1 shows the clustering results on MNIST. Here DPSC
outperforms the baselines in all three metrics given different
numbers of data points. Specifically, when each cluster con-
tains 1,000 data points, our method outperforms the second
best method DASC by 3.32%, 3.08% and 3.12% in terms of
ACC, NMI and PUR, respectively. Moreover, DPSC achieves
a significant improvement over the shallow subspace cluster-
ing methods, e.g., SSC and LRR. This is because compared
with shallow methods, DPSC uses a multi-layer convolution-
al autoencoder as the feature extractor. Therefore, DPSC can
better handle translation, rotation and shift in the handwritten
images while mapping the input data into a union of linear
subspaces.

4.2 Face Recognition
Since subspaces are commonly used to capture the appear-
ance of faces under varying illuminations, we also test the
performance of our method on face clustering with the CMU
PIE database [Sim et al., 2001]. The CMU PIE database con-
tains 41,368 images of 68 people under 13 different poses, 43
different illumination conditions, and 4 different expressions
as shown in Fig. 3(b). In our experiment, we used the face
images in five near frontal poses (P05, P07, P09, P27, P29).

Then each people had 170 face images under different illumi-
nations and expressions. Each image was manually cropped
and normalized to a size of 32 × 32 pixels. We randomly
picked k ∈ {5, 10, 20} individuals to investigate the perfor-
mance of all methods. For our method, we set the bandwidth
h = 2, λ = λ1 = 1 and λ2 = 2.

Table 2 reports the clustering results on the CMU PIE
face database. It can be observed that DPSC consistent-
ly outperforms the baselines on all three metrics. For k =
{5, 10, 20} individuals, DPSC improves the performance by
2.15%, 2.36% and 2.14% over the second best method DASC
on ACC. For both NMI and PUR metrics, respectively, DPSC
also brings about 3% improvement over the state-of-the-art
DASC. All these results clearly prove the superior effective-
ness and robustness of DPSC.

These results also clearly demonstrate that deep cluster-
ing methods perform much better than the shallow ones,
benefiting from integrating representation learning with self-
expression learning. The deep autoencoder extracts more
powerful representations and the following self-expression
layer enforces the representations to favorably locate in a u-
nion of linear subspaces, effectively getting rid of strict linear
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Metric ACC NMI PUR
SSC [Elhamifar and Vidal, 2013] 0.8631 0.8892 0.8747

KSSC [Patel and Vidal, 2014] 0.7087 0.8243 0.7497
ENSC [You et al., 2016] 0.8760 0.8952 0.8892
EDSC [Ji et al., 2014] 0.8371 0.8828 0.8585
LRR [Liu et al., 2013] 0.8118 0.8747 0.8361

LRSC [Favaro et al., 2011] 0.7416 0.8452 0.7937
AE+SSC 0.8711 0.8990 0.8901

DSC-Net-L1 [Ji et al., 2017] 0.9314 0.9353 0.9306
DSC-Net-L2 [Ji et al., 2017] 0.9368 0.9408 0.9397
StructAE [Peng et al., 2018] 0.9450 0.9485 0.9412
DASC [Zhou et al., 2018c] 0.9639 0.9686 0.9632

DPSC 0.9754 0.9792 0.9752

Table 3: Clustering results on COIL-20.

subspace assumptions. Comparatively, DPSC outperform-
s the DASC, StructAE and DSC-Net, on all metrics. This
outstanding performance is attributed to the distribution con-
sistency loss in DPSC. Unlike DPSC, the DASC, StructAE
and DSC-Net do not consider the intrinsic cluster structure.

4.3 Object Clustering
We further evaluated DPSC on the challenging object clus-
tering task using the COIL-20 and COIL-100 [Nene et al.,
1996] databases which provide various objects as shown in
Fig. 3 (c). COIL-20 has 1,440 toy images from 20 classes,
and COIL-100 contains 7,200 images of 100 objects. In both
databases, each object was taken with poses varying at an in-
terval of 5 degrees, producing a total of 72 images per object.
This implies that the images are not distributed in a union
of linear subspaces and thus are more challenging. In con-
trast with the previous human face databases, in which faces
are well aligned and have similar structures, the object im-
ages from COIL-20 and COIL-100 are more diverse. Samples
from the same object differ from each other due to the change
of viewing angle, introducing additional challenge for sub-
space clustering techniques. For these databases, we down-
sample the images to 32 × 32 and set the bandwidth h = 3,
λ = λ1 = 1 and λ2 = 2.

Table 3 and table 4 depict the ACC, NMI and PUR of d-
ifferent methods on clustering 20 classes for COIL-20 and
100 classes for COIL-100, respectively. Note that, in both
cases and metrics, our DPSC achieves the best performance.
In particular, for COIL-100, our method obtains an accuracy
of 75.40%, which improves 3.25% over the best-performing
baseline DASC.

4.4 Parameter Sensitivity
In our DPSC, there are four hyper-parameters λ, λ1, λ2 and
h. Experiments show that the balancing parameters λ, λ1 and
λ2 have slight influence to the performance. We set them by
several attempts. Due to the limited space, we do not show
the varying results with different balancing parameters. We
focus on the effect of h, bandwidth of the kernel density es-
timator, which is important to the proposed method. Here,
we report the clustering accuracy and NMI on four databases
with different bandwidth h. Fig. 4 shows that our DPSC is
insensitive with different h in a certain range.

Metric ACC NMI PUR
SSC [Elhamifar and Vidal, 2013] 0.5500 0.5841 0.5720

KSSC [Patel and Vidal, 2014] 0.5282 0.6047 0.5534
ENSC [You et al., 2016] 0.5732 0.5924 0.5843
EDSC [Ji et al., 2014] 0.6187 0.6751 0.6547
LRR [Liu et al., 2013] 0.4018 0.4721 0.4315

LRSC [Favaro et al., 2011] 0.4933 0.5810 0.5450
AE+SSC 0.4607 0.4871 0.4782

DSC-Net-L1 [Ji et al., 2017] 0.6638 0.6720 0.6701
DSC-Net-L2 [Ji et al., 2017] 0.6904 0.7015 0.6972
StructAE [Peng et al., 2018] 0.7143 0.7251 0.7203
DASC [Zhou et al., 2018c] 0.7215 0.7286 0.7234

DPSC 0.7540 0.7592 0.7585

Table 4: Clustering results on COIL-100.
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Figure 4: (a) The clustering accuracy of our DPSC with different
bandwidth h. (b) The NMI of our DPSC with different bandwidth
h.

5 Conclusion

In this paper, we propose a novel distribution-preserving deep
subspace clustering (DPSC) method. The distribution con-
sistency loss of DPSC guarantees that the posterior laten-
t representation distribution matches the prior original data
space distribution and preserves the cluster structure of high-
dimensional data space. This solves the inconvenient sub-
space distribution conditions. Extensive experiments on M-
NIST, CMU PIE and COIL-20/100 show the superiority of
DPSC on both linear and non-linear subspace clustering prob-
lems over state-of-the-arts. In the future work, it is interesting
to further investigate the cluster structure of complex sample
distributions and try different distribution-preserving strate-
gies.
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