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Abstract

Drug-drug interactions (DDIs) are a major cause
of preventable hospitalizations and deaths. Re-
cently, researchers in the Al community try to im-
prove DDI prediction in two directions, incorporat-
ing multiple drug features to better model the phar-
macodynamics and adopting multi-task learning to
exploit associations among DDI types. However,
these two directions are challenging to reconcile
due to the sparse nature of the DDI labels which
inflates the risk of overfitting of multi-task learn-
ing models when incorporating multiple drug fea-
tures. In this paper, we propose a multi-task semi-
supervised learning framework MLRDA for DDI
prediction. MLRDA effectively exploits informa-
tion that is beneficial for DDI prediction in unla-
beled drug data by leveraging a novel unsupervised
disentangling loss CuXCov. The CuXCov loss co-
operates with the classification loss to disentangle
the DDI prediction relevant part from the irrelevant
part in a representation learnt by an autoencoder,
which helps to ease the difficulty in mining useful
information for DDI prediction in both labeled and
unlabeled drug data. Moreover, MLRDA adopts a
multi-task learning framework to exploit associa-
tions among DDI types. Experimental results on
real-world datasets demonstrate that MLRDA sig-
nificantly outperforms state-of-the-art DDI predic-
tion methods by up to 10.3% in AUPR.

1 Introduction

Drug-drug interactions (DDIs) are modification effects of a
drug when administered with another drug, resulting in many
adverse drug reactions (ADRs) that may cause injuries or
deaths [Qato et al., 2016]. Most DDIs are discovered by acci-
dent once a drug is already on the market [Percha and Altman,
2013]. Early detection of DDIs based on drug features helps
drug safety professionals allocate investigative resources and
take regulatory action [Zhang er al., 2015]. Since ADRs (e.g.,
Nausea, Asthenia, Kidney Failure, etc.) associated with DDIs
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are important for both clinical and pharmaceutical decisions
[Vilar er al., 2017], researchers classify DDIs into different
types according to different ADRs in DDI prediction [Jin et
al., 2017; Ryu et al., 2018; Ma ef al., 2018]. The DDI pre-
diction studied in this paper is defined as: For a pair of drugs
with some known drug features, predicting the occurrence of
all different DDI types based on the drug features.

The pioneering work for DDI prediction [ Vilar et al., 2012]
computes similarities between drug pairs with drug chemical
structures and predicts DDIs with a nearest neighbor method.
The research works done to improve DDI prediction in re-
cent years can be summarized in two directions: (a) Inte-
grating multiple drug features (e.g., chemical structures, in-
dications, etc) to calculate the similarities among drugs more
comprehensively (compared to a single feature), and then
predict DDIs more accurately based on the fused similar-
ity [Zhang et al., 2015; Abdelaziz et al., 2017; Ma et al.,
2018]. (b) Adopting multi-task learning to exploit associa-
tions among DDI types [Jin er al., 2017; Ryu et al., 2018;
Zitnik et al., 2018]. Considering the prediction of a certain
type of DDI as a task, the correlation between DDI types can
be utilized in a multi-task learning framework to improve the
overall predictive accuracy.

However, the methods of the two directions are challenging
to reconcile. Not all drugs have complete data of all features
[Ryu er al., 2018]. Considering more features would lead
to fewer drugs with known data of all considered features as
well as a sparser labeled dataset. For example, in the widely
utilized DDI label resource Twosides database [Tatonetti et
al., 2012], considering one single feature the drug chemical
structures, there are 645 drugs and 63473 drug pairs with pos-
itive DDI labels. Nevertheless, considering two more features
the drug indications and drug side effects, there would be only
318 drugs with complete feature data of three features' and
corresponding 16775 drug pairs with positive DDI labels left.
Thus a multi-task learning model with an excessive quantity
of parameters would tend to overfit.

Actually, there are a large number of unlabeled drug pairs
that contain not only information of multiple drug features
explicitly, but also instructive information for DDI prediction
implicitly, yet existing multi-task learning methods fail to in-
corporate the unlabeled DDI data. Indeed, it is not trivial

'Please see Section 5.1 for drug feature data sources.
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to effectively take advantage of both labeled and unlabeled
drug data simultaneously for better DDI prediction. On one
hand, the state-of-the-art deep semi-supervised learning mod-
els (such as Ladder Network [Rasmus et al., 20151, Mean
Teacher [Tarvainen and Valpola, 2017], and Virtual Adver-
sarial Training [Miyato er al., 2017], etc.) construct unsuper-
vised consistency regularization losses that rely on an under-
lying assumption: the classes are well-separated. While for
DDI prediction, the classes, i.e., the DDI types, are strongly
associated, resulting in nebulous boundaries for each class.
On the other hand, although unsupervised algorithms such
as autoencoders allow us to exploit information hidden in
the unlabeled data by learning a compact representation that
explains the variations of drug features, the representations
learnt by unsupervised methods would, in general, entangle
the factors relevant to DDI predictions with factors account-
ing for remaining variations of drug features [Cheung et al.,
2015]. The irrelevant factors for DDI prediction in the com-
plex representation would introduce undesired bias that de-
presses the performance of DDI prediction. If we manage
to disentangle the DDI prediction relevant part from the ir-
relevant part in the representation, then we may exclude the
disturbance from irrelevant part and leverage beneficial infor-
mation from both unlabeled and labeled data in the DDI pre-
diction relevant part, and thereby enhance the generalization
of a model by restraining overfitting.

Inspired by the above insights, we propose Multi-Label
Robust Disentangling Autoencoders (MLRDA) for DDI pre-
diction. Our contributions are summarized as follows:

* We propose a multi-task semi-supervised learning
framework MLRDA for DDI prediction. MLRDA rec-
onciles integrating multiple drug features and multi-task
learning, thus is able to better describe pharmacodynam-
ics and exploit the associations among DDI types.

The MLRDA framework has three distinct technical
highlights. (a) MLRDA exploits information in unla-
beled data that is beneficial for DDI prediction. (b) ML-
RDA leverages a novel robust unsupervised loss CuX-
Cov to help disentangling the DDI prediction relevant
part from the irrelevant part in the representation, less-
ening the feature complexity of the representation and
reducing the risk of overfitting. (c) MLRDA adopts a
multi-task learning framework compatible with (a) and
(b) to exploit associations among DDI types.
Experimental results on real-world datasets demonstrate
that MLRDA significantly outperforms state-of-the-art
DDI prediction methods by up to 10.3% in AUPR.

L]

2 Related Work

The pioneering computational work for DDI prediction [Vilar
et al., 2012] is based on a simple but effective idea. They
first calculate the similarities between drug pairs with drug
chemical structure fingerprints, then they predict DDIs based
on a similarity based idea, i.e., if drug A is similar to drug B,
then the drugs that have the ¢-th type of DDI with drug A are
likely to have the i-th type of DDI with drug B.

Lately, researchers show that the prediction could be im-
proved by incorporating more drug features to better describe
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pharmacodynamics[Cheng and Zhao, 2014; Takeda er al.,
2017; Zhang er al., 2017]. [Zhang et al., 2015] propose
an integrative framework to fuse the similarities of differ-
ent views of drug features with proper weights and predict
DDIs by label propagation method. [Abdelaziz et al., 2017,
Kastrin er al., 2018] model the DDIs and drug features
as edges and nodes and predict DDIs with link prediction
method. A semi-supervised Graph autoencoder method is
proposed by [Ma et al., 2018] that employs graph convolu-
tional networks (GCN)[Kipf and Welling, 2017]. Compared
with traditional graph methods, the GCN model not only en-
codes the graph structure, but also encode the node features.
However, those methods fail to exploit the task associations
among DDI types. Actually, different types of DDI events
are related. For example, if a specific drug pair causes Nau-
sea/High blood pressure, then the specific drug pair is likely
to cause Emesis/Difficulty breathing.

Recently, efforts leveraging multi-task learning attempts to
exploit the associations among DDI types. Researchers take
pairwise chemical structure features as input to model inter-
actions between drug pairs and predict different DDIs simul-
taneously [Jin et al., 2017; Ryu et al., 2018]. [Zitnik et al.,
2018] proposes a multi-modal graph of drug-protein target
interaction and protein-protein interaction to predict DDIs si-
multaneously. However, it is challenging to integrate multiple
drug features in multi-task learning models for better predic-
tive performance because of the trade-off between informa-
tion gain from additional features and better immunity against
overfitting. In this paper, we propose a multi-task semi-
supervised learning DDI prediction framework MLRDA that
reconciles integrating multiple drug features and multi-task
learning.

3 Preliminaries

We define some notations to prepare our method in Table 1.

Symbol Definition
v Number of different DDI types
n Number of different drug features
T The ¢-th type of DDI
e; The j-th single drug feature vector
d; The j-th pairwise drug feature vector
B Set of drug pairs with known features
Pi Set of positive samples of the sth DDI
N; Set of negative samples of the :th DDI
Lcis Classification loss
LRenst Reconstruction loss
Louxcov Cumulative cross-covariance loss

Table 1: Notation.

For the j-th drug feature, j = 1,--- , n, the pairwise drug
feature vector d;s are associated with drug pairs, and the sin-
gle drug feature vectors e;s are associated with single drugs.
The d;s are constructed by simply concatenating a pair of e;s.
For example, omitting the subscript j for simplicity, suppose
e 4 denotes the single feature vector of drug A, so does ep of



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

drug B. The pairwise drug feature vectors d 45 and dp 4 as-
sociated with drug pair {A, B} are concatenations of e 4 and
eR, i.e., dAB = (eA, eB) and dBA = (eB, eA).

Problem Statement

The problem of DDI prediction is formulated as follows.
Suppose we have a set of drug pairs B. For each drug
pair in B, we know n different pairwise drug feature vec-
tord;,j = 1,---,n. Considering v DDI types, for each DDI
type r;, suppose we know the positive sample set P; (contain-
ing drug pairs that causing ;) and the negative sample set N;
(containing drug pairs that not causing r; empirically). Our
goal is to estimate the occurrence probabilities of DDI type r;
of drug pairs in B—P;UN; for all DDI types r;,4 = 1,-- -, v.

4 The Proposed MLRDA
4.1 Framework Overview

Aggregation Module
a7
Y

t i
Representation Modules Module 2

u ¢ vee ;
Drug Features o

Figure 1: The framework of proposed MLRDA.
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The framework of our proposed MLRDA is shown in Fig-
ure 1. Suppose we want to predict v DDI types based on n
drug features, then MLRDA consists of n Single Feature Rep-
resentation Modules (See more details in section 4.2) and one
Aggregation Module (See more details in section 4.4). For
each drug pair, the j-th Single Feature Representation Mod-
ule takes in the j-th pairwise feature d; as input and outputs a

binary vector Yj € RY, with each bit encoding the occurrence
probability of each DDI type r; predicted by j-th feature. The
Aggregation module collects prediction vectors Yjs given by
different features and calculates a weighted prediction vector
Y with attention mechanism. In MLRDA, all representation
modules and aggregation module are jointly optimized in an
end-to-end way (See training objective in section 4.5). In the
following subsections, we give more technical details.

4.2 Single Feature Representation Module

To exploit the beneficial information for DDI prediction and
to reduce the undesired bias caused by irrelevant information
in both labeled and unlabeled data, we design the Single Fea-
ture Representation Module (SFRM), of which the architec-
ture is illustrated in Figure 2. For ease of illustration, we omit
the subscript j indexing different drug features. The overall
neural network is built with an autoencoder structure. The
network consists of H + 1 layers where H is an even number.
The first H/2 + 1 hidden layers are encoders to learn a rep-
resentation of each input and the last H/2 hidden layers are
decoders to reconstruct the input.
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Figure 2: The architecture of SFRM.

Let L(9) = d denote an input to the first layer and let
L — t(h)((w(h))TL(hfl) 4 b(h)) c Rb» (1)

be the output of the h-th layer, h = 1,--- | H, H + 1. b, de-
notes the dimension of the output at the h-th layer and ¢t(s
are activation functions, which we take Rectified Linear Unit
(ReLU) for all hidden layers except the high-level represen-
tation layer (the last layer of the encoder), i.e., h = H/2+1,

o4 Y N N
L<I2{+1) = (Z) = ((yh e 7y1:)T7 (Zl» e 7zu)T)T'

H H
i = Sigmoid(W{* ™)TLE) 4 p(% V) i =10y

H H
2= (WYL L ple i) o
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We define the function of the encoder as fg and the func-
tion of the decoder as gg (© and ® denote the parameter space
of encoder and decoder respectively), i.e.,

fo(d) = LD — (;)  gn(fo(d) = LU,

Given inputs ds, fo(d)s are abstract representations learnt by
the encoder. In the learnt representation, without some ex-
plicit means, the latent factors relevant for DDI predictions
would be entangled with other latent factors explaining the
remaining variations of B. Our goal is partitioning fo(d) into
twopart Y € RV and Z € R*. Y = (§j1,--- ,%»)" encodes
the DDI-prediction-relevant factors with §; the occurrence of
the i-th event r; and Z encodes the factors that are irrelevant
with DDI prediction. To achieve the above idea, (a) we intro-
duce a robust unsupervised disentangling loss CuXCov (See
more details in section 4.3) that make Y as uncorrelated with
Z as possible, (b) at the same time endowing ¢; with semantic
meaning of the occurrence probability by DDI label vectors
Ys that provide indirect supervised learning signals.

The learning of §; can be viewed as a binary classification
task ;. In DDI prediction, each g; is corresponding to DDI
type. Actually, each SFRM reformulates the DDI prediction
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problem as a multi-label classification problem, and the class
label vector Y is given by learning the dimerous representa-
tion fo(d) of pairwise drug feature d. The class labels in Ys
and Ys are learnt simultaneously with shared parameters in
layers L™ p = 1,.-- , H/2, thus MLRDA is a multi-task
learning framework [Caruana, 1997] in nature.

In addition, when drug pair {A,B} is in validation/test set,
its predicted DDI label is the arithmetic average of two pre-

dicted label vectors w.r.t. inputs d 4 5 and dp 4 since d 4 5 and
d g 4 should share the same DDI label.

4.3 CuXCov Loss

To identify the DDI-prediction-relevant part Y from the irrel-
evant part Z in the representation fg(d) of each SFRM, we
wish Y as uncorrelated with Z as possible. [Cheung et al.,
2015] proposed an unsupervised loss called XCov loss aimed
at decorrelating Y with Z by minimizing the covariance of
each dimension in Y and each dimension in Z.

LetY—(Yl Y2, YY), and Z = (2',22,--- | Z")
denote the matrices of hlgh-level representations over a mini-
batch with size N. The XCov loss takes the form:

Lxcow = L/N(Y(I - ee” /N))(Z(I— e’ /N))T.  (3)

Where e € RY is a column vector with all entries being 1, I
is the identity matrix.

However, XCov loss estimates the cross-covariance matrix
in each mini-batch separately. The mini-batch limits the sam-
ple size involved in estimating the cross-covariance matrix,
and could result in inaccurate estimation and gradient descent
directions with a large variance, which may disturb decor-
relating Y with Z and bring about undesired bias for DDI
prediction. Better estimation of the cross-covariance matrix
is possible by enlarging sample size, yet simply enlarging
the mini-batch size would not achieve a monotone increas-
ing gain in predictive performance. Large batch size method
tends to converge to sharp minimizers of the training function
and result in worse generalizability [Keskar et al., 2017].

Utilizing all samples in B, i.e., the full batch to estimate the
cross-covariance would result in a lower estimation variance.
But it is challenging to calculate a full-batch estimation in
mini-batch based deep learning models. Inspired by [Chang
et al., 2018], we propose a robust cumulative loss CuXCov
that approximates the full-batch cross-covariance matrix. The
approximation is achieved by stochastic incremental learning.
Let E’Ji, Yk »k ¥k denote the full, approximate, cumulative,
mini-batch cross-covariance estimator at the k-th training step

respectively. The approximation works as follows:
YE=aXk-t 4 5k with X9 =0, @)
PP =apF Tl +1, with p° = 0.

Where « € [0, 1] is the decay rate, and p is a normalizing fac-
tor computed accumulatively to estimate the cross-covariance
matrix more accurately. Then let

e =S/, 5)
and % approximates ¥} better than X}, does as k gets

larger for accumulating statistics collected for previous mini-
batches. To calculate The CuXCov loss, we rewrite (3) as:
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vk = 1/N(Y(I—ee” /N))(Z(1—ee” /N))T = 1/NYHZT
(6)
where H = (I — ee” /N)(I — ee? /N)T € RV*N,
From (4), (5) and (6), we have
vk = 1/pF(@xkt 4+ 1/NYHZT) e RO, ()

Our goal is to minimize all entries in >¥. We define CuX-
Cov loss as:

Louxcon = tmce((E’;)TZ’;)/Q. (8)

4.4 Aggregation Module

We follow the common paradigm of multi-view learning
[Sun, 2013; Gao er al., 2019] to take advantages of comple-
mentary information in multiple drug features. We seek help
from the well-known attention mechanism [Bahdanau et al.,
2015] to aggregate the results from single views and learn
a weighted prediction vector Y = (§1,--- ,%,) adaptively.
The details of the attention mechanism work as follows. Sup-
pose we have n drug features and the SFRM give predictions
Yj e R”,5 = 1,2,--- ,n. The final prediction vector Y is
the weighted average of Yj s, where the softmax weights a;s
are determined by parameters B; € R” and ¢; € R. Specifi-
cally,

n

Za]YJ,a] =edi/ Y et j=1,---,n,
j=1 j=1 (9)

The parameters B, c;, as well as all other parameters in ML-
RDA are learnt in the end-to-end optimization process.

4.5 Loss Functions

Classification Loss and Reconstruction Loss
The Classiﬁcation loss is defined as:

Leis = Z >«

i=1dsEP;UN;

+ (1 —yi)log(1 —47))

(10)
Where s indexes examples and ¢ indexes DDI tasks. y; is the
label of s-th sample in labeled set P; U A; with 1 coding the
occurrence of DDI r; and 0 otherwise.

The architecture of autoencoder allows introducing the un-
supervised reconstruction loss to leverage information in both
labeled and unlabeled data. For j-th drug feature, we define
reconstruction loss over all drug pairs in 5:

ZIId — 9o, (fo, ()] (11)

y;log(y;)

J
Echst

Training Objective
The training objective of the MLRDA network is to minimize
the weighted integration of three losses:

mlnﬁc“ +BZ£CUXCOU+’YZ£RCTLGt (12)
j=1 j=1
Where hyperparameters g > O and v > 0 control relative

weights of Z ,Ccu XCop and Z g Tenst Over Loy, j indexes
=1

for the j- th drug feature.
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5 Experiments

5.1 Datasets

Drug Features

The drug features considered are from the following sources.
Drug chemical structure data I: The first chemical structure
data are extracted from Pubchem?’ substructure fingerprint.
The chemical structure of each drug are binary coded as an
881-bit feature vector, each bit representing a Boolean deter-
mination of the presence of a substructure in a drug molecule.
Drug chemical structure data II: The second chemical struc-
ture features are extended-connectivity fingerprints with di-
ameter 6 (ECFP6) generated by R package “rcdk”?, and are
hashed binary coded as a 1024-bit feature vector.

Drug indication data: The drug indication data is from
SIDER?, and are binary coded as a 2714-bit feature vector,
each bit representing a Boolean determination if the drug is
clinically significant for an indication.

Drug targets data: The drug target data is from Therapeutic
Target Database’, and are binary coded as a 2150-bit feature
vector, each bit representing a Boolean determination if a pro-
tein or a nucleic acid is a target of the drug.

Drug side effect data: The drug indication data is also from
SIDER, and are binary coded as a 5868-bit feature vector,
each bit representing a Boolean determination if the drug is
clinically significant for an side effect.

DDI Data

The labeled DDI data is from Twosides database® [Tatonetti
et al., 2012]. Tt contains 645 drugs and 1318 types of DDIs,
and in total 63473 drug pairs associated with DDI reports.

Datasets for DDI Prediction

We consider two sets of drug features for DDI prediction.
e CI1IT: Drug chemical structure data I, Drug indication
data, Drug targets data;
¢ C2IS: Drug chemical structure data II, Drug indication
data, Drug side effect data.
The sets of drugs associated with various drug features in
two datasets are different, we take the two intersections of
drug sets in two datasets as the considered drug sets. In the
two datasets, a simple filtering process is operated by keeping
only informational bits of drug features, for example, if a bit
in the original 2714-bit indication vector is O for all consid-
ered drugs, then this bit is omitted. In our study, in agree-
ment with [Jin et al., 2017], we consider the top 100 frequent
types of DDIs associated with drugs in C1IT and C2IS re-
spectively. The DDI interactions from TWOSIDES are used
as positive drug pair samples. The complement set of posi-
tive samples in TWOSIDES are utilized as negative samples.
The drug pairs not included in TWOSIDES are used as the
unlabeled dataset. Some basic statistics are shown in Table 2.

2https://pubchem.ncbi.nlm.nih.gov/
3https://cran.r-project.org/web/packages/redk/index html
*“http://sideeffects.embl.de/download/
Shttps://db.idrblab.org/ttd/full-data-download
Shttp://tatonettilab.org/resources/tatonetti-stm.html
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Dataset CI1IT C2IS
Number of considered drugs 309 317
Bits number of chemical structures 563 1024
Bits number of indications 1457 1510
Bits number of targets 190 Null
Bits number of side effects Null 3908
Average positive samples count 4757.6  4756.0
Average negative samples count 11946.4 12019.0
Unlabeled samples count 30882 33311

Table 2: Basic statistics of datasets C1IT and C2IS. The average
counts are computed over v=100 DDI types.

5.2 Methods for Comparison

Baselines

MLRDA is compared with following DDI prediction models.
¢ Nearest Neighbor method in [Vilar et al., 2012].

Label Propagation method in [Zhang et al., 2015].

Dyadic Prediction method in [Jin et al., 2017].

Graph AutoEncoders method in [Ma et al., 2018].

DeepDDI method in [Ryu et al., 2018].

Other than above 5 state-of-the-art methods designed for

DDI prediction. We also studied the well known semi-

supervised Ladder Network [Rasmus et al., 2015] as a

baseline, regarding DDI prediction as a multi-label clas-

sification problem in a multi-task learning framework.

Ablation Study
We studied the effects of different components in MLRDA.

¢ MLRDA-Un: The MLRDA model trained with only la-
beled data.

e MLRDA-X: The MLRDA model without considering
the cross-covariance penalty.

* MLRDA-X*: The MLRDA model without Z in high-
level representation layer, leading to no cross-covariance
penalty as well.

* concateMLRDA: A simplified version of MLRDA that
concatenates multiple drug features into one input vector
d and predicts DDIs with one SFRM.

Evaluations and Implementations

We randomly select 10% of drugs and mask all DDIs associ-
ated with these drugs for testing. DDIs associated with drugs
not in the testing set are used for training all models and
we use 10-fold cross-validation to tune all hyperparameters
of different methods. We optimized the hyperparameters for
MLRDA and fix them for all MLRDA variants. The hyper-
parameters are shown in Table 4. The models are trained by
Adam optimizer[Kingma and Ba, 2014] with a learning rate
of 0.0001 and a dropout rate of 0.1. We consider decaying
learning rate after 10 epochs.

For testing data, we evaluate all methods on different col-
lections of DDIs. For a given collection of DDIs, we ran-
domly select 50% of the testing set for evaluation and re-
peated the selection-evaluation process for 50 times. We
report the mean and standard deviation of the Area Under
Precision-Recall Curve(AUPR) and the area under Receiver
Operating Characteristic curve (AUROC) over 50 repetitions.
The AUPR and AUROC are averaged over 100 DDI tasks.
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Method CI1IT C2IS
AUPR AUROC AUPR AUROC
Nearest Neighbor 0.320 £ 0.0042 0.564 £ 0.0035 | 0.389 4+ 0.0048  0.635 £ 0.0037
Label Propagation 0.399 £ 0.0057 0.649 + 0.0027 | 0.434 4+ 0.0050 0.659 £ 0.0035
Baselines Dyadic Prediction 0.352 £0.0043 0.604 +0.0031 | 0.438 4+ 0.0057 0.655 £ 0.0035
Graph AutoEncoder | 0.394 £ 0.0044 0.651 £ 0.0027 | 0.426 £ 0.0046 0.676 £ 0.0024
Deep DDI 0.390 £ 0.0055 0.639 +0.0032 | 0.454 4+ 0.0051 0.683 £ 0.0028
Ladder Network 0.378 2 0.0046 0.629 = 0.0030 | 0.462 4= 0.0048 0.688 £ 0.0026
Proposed MLRDA 0.440 £+ 0.0058 0.667 + 0.0027 | 0.483 £+ 0.0053 0.697 + 0.0029
MLRDA-Un 0.397 £0.0053  0.620 £ 0.0033 | 0.429 4+ 0.0048 0.656 £ 0.0031
Ablation Study MLRDA-X 0.377 £0.0049 0.622 +0.0029 | 0.433 +0.0042 0.663 = 0.0027
MLRDA-X+ 0.354 £ 0.0046 0.606 = 0.0033 | 0.395 4 0.0038 0.631 £ 0.0026
concateMLRDA 0.419 £0.0048 0.653 +0.0026 | 0.471 4+ 0.0047 0.683 £ 0.0025
Table 3: Perfomance of MLRDA against comparative approaches.
Hyperparameters Values 08
Number of layers H + 1 5(2+1+42)
Number of neurons in encoders 2048, 1024 2. K T
Number of neurons in decoders 1024, 2048 3 CLIT-CuXCov °3‘ o CLIT-CuXCov
Dimension of Z 256 —ame |3 —ame
Activation function #(+) ReLU e <
(3,7) of C1IT (125,0.25) //\\
(8,~) of C2IS (50,0.25) o ///\ o
Decay rate as of C1IT 0.2, 0.6, 0.2) 79 o
Decay rate as of C2IS (0.3,0.2,0.6) log(batch size) log(batch size)
Mini-batch size 1024

Table 4: Hyperparameters of MLRDA.

5.3 Results and Analysis

Table 3 compares the performance of the proposed MLRDA
against its variants and competing baseline methods. The
table shows that MLRDA and concateMLRDA consistently
achieve higher AUPRs and AUROC: for better exploiting the
associations among DDI events and leveraging hidden infor-
mation in unlabeled DDI data. MLRDA-Un achieves worse
performance for failing to leverage hidden information in the
unlabeled data. Though MLRDA-X and MLRDA-X* con-
sider unlabeled data in reconstruction loss, they suffer from
overfitting and achieve even worse results for failing to dis-
entangle the class-relevant factors, and as a result, incorporat-
ing the unlabeled data will introduce undesired bias for DDI
prediction instead of revealing hidden information. MLRDA-
X outperforms MLRDA-X ™ by reserving Z for better re-
construction of drug features, and the reconstruction losses
regularize classification. The better performance of MLRDA
over concateMLRDA demonstrates the advantage of isolat-
ing features first and learn adaptive weights to fuse features
by adopting multiple SFRM.

5.4 CuXCov Loss vs XCov Loss

In this subsection we study the performances of CuXCov loss
against XCov loss [Cheung et al., 2015]. Note that the cumu-
lative CuXCov loss degenerates to XCov loss when the decay
rate parameter &« = (0. For CuXCov loss, as are set as in Table
4. Fixing other hyperparameters as in Table 4, we study the
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Figure 3: AUPRs and AUROC:s of models leveraging CuXCov loss
and XCov loss with variant batch sizes ranging from 64 to 2048.

performances of models leveraging two losses with variant
batch sizes ranging from 64 to 2048. The results in Figure 3
demonstrates that CuXCov model outperforms XCov model
consistently for better approximating the full-batch statistics.
The performances of two models are increasing as batch size
getting larger at first for better estimation of cross-covariance
with smaller estimation variance. As the batch size continu-
ally getting larger, performances decay because of the degra-
dation of generalization caused by convergence to sharp min-
imizers of the training function [Keskar et al., 2017].

6 Conclusion

In this paper, we propose a multi-task semi-supervised learn-
ing framework MLRDA for DDI prediction. MLRDA effec-
tively exploits information that is beneficial for DDI predic-
tion in both labeled and unlabeled drug data by leveraging a
novel unsupervised disentangling loss CuXCov. Moreover,
MLRDA adopts a multi-task learning framework to exploit
associations among DDI types. Experimental results on real-
world datasets demonstrate that MLRDA significantly out-
performs state-of-the-art DDI prediction methods by up to
10.3% in AUPR.
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