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Abstract

In this paper, we propose a new feature selec-
tion method to exploit the issue of High Dimen-
sion Low Sample Size (HDLSS) for the predic-
tion of Mild Cognitive Impairment (MCI) conver-
sion. Specially, by regarding the Magnetic Res-
onance Imaging (MRI) information of MCI sub-
jects as the target data, this paper proposes to in-
tegrate auxiliary information with the target data
in a unified feature selection framework for dis-
tinguishing progressive MCI (pMCI) subjects from
stable MCI (sMCI) subjects, i.e., the MCI conver-
sion classification for short in this paper, based on
their MRI information. The auxiliary information
includes the Positron Emission Tomography (PET)
information of the target data, the MRI information
of Alzheimer’s Disease (AD) subjects and Normal
Control (NC) subjects, and the ages of the target
data and the AD and NC subjects. As a result, the
proposed method jointly selects features from the
auxiliary data and the target data by taking into ac-
count the influence of outliers and aging of these
two kinds of data. Experimental results on the pub-
lic data of Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) verified the effectiveness of our pro-
posed method, compared to three state-of-the-art
feature selection methods, in terms of four classi-
fication evaluation metrics.

1 Introduction
Alzheimer’s Disease (AD) is a chronic neurodegenerativedis-
ease to slowly and gradually worsen human brain over time,
and has been becoming the most common dementia in many
countries. By considering the development and prevalence
of AD, the early stage of AD pathology, i.e., Mild Cogni-
tive Impairment (MCI), has been demonstrated to be the op-
timal stage that clinical treatments could be effectively in-
vestigated to prevent MCI conversion [Spasov et al., 2019;
Zhu et al., 2016]. Clinically, it is essential to conduct
MCI conversion classification by distinguishing pMCI sub-
jects (who possibly progress to AD) from sMCI subjects
(who may remain stable in the progress of MCI for a long

time) based on their neuroimaging data [Forlenza et al., 2019;
Weiner et al., 2017].
It is very challenging to differentiate the pMCI subjects

from the sMCI subjects in an individual level based on their
neuroimaging data due to the following reasons. First, the
pMCI has small inter-group difference from the sMCI so that
many studies of AD diagnosis integrate the pMCI with the
sMCI as a single category, i.e., MCI. Second, there is high
intra-group variations for either pMCI subjects or sMCI sub-
jects. That is, different subjects in the same sub-category
(i.e., either the pMCIs or the sMCIs) have high intra-group
variations, which makes difficult construct robust classifica-
tion models. Last but not least, the number of MCI subjects
is small, but the dimensions of their features are usually high.
In this case, the issue of High Dimension Low Sample Size
(HDLSS) is often found so that the MCI conversion classifi-
cation easily results in the problem of curse of dimensional-
ity. As a result, previous classification models are usually af-
fected by redundant features and subject-level noise. Hence,
it is very vital to investigate informative and discriminative
patterns to address above issues for achieving high diagnosis
accuracy.
In the literature, machine learning techniques based on

neuroimaging data, such as Magnetic Resonance Imaging
(MRI), Positron Emission Tomography (PET), and Cere-
broSpinal Fluid (CSF), have been proposed to address a part
of above issues [Weiner et al., 2017]. For example, [Zhu et
al., 2017] investigated a joint regression and classification
model on both the MRI data and the PET data to conduct
the MCI conversion classification. [Zhu et al., 2014] consid-
ered the influence of ages (e.g., taking the ages of the subjects
as a feature) to detect the association between MRI data and
genetic data, with the assumption that brain atrophy may be
influenced by the normal aging as well as the AD [Moradi et
al., 2015]. [Wang et al., 2017] first assumed that the relation-
ship between the AD and the Normal Control (NC) is similar
to the relationship between the pMCI (i.e., AD-like) and the
sMCI (i.e., NC-like), and then employed the information of
AD and NC to improve the robustness of the MCI conversion
classification.
Previous machine learning techniques for the MCI conver-

sion classification have the following common characteris-
tics, i.e., the auxiliary information is sequentially or partly
used for constructing a prediction model. Normally, by re-
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garding the MRI information of MCI subjects as the target
data, the auxiliary information includes the ages of the target
data, the MRI information of AD subjects and NC subjects,
the PET and genetic information of the target data, etc.More-
over, each kind of auxiliary information is heterogenous to
others (including other auxiliary information and the target
data) as they are with different data structures and data dis-
tributions. Hence, integrating these information for the MCI
conversion classification is complex as well as practical for
the AD study.
In this paper, we consider the MRI data of the MCI sub-

jects as the target data to propose a new sparse feature se-
lection model for conducting the MCI conversion classifica-
tion. Specifically, our proposed model integrates all kinds
of auxiliary data with the target data for feature selection, it
thus makes the best use of auxiliary information to improve
the robustness of the classification on the target data. In our
method, the auxiliary information includes the ages of both
the target data and the auxiliary data (i.e., the AD subjects
and NC subjects), the PET information of the target data as
the ADNI dataset only provided PET data for some subjects
and providedMRI data for all subjects, and the MRI informa-
tion of AD subjects and NC subjects. To do this, our proposed
method includes three key factors, i.e., (1) feature selection:
we use all kinds of auxiliary data to select informative fea-
tures of the target data; (2) outlier influence reduce: our for-
mulation is robust to outliers for both the auxiliary data and
the target data; (3) aging effect removal: we regard the ages
of the subjects as one feature firstly, and then integrate it with
neuroimaging features to form the feature matrix of our pre-
diction model. Finally, we use our proposed feature selection
model to select features from the target data, and then use a
linear Support Vector Machine (SVM) to conduct the MCI
conversion classification.
Compared to previous studies of the MCI conversion clas-

sification, the main contributions of our proposed method are
summarized as follows.
• Our proposed method considers three kinds of auxiliary
information to jointly select features in a unified frame-
work. It is noteworthy that previous methods [Eskild-
sen et al., 2013; Ye et al., 2011; Cheng et al., 2015;
Moradi et al., 2015] only used a part of them sequen-
tially. We argue that auxiliary information can provide
complementary information to the target data in some
ways, while utilizing a part of all auxiliary information
separately and sequentially is limited for the MCI con-
version classification.

• Our proposed method conducts feature selection by tak-
ing into account the influence of outliers in both the aux-
iliary data and the target data as well as the relationship
between the auxiliary data and the target data. By con-
trast, [Moradi et al., 2015] used the auxiliary data for
feature selection only, while [Cheng et al., 2015] used
both the target data and the auxiliary data, but not taking
the influence of their outliers into account.

• Our proposed method integrates three kinds of auxil-
iary data with the target data to remove their hetero-
geneity. The experimental results on the public data

of Alzheimer’s Disease Neuroimaging Initiative (ADNI)
verified the effectiveness of our proposed method, com-
pared to the state-of-the-art feature selection methods.
Obviously, our proposed framework can be easily ap-
plied for other methods for the MCI conversion classifi-
cation [Zhu et al., 2014; Moradi et al., 2015] and previ-
ous methods of the AD study [Zhu et al., 2017].

2 Method
In this paper, we denote matrices, vectors, and scalars, re-
spectively, by boldface uppercase letters, boldface lowercase
letters, and normal italic letters. Specifically, we denote the
MRI feature matrix, the PET feature matrix, and the label
matrix, respectively, for nt subjects of pMCI and sMCI, as
Xt ∈ R

nt×d, Xp ∈ R
nt×d, and Yt ∈ {0, 1}nt×ct , where d

denotes the number of features and ct is the class number of
the target data. We also denote the MRI feature matrix and
the label matrix, of na subjects of AD and NC, respectively,
asXa ∈ R

na×d andYa ∈ {0, 1}na×ca , where ca is the class
number of the auxiliary data. We further denote the age fac-
tors of the target data and the auxiliary data, as xtg ∈ R

nt

and xag ∈ R
na , respectively. In this work, we only focus on

the binary classification problem, i.e., ct = ca = 2. However,
it is straightforward to extend our proposed framework to a
multi-class classification problem.

2.1 Feature Selection on Target Data
Given the target data Xt and its corresponding label infor-
mation matrixYt, a robust sparse regression method linearly
estimates a coefficient matrixWt ∈ R

d×ct by optimizing the
following objective function:

min
Wt

‖Yt −XtWt‖2,1 + λ‖Wt‖2,1 (1)

where λ is the non-negative tuning parameter. The ℓ2,1-norm
loss function, i.e., a robust loss function in first term of Eq.
(1), makes Eq. (1) robust against the subject-level outliers.
Specifically, each row of (Yt − XtWt) in Eq. (1) corre-
sponds to the prediction residual of one subject. Under the
ℓ2,1-norm operation, the residual values of each row (i.e., sub-
ject) are combined via ℓ2-norm, i.e., the square root of the
sum of the squares, and thus are less affected by the out-
liers, compared to the least square loss function [Lei and
Zhu, 2018]. The ℓ2,1-norm regularization term on Wt pe-
nalizesWt by encouraging the row sparsity, i.e., all elements
of some rows ofWt are all zeros, to select the corresponding
features inXt.

2.2 Feature Selection on Target and Auxiliary Data
Using Eq. (1) directly on the target data (i.e., the MRI fea-
tures of the pMCI and sMCI subjects) for the MCI conver-
sion classification could still be ineffective due to the lim-
ited training data. To circumvent the lack of training sam-
ples, recent studies [Coupé et al., 2012; Moradi et al., 2015;
Ye et al., 2011; Young et al., 2013] exploited auxiliary in-
formation from non-target groups, e.g., AD and NC subjects.
The rationale of using such auxiliary data is that in terms of
the AD pathological spectrum, i.e., the sMCI is closer to the
NC while the pMCI is closer to the AD. Thus, the features
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that are informative for the AD/NC separation could be also
useful for the pMCI/sMCI separation, i.e., the MCI conver-
sion classification [Coupé et al., 2012; Young et al., 2013]. In
this paper, we also utilize such auxiliary data for feature se-
lection. However, unlike previous methods [Ye et al., 2011;
Young et al., 2013] that mostly first learned a classification
model over only the auxiliary data and then transferred the
learned model to build a target-oriented model, we devise a
novel sparse feature selection model that jointly exploits both
the target data and the auxiliary data.
With the assumption that MRI features selected for the

AD/NC classification could be also informative for the MCI
conversion classification, we propose to use MRI features of
AD and NC subjects (i.e., auxiliary data Xa), to help in se-
lecting MRI features of pMCI and sMCI subjects, as follows:

min
Wt,Wa

‖Yt −XtWt‖2,1 + ‖Ya −XaWa‖2,1

+ λ1‖[Wt,Wa]‖2,1 + λ2‖[Wt,Wa]‖
2
F

(2)

where Wa ∈ R
d×ca is a coefficient matrix for the auxiliary

data, λ1 and λ2 are non-negative tuning parameters. The rea-
son to use ℓ2,1-norm on the loss function of auxiliary data
(i.e., the second term in Eq. (2)) is similar to Eq. (1), i.e., for
robustness to outliers.
The ℓ2,1-norm regularizer on [Wt,Wa] ∈ R

d×(ct+ca) en-
courages the row-wise joint sparsity. This sparsity constraint
encourages the same set of features to be selected for both
Xt and Xa (recall that Xt and Xa denote the feature ma-
trix for the target and auxiliary data, respectively). With the
sparsity regularization term ‖[Wt,Wa]‖2,1, the useful fea-
tures are kept by satisfying the AD/NC separation constraint
(via Wa) and the MCI conversion separation constraint (via
Wt), simultaneously. The jointly learned model is more ro-
bust than the individual models of either only satisfying the
AD/NC separation constraint (via Wa) [Coupé et al., 2012;
Moradi et al., 2015] which does not consider the pathological
difference in the pMCI and sMCI subjects, or only satisfying
the MCI conversion separation constraint (via Wt) in [Ye et
al., 2011; Young et al., 2013] which has been reported to have
limited performance due to the small number of subjects.
The Frobenius norm on [Wt Wa] in the fourth term of

Eq. (2) is used to provide a grouping effect, which tends to
select highly correlated features together, by countering for
some weaknesses of the sparsity constraint [Zou and Hastie,
2005]. By considering the time-consuming issue of the pa-
rameter tuning, we change Eq. (2) to the following objective
function which makes the fourth term of Eq. (2) still provide
a grouping effect and reduce the model complexity.

min
Wt,Wa

‖Yt −XtWt‖2,1 + ‖Ya −XaWa‖2,1

+ λ1‖[Wt,Wa]‖2,1 + ‖[Wt,Wa]‖F
(3)

Different from Eq. (2), Eq. (3) does not need to tune the
parameter λ2 manually and changes the square operation of
the Frobenius norm to the Frobenius norm only. To solve
the optimization problem of Eq. (3), i.e., optimizing either
the variable Wt or the variable Wa, we could compute the
derivatives of the Frobenius norm in Eq. (3) to iteratively

optimize the following problems [Zhu et al., 2018].


















min
Wt,Wa

‖Yt −XtWt‖2,1 + ‖Ya −XaWa‖2,1

+ λ1‖[Wt,Wa]‖2,1 + λ2‖[Wt,Wa]‖
2
F (4a)

λ2 =
1

2‖[Wt,Wa]‖F
(4b)

In the multiple-modality AD study, it has shown that the
PET data and the MRI data could provide complementary in-
formation to each other [Cheng et al., 2015; Moradi et al.,
2015; Young et al., 2013]. In this paper, we use the PET data
of the pMCI and sMCI subjects, i.e., Xp, as another kind of
auxiliary data, to help learn the coefficient matrix Wt of the
target data. More specifically, we constrain the predicted val-
ues from the PET data and the MRI data to be close to each
other, as both modalities share the same label information. As
a result, we have the following objective function

min
Wt,Wp

‖XtWt −XpWp‖2,1 + λ3‖Wp‖2,1 (5)

where λ3 is a nonnegative tuning parameter andWp ∈ R
d×ct

is a coefficient matrix to the PET data. Note that XtWt and
XpWp are the predictions of the label matrix using the MRI
and PET data, respectively. Thus, their difference, measured
by the summation of element-wise similarity, should be as
small as possible.
Combining Eq. (3) with Eq. (5), we obtain the following

objective function, which learns Wt with the auxiliary MRI
data of AD/NC subjects and the PET data of pMCI/sMCI sub-
jects,

min
Wt,Wa,Wp

‖Yt −XtWt‖2,1 + ‖Ya −XaWa‖2,1

+ ‖XtWt −XpWp‖2,1 + λ1‖[Wt,Wa]‖2,1
+ ‖[Wt,Wa]‖F + λ3‖Wp‖2,1.

(6)

2.3 Aging Effect Removal
[Franke et al., 2010; Moradi et al., 2015] showed that both
the normal aging and the AD pathology contributed to brain
atrophy and it is necessary to remove the aging effect to the
brain atrophy before analysis. The first method designed for
the aging effect removal fits a linear regression model be-
tween the features and the age of NC subjects to obtain a
coefficient matrix [Franke et al., 2010; Moradi et al., 2015].
This coefficient matrix denotes how the age affects the feature
values. The second method directly fits the model by using
both features and the age as covariates [Moradi et al., 2015;
Zhu et al., 2014]. Actually, both of them assume that there
is linear relationship among the labels, features and ages.
Hence, we use the ages of the subjects as one feature in both
the target data and the auxiliary data to have our final objec-
tive function as follows.

min
Wt,wtg ,Wa,wag ,Wp

‖Yt − [Xt,xtg][W
⊤
t ,w

⊤
tg]

⊤‖2,1

+ ‖Ya − [Xa,xag][W
⊤
a ,w

⊤
ag]

⊤‖2,1
+ ‖XtWt −XpWp‖2,1 + λ1‖[Wt,Wa]‖2,1
+ ‖[Wt,wtg,Wa,wag]‖F + λ3‖Wp‖2,1

(7)

where wtg ∈ R
1×ct and wag ∈ R

1×ca are coefficient matri-
ces, and λ1 and λ3 are non-negative tuning parameters. In Eq.
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(7), the fourth and fifth terms help select common useful fea-
tures for the first two data fitting terms, while the third term
imposes label prediction consistency betweenXt andXp. In
addition, the use of the ℓ2,1-norm loss function helps to learn
Xt,Xp, andXa by reducing the influence of outliers.

2.4 Optimization
We employ the alternating optimization strategy to solve
Eq. (7), by iteratively optimizing each of the parameters
(i.e., wtg , wag, Wt, Wa, and Wp) while fixing the other
parameters. We list the pseudo of our method in Algorithm 1
and explain the detail as follows.

i) Update wtg and wag by fixingWt,Wa, andWp

With the fixed Wt, Wa, and Wp, the optimization with re-
spect to the variables wtg and wag are independent to each
other. Thus we individually set the derivative of Eq. (7) with
respect towtg andwag to zero to obtain

ŵtg = (x⊤
tgAxtg + λ2)

−1
x
⊤
tgA(Yt −XtWt)

ŵag = (x⊤
agBxag + λ2)

−1
x
⊤
agB(Ya −XaWa)

(8)

where A ∈ R
n×n and B ∈ R

n×n, respectively, are di-
agonal matrices and their respective diagonal elements are
defined as ajj = 1

2‖(Yt−[Xt,xtg][W⊤
t ,w⊤

tg ]
⊤)j‖2

2

and bjj =
1

2‖(Ya−[Xa,xag][W⊤
a ,w⊤

ag]
⊤)j‖2

2

, j = 1, ..., n.

(ii) UpdateWt by fixing wtg, wag,Wa, andWp

Given wtg , wag, Wa, and Wp, we can rewrite Eq. (7) as
follows:

min
Wt

‖Yt − [Xt,xtg][W
⊤
t ,w

⊤
tg]

⊤‖2,1

+ ‖XtWt −XpWp‖2,1 + λ1‖[Wt,Wa]‖2,1
+ ‖[Wt,wtg,Wa,wag]‖F .

(9)

By setting the derivative of Eq. (9) with respect to Wt to
zero and solving the resulting equations, we can obtain

Ŵt = G−1H (10)

where G = (X⊤
t (A + C)Xt + λ1U + λ2Id) and H =

(X⊤
t A(Yt − xtgwtg) + X

⊤
t CXpWp), Id ∈ R

d×d is an
identity matrix, and C ∈ R

n×n and U ∈ R
d×d are diago-

nal matrices and their respective diagonal elements are cjj =
1

2‖(XtWt−XpWp)j‖2

2

, j = 1, ..., n and ukk = 1
2‖(Wt,Wa)k‖2

2

,
k = 1, ..., d, respectively.

(iii) UpdateWa by fixing wtg, wag,Wt, andWp

With fixedwtg ,wag ,Wt, andWp, Eq. (7) becomes:

min
Wa

‖Ya − [Xa,xag][W
⊤
a ,w

⊤
ag]

⊤‖2,1

+ λ1‖[Wt,Wa]‖2,1 + ‖[Wt,wtg,Wa,wag]‖F .
(11)

By setting the derivative of Eq. (11) with respect toWt to
zero and solving the equations, we obtain

Ŵa = (X⊤
a BXt + λ1U+ λ2Id)

−1
X

⊤
a B(Yt − xtgwtg). (12)

Algorithm 1: The pseudo of solving Eq. (7).
Input: Xt,Xp,Yt,Xa,Ya, xtg , xag , λ1, and λ3;
Output: wtg, wag ,Wt,Wa, andWp;

1 Randomly initializeWt,wtg ,Wp,Wa, andwag;
2 Initialize λ2 via λ2 = 1

2‖[Wt,wtg ,Wa,wag ]‖F
;

3 repeat
4 Calculate the diagonal matrixA with

ajj =
1

2‖(Yt−[Xt,xtg ][W⊤

t ,w⊤

tg ]
⊤)j‖2

2

, j = 1, ..., n;
5 Calculate the diagonal matrix B with

bjj =
1

2‖(Ya−[Xa,xag ][W⊤
a ,w⊤

ag ]
⊤)j‖2

2

, j = 1, ..., n;
6 Calculate the diagonal matrixC with

cjj =
1

2‖(XtWt−XpWp)j‖2

2

, j = 1, ..., n;
7 Calculate the diagonal matrixU with

ukk = 1
2‖(Wt,Wa)j‖2

2

, k = 1, ..., d;
8 Calculate the diagonal matrixV with

vkk = 1

2‖Wj
p‖2

2

, k = 1, ..., d;
9 Updatewtg via Eq. (8);
10 Update λ2 via λ2 = 1

2‖[Wt,wtg ,Wa,wag]‖F
;

11 Updatewag via Eq. (8);
12 Update λ2 via λ2 = 1

2‖[Wt,wtg ,Wa,wag]‖F
;

13 UpdateWt via Eq. (10);
14 Update λ2 via λ2 = 1

2‖[Wt,wtg ,Wa,wag]‖F
;

15 UpdateWa via Eq. (12);
16 Update λ2 via λ2 = 1

2‖[Wt,wtg ,Wa,wag]‖F
;

17 UpdateWp via Eq. (14);
18 until Eq. (7) converges;

(iv) UpdateWp by fixingwtg ,wag ,Wt, andWa

Givenwtg , wag,Wt, andWa, Eq. (7) becomes:

min
Wp

‖XtWt −XpWp‖2,1 + λ3‖Wp‖2,1. (13)

By setting the derivative of Eq. (13) with respect toWt to
zero and solving the equations, we obtain

Ŵp = (X⊤
p CXp + λ3V)−1

X
⊤
p CXtWt (14)

where V ∈ R
d×d is a diagonal matrix whose diagonal ele-

ments are defined as vkk = 1
2‖(Wp)k‖2

2

, k = 1, ..., d.

3 Experiments
We evaluated our proposed method by comparing with three
state-of-the-art feature selection methods and one baseline
method on two data sets in terms of four classification evalu-
ation metrics.

3.1 Data Sets
In this work, we used the ADNI 1 (‘www.adni-info.
org’) publicly available on the web for research purposes
to generate the binary classification task on two data sets:
1) ‘Data1’ consisted of 93 AD, 99 NC, 55 pMCI, and 59
sMCI subjects, and 2) ‘Data2’ consisted of 50 AD, 51 NC,
31 pMCI, and 30 sMCI subjects.
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We first preprocessed the MRI and PET images by sequen-
tially applying spatial distortion correction, skull-stripping,
and cerebellum removal, followed by segmenting the MRI
images into gray matter, white matter, and cerebrospinal fluid,
and then warped them into the AAL template to obtain 90 re-
gions. We further aligned the PET images to their respective
MRI images. We finally obtained 90 gray matter volumes
from a MRI image and 90 mean intensities from a PET im-
age and used them for features.

3.2 Comparison Methods
We defined a baseline model that utilized the original features
for classification (thus denoted as ‘Original’) and also consid-
ered other state-of-the-art feature selection methods, namely,
general sparsity regularized feature selection (GSR) [Peng
and Fan, 2017], Semi-Supervised Learning (SSL) [Moradi et
al., 2015], and Domain Transfer Learning (DTL) [Cheng et
al., 2015].
The baseline method ‘Original’ used all target data to per-

form classification without removing any features. GSR con-
ducted feature selection by optimizing an ℓ2,r-norm (0 < r ≤
2) loss function and an ℓ2,p-norm (0 < p ≤ 1) regularization
term to reduce the influence of subject-level outliers. In our
experiments, we considered to form its two variants: ‘GSR-
Pre’ (using the target data alone) and ‘GSR-Aux’ (using the
auxiliary data of the AD and NC subjects alone [Ye et al.,
2011]). The SSL method sequentially performed the aging ef-
fect removal and feature selection using the AD and NC sub-
jects. DTLmethod conducted feature selection using both the
target data and the auxiliary data, without taking into account
ageing effect removal and the robustness against outliers in
the data.
It is noteworthy that all comparison methods did not take

age effect removal into account. Hence, we used ‘Pro-
NoAge’ to denote our method without taking aging effect
removal into account, i.e., Eq. (6), and ‘Proposed’ as our
proposed model, i.e., Eq. (7).

3.3 Experimental Setting
We repeated the 10-fold cross-validation scheme 100 times
on all methods, each of which conducted 5-fold nested cross-
validations for model selection. The ranges of parameters of
every comparison method were set by strictly following the
corresponding literature so that they outputted the best results
in our experiments. We used the method of grid search with
the search range of {10−5, ..., 105} to conduct model selec-
tion in our two proposed methods.
In this paper, we further partitioned each of two data sets

into two subsets of the target data, i.e., ‘MRI’, and ‘MRI +
PET’, respectively, to indicate single modality targets (only
MRI features) and multi-modality targets (MRI and PET fea-
tures).
In our experiments, after conducting feature selection, we

used the Support Vector Machine (SVM) [Chang and Lin,
2011] to conduct the classification tasks, where we set the
parameter C as the range of C ∈ {2−5, 2−4, . . . , 25} in
the SVM for all methods. We used classification accuracy
(ACC), sensitivity (SEN), specificity (SPE), and area under

the receiver operating characteristic curve (AUC), to evaluate
the classification performance.

3.4 Results Analysis
Figures 1 and 2 listed the classification performance of all
methods on the data sets ‘Data1’ and ‘Data2’, respectively.
We listed our observations as follows.
• Our proposed method (i.e., Proposed) achieved the
best performance, followed by Pro-NoAge, DTL, SSL,
GSR-Aux, GRS-Pre, and Original. Specifically, Pro-
posed improved the classification performance on aver-
age by 4.98% compared to the best comparison method,
i.e., DTL, while improved on averages by 14.61% com-
pared to the worst comparison method, i.e., Original,
in terms of all four evaluation metrics. Moreover, our
proposed Pro-NoAge improved the classification perfor-
mance on average by 3.44%, compared to the best com-
parison method, i.e.,DTL. This demonstrated that either
outlier influence reduce or aging effect removal is nec-
essary for the MCI conversion classification.

• All methods achieved larger improvement (in compar-
ison with Original) on Data2, compared to their cor-
responding improvement on Data1. This may imply
that the auxiliary information can improve the predic-
tion ability of the target data, especially when the sam-
ple size of the target data is small and the sample size of
the auxiliary data are the same

• Proposed outperformed Pro-NoAge method. For exam-
ple, Proposed improved the classification performance
on average by 1.54% compared to Pro-NoAge, in terms
of four evaluation metrics. This is consistent with the
previous study of [Moradi et al., 2015] that has validated
the importance of removing aging effect.

• When regarding the use of the auxiliary data from
the AD and NC subjects, GSR-Aux consistently out-
performed its counterpart GSR-Pre in all experiments.
Specifically, GSR-Aux used the AD and NC subjects
to construct the AD/NC classifier to classify the tar-
get data, i.e., distinguishing pMCI subjects from sMCI
subjects, while GSR-Pre employs the pMCI and sMCI
subjects to classify the target data. In our experiments,
the AD/NC classifier improves the classification perfor-
mance by 2.26% in terms of all four evaluation met-
rics since these two methods select different features to
conduct classification tasks. It is noteworthy that the
number of features selected by GSR-Pre was larger than
the number of features selected by GSR-Aux because
GSR-Pre could not capture subtle structure differences
among region-of-interests (ROIs) with a limited number
of high-dimensional samples.

Finally, we analyzed the selected features by all methods.
From our experiments, we could observe that most compar-
ison methods selected similar brain regions as top regions,
such as lateral ventricle right, globus palladus left/right,
subthalamic nucleus right, uncus right, occipital lobe WM
right, nucleus accumbens left, occipital lobe WM left, and
fornix right, for the MRI features. Those selected ROIs
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Figure 1: Classification performance of all methods on Data1 with 50 pMCIs and 51 sMCIs.
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Figure 2: Classification performance of all methods on Data2 with 31 pMCIs and 30 sMCIs.

were also verified to be related to AD [Cheng et al., 2015;
Misra et al., 2009]. It is noteworthy that our method se-
lected some ROIs more often than the comparison meth-
ods, such as parahippocampal gyrus left, hippocampal for-
mation right, middle temporal gyrus left, perirhinal cor-
tex left, temporal pole left, entorhinal cortex left, lateral
occipitotemporal gyrus right, hippocampal formation left,
amygdala left, parahippocampal gyrus right, middle tempo-
ral gyrus right, amygdala right, inferior temporal gyrus right,
and lateral occipitotemporal gyrus left [Cheng et al., 2015;
Misra et al., 2009]. We believe the selection of those ROIs
contributed to enhance the performance in our method. In the
mean time, none of comparison methods selected the ROIs of
angular gyrus right and postcentral gyrus left from MRI and
the ROIs of nucleus accumbens left, lingual gyrus right, and
thalamus right from PET.

4 Conclusion
In this paper, we have proposed to use the auxiliary informa-
tion to improve the diagnostic accuracy in pMCI and sMCI
identification. The proposed method used three ways to in-
corporate the auxiliary data with the target data in a unified
framework, i.e., using an ℓ2,1-norm on the weight matrices

(for joint feature selection), using an ℓ2,1-norm loss function
(for outliers robustness), and including the age factor in the
feature matrix (for removing aging-effect). Finally, experi-
mental results on ADNI 1 verified the effectiveness of our
proposed method, compared to the comparison methods, in
terms of classification tasks.

Acknowledgments
This work was partially supported by the National Natural
Science Foundation of China (Grants No: 61876046 and
61573270), the Guangxi High Institutions Program of Intro-
ducing 100 High-Level Overseas Talents, the Strategic Re-
search Excellence Fund at Massey University, and the Mars-
den Fund of New Zealand (Grant No: MAU1721). The au-
thor thanks K. H. Thung and D. Shen for their efforts on the
initial draft of this work as well as the Alzheimer’s Disease
Neuroimaging Initiative for providing the data sets.

References
[Chang and Lin, 2011] Chih-Chung Chang and Chih-Jen

Lin. LIBSVM: a library for support vector machines.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4480



ACM Transactions on Intelligent Systems and Technology,
2(3):27, 2011.

[Cheng et al., 2015] Bo Cheng, Mingxia Liu, Daoqiang
Zhang, Brent C Munsell, and Dinggang Shen. Domain
transfer learning for MCI conversion prediction. IEEE
Transactions on Biomedical Engineering, 62(7):1805–
1817, 2015.
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José V Manjón, et al. Scoring by nonlocal image patch
estimator for early detection of Alzheimer’s disease. Neu-
roImage: Clinical, 1(1):141–152, 2012.

[Eskildsen et al., 2013] Simon F Eskildsen, Pierrick Coupé,
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