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Abstract
The problem of graph similarity measurement
is fundamental in both complex networks and
bioinformatics researches. Gene regulatory net-
works (GRNs) describe the interactions between
the molecules in organisms, and are widely stud-
ied in the fields of medical AI. By measuring the
similarity between GRNs, significant information
can be obtained to assist the applications like gene
functions prediction, drug development and medi-
cal diagnosis. Most of the existing similarity mea-
surements have been focusing on the graph isomor-
phisms and are usually NP-hard problems. Thus,
they are not suitable for applications in biology and
clinical research due to the complexity and large-
scale features of real-world GRNs. In this paper,
a fast similarity measurement method called FSM
for GRNs is proposed. Unlike the conventional
measurements, it pays more attention to the dif-
ferences between those influential genes. For the
convenience and reliability, a new index defined as
influence power is adopted to describe the influen-
tial genes which have greater position in a GRN.
FSM was applied in nine datasets of various scales
and is compared with state-of-art methods. The
results demonstrated that it ran significantly faster
than other methods without sacrificing measure-
ment performance.

1 Introduction
Gene regulatory network (GRN) analysis has attracted in-
creasing attention in bioinformatics and data mining, as some
complex diseases like cancer or diabetes are usually caused
by dysfunction of relevant networks or network communities
rather than mutations of individual molecules [de Souza Ja-
comini et al., 2016]. GRNs illustrate the interactions between
molecular regulators in organisms, such as DNA, RNA, pro-
teins, and other chemicals. Researchers often use data min-
ing techniques on GRNs to uncover the internal relation-
ships as well as essential pathways of diseases, particularly
cancer[Ruan et al., 2015; Denitto et al., 2015].
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Figure 1: An example of the application for GRN similarity mea-
surement. The class of unknown GRN is determined by its distance
to other known GRNs.

A central problem in GRNs is how to measure the similar-
ities between two networks, each of which is under a specific
condition. For example, given several GRN obtained from
clinical data, some of which are labeled as specific cancers,
can we have a “ruler” to measure the distance between any
two of them and determine if the rest of the samples are also
suffered from the same cancer or not (such as the example il-
lustrated in Figure 1)? Or given a sequence of GRNs obtained
from patients to be diagnosed, can we quickly scan them, cap-
ture the similarities and differences between them, and detect
the anomalies? Moreover, by searching and measuring such
similarities, the function of unknown molecules or biologi-
cal pathways associated with specific diseases can be deter-
mined. Similarity problem in GRNs is more complex than it
is in other domains such as social networks. In social net-
works, we focus more on the structural similarities and con-
sider nearly no additional assumptions or properties on nodes
and edges. However, when we consider similarity measure-
ment problems in GRNs, we actually consider the functional
similarity of two networks. Properties of nodes and edges
are highly respected, including the properties which are hand-
designed or obtained from biological experiments.

Various computational methods have been proposed to
compare graphs by learning a distance function [Liu et al.,
2019]. One widely used method is graph edit distance (GED).
GED calculates the minimal cost of transforming a graph into
another. Generally, optimization of the cost function is NP-
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hard [Zeng et al., 2009]. another state-of-art method is graph
kernel. Graph kernels compare the substructure of two net-
works by the following steps: first it divides networks into
sets of characteristic substructure patterns, and the cut-set of
the pattern sets is determined [Horváth et al., 2004]. Then,
the similarity of two networks is calculated by kernel func-
tion k : ϕ(X) × ϕ(X ′) → R. ϕ is a decomposition al-
gorithm for graph X → H into a Hilbert space, such that
k(X,X ′) = I(ϕ(X), ϕ(X ′)), where I is a isomorphism al-
gorithm for substructures. Graph kernels usually have good
performance in some application of real-world networks, be-
cause they consider local or global properties of networks.
However, finding such a similarity using graph kernels is usu-
ally a NP-complete problem [Gärtner et al., 2003].

Accordingly, computational complexity is a major chal-
lenge in graph similarity measurement. Existing methods are
not usually suitable for practical applications in biology and
clinical research because real-world GRNs are highly com-
plex systems with thousands of nodes. To measure the sim-
ilarity between GRNs faster and credibly, a method called
fast similarity measurement (FSM) is proposed. This method
is inspired by the concept of generalized hamming distance
(GHD) which is capable of identifying subtle variations in
the topology of paired graphs [Mall et al., 2017]. Besides,
the concept of influence power (IP) is introduced to identify
influential nodes in a GRN. FSM can fast measure the simi-
larity of paired GRNs by detecting the differences in nodes’
IP between two GRNs. The contributions of this study are as
follows:

• FSM captures the subtle variations between influential
nodes and provide a more credible GRN similarity mea-
surement.

• The concept of nodes’ influence power (IP) is intro-
duced. It is inspired by real-world phenomena and can
effectively recognize influential nodes among the GRN.

The rest of this paper is organized as follows. Section 2
introduces some preliminary concepts and describes IP and
GHD. In Section 3, IP and the FSM method are described in
detail. In Section 4, the method is evaluated on a large num-
ber of datasets of varying size and sources. Finally, Section 5
concludes the paper.

2 Preliminaries
2.1 Definitions and Problem Statement
Let G = (V,E) be a directed unweighted graph, where V is
the node set and E is the edge set. In a GRN, each gene
is represented as a node in V . And a directed edge be-
tween genes, e.g., (u, v) ∈ E implies that gene u regulates
gene v in the regulatory network. For the node v ∈ V ,
inNk(v) is defined as the k-th order incoming neighbor-
hood set of v (k = 1, 2, . . . ). When k = 1, for each node
in the set there exists a directed edge pointing at v, i.e.,
inN1(v) = {∀u|(u, v) ∈ E}. Furthermore, inN2(v) =
{∀u|∃w, (u,w) ∈ E, (w, v) ∈ E}. Similarly, the k-th or-
der outgoing neighborhood set of v is denoted by outNk(v).
That is, for all u ∈ outNk(v), the distance from v to u is k

in the directed graph. Finally, |·| denotes the number of ele-
ments in a set. For example, the number of nodes in a GRN
is |V |, and the in-degree and the out-degree of node v are∣∣inN1(v)

∣∣ and
∣∣outN1(v)

∣∣, respectively.
Based on the definitions above, we formalize the problem

as follows.
Problem 1. supposing GA = (V,EA) and GB = (V,EB)
are two different GRNs sharing the same node set V , and
the permutation of nodes keeps unchanged. The distance be-
tween the two networks is D(GA, GB), where D is a dis-
tance metric. Let p = P (y = 1|D(GA, GB)) be the condi-
tional probability that GA and GB belong to the same class
given the distance D(GA, GB), and (1 − p) = P (y =
0|D(GA, GB)) be the probability of the opposite situation.
We aim to find a proper distance metric D, satisfying:

min
D

H(p) = −p log p− (1− p) log(1− p)

In our experiment, the dataset contains networks labelled
as different classes (e.g. class1, class 2, ...). First, We ran-
domly chose two networks with same scale from two dif-
ferent classes respectively, denoted as GA and GB . Then,
a series of permutated networks (namely GA1, GA2, · · · and
GB1, GB2, . . . )are generated by randomly swap some links
inGA andGB . D(GAi, GA) andD(GBi, GA) (i = 1, 2, . . . )
are calculated. For the former case, we label y = 1, and
for the latter case, we label y = 0. Then, a 10-fold cross-
validation SVM was performed to check whether D can cor-
rectly measures the similarity between the networks and sat-
isfy the minimum entropy. The above process is repeated sev-
eral times to ensure that as many samples as possible in the
dataset are covered.

2.2 Influence Power and Generalized Hamming
Distance

Since many real-world GRNs are thought to be scale-free
[Caldarelli et al., 2002], a large proportion of genes are regu-
lated by only a few hub genes. If each gene is thought of as
a person in a community, and the regulatory relationship be-
tween genes as exchange of economic goods, the differences
in income and expenses will result in social class inequality.
A gene’s “social class” is associated with the level at which
it regulates other genes and the level at which it is regulated
by other genes. Here, a metric called influence power (IP)
is proposed to quantify the degree of regulation based on the
topological structure of GRNs. IP measures a node’s influ-
ence in terms of its capacity to influence its outgoing neigh-
bors (IPO), and the total influence by its incoming neighbors
(IPI ). The significance of IP stems from the fact that in the
evolution of GRNs, particularly in cancer, the mutation of
gene functions is usually caused by the localized rewiring of
influential genes [Ruan et al., 2015]. To compare two GRNs,
the differences in their functions are compared, and a larger
functional gap implies larger distance between them. There-
fore, paying more attention to high-IP genes will lead to a
more effective and credible result. The detailed description
of IP is discussed in Section 3.

GHD is a metric that measures the distance of two net-
works proposed by [Ruan et al., 2015]. Given the adjacency
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Figure 2: FSM framework. For a pair of GRNs inferred from gene expression profiles, (a) sub-graphs are extracted for each gene; (b) the IP
of a gene on its neighbors in every sub-graph is calculated, and then these sub-graphs are integrated into the original GRN (the width of the
edge indicates the strength of IP); (c) by analyzing the changes in IP, the similarity between two GRNs is calculated.

matrices of two networks A and B, the GHD of them is de-
fined as:

GHD(A,B) =
1

N(N − 1)

∑
i,j,i 6=j

(a
′

ij − b
′

ij)
2

(1)

whereN = |V | is the scale ofA andB, a
′

ij and b
′

ij are mean-
centered edge weights which are based on the original edge
weights aij and bij .

3 Methodologies
In this Section, the details of FSM method is described. The
framework of FSM is shown in Figure 2. It can be divided
into two parts. First, The influence power from one gene
to another is calculated according to their local topological
structure. In the second part, each node’s IPI and IPO are
derived according to a specific rule and assembled into a vec-
tor which is termed as total influence power vector (TIV ). Fi-
nally, the similarity of the GRNs is outputted. Herein, the cal-
culation of IP and the previously mentioned similarity mea-
surement will be detailed.

3.1 Influence Power
Even though the original GHD can measure the difference be-
tween two GRNs, it has certain weaknesses: (1) It is difficult
to apply to unweighted GRNs, and thus weights should be
manually assigned to each edge. (2) For large-scale GRNs,
calculations involving large adjacency matrices should be
performed, which requires considerable memory space and
CPU resources. Accordingly, IP is proposed to determine ef-
ficiently influential genes with the largest contribution to the
differences between GRNs. As stated in Section 2.2, the ba-
sic principle of IP is to rank genes in a GRN based on their
influence during the regulation process. Hence, the most in-
fluential genes should be determined. The value of IP of u on
v is obtained in terms of the available influence power from

u and the influence component from u to v, which are de-
noted by available power (AP (u)) and influence component
(IC(u → v)), respectively. As different neighbors of u have
different local topological structure, the intensity of influence
is also different. The former measures the “power” of gene
u, whereas the latter measures the probability of gene u influ-
encing v.

If u has a large number of incoming neighbors, then u is
regulated by several different sources. These incoming neigh-
bors are regarded as the power providers. An influential gene
can exert more “power” on other genes. Hereby, the num-
bers of genes in node sets inN1(u) and inN2(u) are used to
present the influence of the provider.

Definition 1. Given a directed GRN G = (V,E), the avail-
able power of a gene u is denoted by AP (u) and is defined
as follows:

AP (u) = 1 +
∣∣inN1(u)

∣∣+
∣∣inN2(u)

∣∣ (2)

In Equation 2,
∣∣inN1(u)

∣∣ represents the width of pre-nodes
of u, while

∣∣inN2(u)
∣∣ represents the depth of pre-nodes of

u. When considering the available power of a specific gene,
its pre-nodes’ depth property and width property are equally
important.

Considering the gene G2 of GRN A in Figure 2, the vol-
ume of “powers” it distributed to its neighbors must not be
the same due to the different topological structures of these
neighbors. To quantify the intensity with which a gene uses
its available power to influence its neighbors, we make an as-
sumption that a gene tends to indirectly influence more other
genes in a network. This assumption is very intuitive if we
imagine the influence power as a flow in network and flow
seeks its own level. For two genes u and v, given two gene
sets φ1 = outN1(u) + outN2(u) and φ2 = v + outN1(v),
φ1 and φ2 would together determines the chance that gene v
would be regulated by u.
Definition 2. Given a directed GRN G = (V,E), the influ-
ence component (IC) between two genes u and v is defined
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as the ratio of their degree distributions, that is,

IC(u→ v) =

 1
∣∣outN1(u)

∣∣ = 1
1+|outN1(v)|

|outN1(u)|+|outN2(u)| else
(3)

Finally, by considering these two factors, the IP of gene u on
gene v is modeled as follows.
Definition 3. Given a directed GRN G = (V,E), for
two genes with regulation relationship (u, v) ∈ E, the
influce power (IP) from u to v is defined by

IP (u→ v) = AP (u)× IC(u→ v) (4)

As the differences in GRN functions, the IPs of the same gene
across different GRNs are also different. Hence, from the
differences of the IPs, the distance between two network can
be estimated. Then the FSM method based on the enhanced
GHD is introduced to measure this type of distance.

3.2 Implementations of FSM based on Influence
Power

To overcome the second weakness described in Section 3.1,
the size of input data should be reduced. A desirable GRN
similarity measurement metric should satisfy two require-
ments: First, it should handle real-world GRNs with accept-
able time overhead and spatial cost. Secondly, the distance
between two different GRNs should be normally distributed
and be able to capture the subtle variations. For the first re-
quirement, a total IP vector (TIV) that represents IPs of all
nodes is constructed to replace the original GRN adjacency
matrix for dimension reduction. For the second requirement,
an enhanced GHD for vectors, called vGHD, is proposed to
represent as the similarity.
Definition 4. Given each edge’s IP, IPO and IPI are de-
fined as follows:

IPO(i) =
∑
p1

∑
q1

IP (p1 → q1) + IP (i→ p1),

IPI(i) =
∑
q2

∑
p2

IP (p2 → q2) + IP (q2 → i)
(5)

where p1 ∈ outN1(i) and q1 ∈ outN1(p1), approximately,
q2 ∈ inN1(i), p2 ∈ inN1(q2).

After we obtain the two vectors, IPO and IPI . TIV is
defined as follows:

TIV = S(IPO) + S(IPI) (6)

where S(·) is the softmax function for normalization which
smooth the scale gap between IPO and IPI .

Given a GRN, the steps of computing TIV are given in
Algorithm 1. TIV is a vector storing each gene’s IP. Com-
pared to the raw adjacency matrix, it has smaller size and its
elements are the weights of different genes.
Definition 5. Given two GRNs GA, GB and their scale N ,
their similarity, denoted by vGHD, is defined as follows:

vGHD(GA, GB) =
1

N

N∑
i=1

(TIV ′Ai
− TIV ′Bi

)
2
, (7)

Algorithm 1 TIV Calculation
Input: A GRN G = (V,E)
Parameter: N = |V |
Output: all genes’ IPs in G

1: Initialize TIV to be a zero vector with 1×N elements.
2: Initialize a temp matrix Λ with N ×N elements.
3: for gene u in V do
4: Let O∗ be the set of outgoing neighbors of gene u.
5: for gene v in O∗ do
6: Calculate IP (u→ v) by Equations (2)—(4)
7: Λ(u, v) = IP (u→ v)
8: end for
9: end for

10: Calculating IPO based on Λ following Equation (5).
11: Calculating IPI based on Λ following Equation (5).
12: TIV = S(IPO) + S(IPI)
13: return TIV

where

TIV ′Ai
= TIVAi

− 1

N

∑
i

TIVAi

TIV ′Bi
= TIVBi

− 1

N

∑
i

TIVBi

(8)

TIVAi
is the i-th component of TIV derived fromA. TIVBi

is analogously defined.

3.3 Distribution Analysis for vGHD
For measurement purposes, the similarity results should be
credible and interpretable. Assuming that there is a typi-
cal GRN A from brain cancer, and a new incoming GRN
B from an unkonwn person. To determine whether B is
also brain cancer (as shown in Figure 1), the distribution of
vGHD(A,B) should be analyzed.

First, the null hypothesis is set as follows:
H0 : networks GA and GB are independent.

Under the null hypothesis, the definition of tvGHD in Equa-
tion (9) can be rewritten as follows:

vGHD(A,B) = c− 2

N

N∑
i=1

(TIV ′Ai
× TIV ′Bi

) (9)

where c is a constant. By the transformation of Equation
(7), well-known sufficient conditions for asymptotic normal-
ity can be used, which can also be easily verified in prac-
tice. With the sufficient conditions in [Friedman et al., 1983;
Pham et al., 1989], it can be proved that the distribution of
vGHD in Equation (9) is approximately normal, that is,

vGHD(A,B)− µ
σ

∼ N(0, 1),

where µ and σ are the mean and standard deviation, respec-
tively. The simulation results shown in Figure 3 demonstrate
that the distribution of vGHD is nearly normal distribution.

As vGHD(A,B) obeys follows a normal distribution, given
a threshold α, if the p-values exceed α (e.g. 0.05), then H0
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Figure 3: Normal probability plot that compares the distribution of
vGHD to the normal distribution. The vGHDs were calculated from
1000 permutated networks which were generated based on a real
GRN from OC. The data points of vGHDs appear along the refer-
ence line indicates that the vGHDs are very close to normal distribu-
tion.

cannot be rejected, and thusA andB are independent. Higher
p-values indicate a higher probability that B is not brain can-
cer. Hence, the distribution of vGHD provides strong evi-
dence of FSM’s interpretability and credibility.

3.4 Computational Complexity
The proposed method considers the local topology structure
of the genes when calculating IP. Its computational complex-
ity depends on the density of the input graph. Let k be the
number of average neighbors of a gene, and k2 be the num-
ber of second-order neighbors. According to Equations (2)—
(5), the computational complexity for calculating each node’s
IP is O(k2n). As k is constant and significantly less than n,
it is in fact nearly O(n). Furthermore, according to Section
2.2, the computational complexity of the original GHD algo-
rithm is O(n2). However, after the improvement in the form
of Equation 7, it reduces to O(n). The total computational
complexity of the proposed method is O(k2n + n) ≈ O(n),
k � n.

4 Experiment
4.1 Datasets
Several public datasets of different scales and sources were
used; they are all related to gene regulation: AIDS [Riesen
and Bunke, 2008], BZR [Sutherland et al., 2003], COX2
[Sutherland et al., 2003], NCI1 [Wale et al., 2008], EN-
ZYMES [Borgwardt et al., 2005], and PROTEINS [Borg-
wardt et al., 2005]. Furthermore, there are three real-world
GRNs derived from gene expression profiles were used,
namely, IDH, OC [Zhang et al., 2016], and RAT [Steven-
son et al., 2007]. IDH contains 12717 gene regulation rela-
tionships from brain tumor data collected from TCGA pan-
glioma samples, and is divided into two subtypes: IDH-
wildtype and IDH-mutation. OC comprises GRNs of patients
with ovarian cancer and consists of 11750 genes. There are

two classes in this dataset according to the treatment response
(platinum-sensitive and platinum-resistant). RAT comprises
GRNs with 8799 genes of two groups of mice: one is the ex-
perimental group that was exposed to smoke for about 200
days, and the other is the control group that lived in natural
environment.

4.2 Performance Evaluation
In the experiment, the proposed method was compared with
these baselines and the following state-of-art methods under
the experiment setting described in Section 2.1:
• Random walk kernel (RW) [Vishwanathan et al., 2010],

it counts common walks in two graphs.
• Shortest path kernel (SP) [Borgwardt and Kriegel,

2005], it counts shortest paths of equal length between
pairs of nodes.
• PM [Nikolentzos et al., 2017], it finds an approximate

correspondence between the sets of vectors of the two
graphs.
• Propagation kernel (PK) [Neumann et al., 2016], a gen-

eral graph-kernel framework for efficiently measuring
the similarity of graphs. It is based on monitoring how
information spreads through a set of given graphs.
• Hash graph kernel (HG) [Morris et al., 2016], where

continuous attributes are continuously turned into dis-
crete labels using randomized hash functions.

Table 1 shows the average prediction accuracy and stan-
dard deviation. Table 2 shows the time required for calculat-
ing the distance between two networks.

The experiments were conducted on GRNs and biologi-
cal networks that, to some extent, have relationships with
the process of gene regulatory. The results shown in Table
1 demonstrate two points: (1) In large networks with higher
average degree, such as ENZYMES, PROTEINS, and IDH,
the proposed method performs the best. The obtained re-
sults conforms to the intuition that influential genes should
be weighted more in network comparison. Furthermore, the
genes’ contributions to the mutation of the entire network are
different, i.e., influential genes (usually hub genes) contribute
more than other marginal genes. (2) In some small networks
with lower average degree, although the proposed method is
not the best, it still performs well. This is because in those
networks, the aggregation effect is not pronounced. Figure
4 shows the comparison of degree distribution between OC,
RAT, COX2, and BZR. It can be seen that in OC and RAT,
there are only a few genes with large degree distributions that
control other nodes. By contrast, in COX2 and BZR, the de-
gree distribution is even across all nodes. The essence of FSM
is to detect the differences of those few genes that control the
remaining genes. These are assigned higher weights. When
the connectivity of higher-position genes changes, a higher
distance score is added to them. Hence, the relative accuracy
of FSM varies across different datasets.

In terms of runtime, FSM is significantly faster than the
other methods. Compared to the RW, FSM is nearly 300
times as fast. This enables FSM to handle large-scale net-
work similarity measurement problems, particularly real-
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Method
Dataset AIDS BZR COX2 NCI1 ENZYMES PROTEINS IDH OC RAT

RW 98.50
±0.29

69.76
±2.11

73.05
±2.74

56.89
±0.24

31.60
±1.30

72.61
±0.53 - - -

SP 98.07
±0.34

72.83
±1.87

73.97
±2.33

62.02
±0.17

40.75
±0.81

75.50
±0.80 - - -

PM 98.89
±0.22

69.75
±0.31

75.16
±1.37

69.73
±0.41

42.17
±2.02

69.81
±1.23

65.02
±6.91

65.42
±5.81

27.50
±9.79

PK 96.50
±0.74

82.06
±0.13

77.71
±0.78

52.09
±2.18

46.00
±0.30

68.37
±1.18

55.08
±7.85

69.70
±2.45

59.02
±2.87

HG 97.12
±0.36

69.81
±0.33

74.92
±0.77

57.95
±1.46

66.73
±0.91

75.14
±0.47

66.71
±1.13

66.44
±0.98

58.25
±2.06

FSM 98.41
±0.52

71.96
±1.35

75.15
±1.23

64.21
±0.98

63.70
±1.03

77.16
±0.93

69.00
±2.43

72.06
±3.02

61.70
±0.82

Table 1: Classification accuracy (± standard deviation) in 10-fold validation of the proposed FSM and several baselines and state-of-art
methods on various datasets. The symbol “-” indicates that the computation did not finish in 24 h. The best accuracy for each dataset is
reported in bold.

Method
Dataset AIDS BZR COX2 NCI1 ENZYMES PROTEINS IDH OC RAT

RW 1h27’45” 4’15” 6’43” 2h47’55” 4’57” 4h19’11” - - -
SP 4’03” 1’17” 1’55” 8’13” 1’27” 8’57” - - -
PM 1’49” 8.21” 13.37” 3’21” 8.23” 32.19” 5’33” 5’29” 4’24”
PK 6.09” 2.47” 3.13” 2’39” 2.57” 8.29” 3’02” 3’03” 2’15”
HG 1’06” 13.02” 15.03” 47.50” 1’11” 1’16” 13’50” 14’04” 11’02”
FSM 10.21” 1.20” ≤1” 24.30” 1.08” 11.27” 28.24” 29.56” 22.31”

Table 2: CPU runtime for computation in s (x
′′

), min (x
′
), or h (xh). The symbol “-” indicates that the computation did not finish in 24 h.
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Figure 4: Degree distribution of four datasets. It is clear that the ag-
gregation effect of the top two datasets is more typical and remark-
able than that of the bottom two. Hence, FSM performed better in
OC and RAT as well.

world GRNs such as OC, RAT, and IDH, which usually con-
tain thousands of nodes. In smaller-size networks such as
BZR and COX2, FSM also performs well in terms of compu-
tation time. However, in AIDS and PROTEINS, PK is a little
faster than FSM. It seems that the speeds of PK and FSM are
tied in small datasets, but FSM is more suitable in handling
larger data just like IDH, OC and RAT.

5 Conclusion

The FSM method was proposed for fast similarity measure-
ment between GRNs via vGHD and influence power. A new
index (IP) was defined to describe influential genes in the net-
work. Inspired by common phenomena, the basic principle of
FSM is that more influential genes contribute more to the dif-
ferences of the GRNs. The proposed method exhibits good
performance in GRNs and other related bio-networks.

Acknowledgements

This work was supported in part by the National Natural Sci-
ence Foundation of China (No. 61572369), in part by the
Key Projects of Guangdong Natural Science Foundation (No.
2018B030311003)

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4552



References
[Borgwardt and Kriegel, 2005] Karsten M Borgwardt and

Hans-Peter Kriegel. Shortest-path kernels on graphs. In
Data Mining, Fifth IEEE International Conference on,
pages 8–pp. IEEE, 2005.

[Borgwardt et al., 2005] Karsten M Borgwardt, Cheng Soon
Ong, Stefan Schönauer, SVN Vishwanathan, Alex J
Smola, and Hans-Peter Kriegel. Protein function predic-
tion via graph kernels. Bioinformatics, 21(suppl 1):i47–
i56, 2005.

[Caldarelli et al., 2002] Guido Caldarelli, Andrea Capocci,
Paolo De Los Rios, and Miguel A Munoz. Scale-free net-
works from varying vertex intrinsic fitness. Physical re-
view letters, 89(25):258702, 2002.

[de Souza Jacomini et al., 2016] Ricardo de Souza Jaco-
mini, David Correa Martins Jr, Felipe Leno da Silva, and
Anna Helena Reali Costa. A framework for scalable infer-
ence of temporal gene regulatory networks based on clus-
tering and multivariate analysis. In BAI@ IJCAI, pages
7–13, 2016.

[Denitto et al., 2015] Matteo Denitto, Alessandro Farinelli,
and Manuele Bicego. Biclustering gene expressions us-
ing factor graphs and the max-sum algorithm. In IJCAI,
pages 925–931, 2015.

[Friedman et al., 1983] Jerome H Friedman, Lawrence C
Rafsky, et al. Graph-theoretic measures of multivari-
ate association and prediction. The Annals of Statistics,
11(2):377–391, 1983.
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