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Abstract
Non-negative Matrix Factorization (NMF) and
spectral clustering have been proved to be efficient
and effective for data clustering tasks and have
been applied to various real-world scenes. How-
ever, there are still some drawbacks in traditional
methods: (1) most existing algorithms only con-
sider high-dimensional data directly while neglect
the intrinsic data structure in the low-dimensional
subspace; (2) the pseudo-information got in the
optimization process is not relevant to most spec-
tral clustering and manifold regularization meth-
ods. In this paper, a novel unsupervised matrix fac-
torization method, Pseudo Supervised Matrix Fac-
torization (PSMF), is proposed for data clustering.
The main contributions are threefold: (1) to cluster
in the discriminant subspace, Linear Discriminant
Analysis (LDA) combines with NMF to become a
unified framework; (2) we propose a pseudo super-
vised manifold regularization term which utilizes
the pseudo-information to instruct the regulariza-
tion term in order to find subspace that discrim-
inates different classes; (3) an efficient optimiza-
tion algorithm is designed to solve the proposed
problem with proved convergence. Extensive ex-
periments on multiple benchmark datasets illustrate
that the proposed model outperforms other state-of-
the-art clustering algorithms.

1 Introduction
Data clustering is always a hot research topic that has been
widely studied in various areas, such as document clustering
[Cai et al., 2011a], gene selection [Jiang et al., 2004] and
image segmentation [Shi and Malik, 2000]. Among them,
Non-negative Matrix Factorization (NMF) and spectral clus-
tering are two widely-used methods. NMF aims to factorize
a matrix into two non-negative matrices whose product re-
constructs the original data matrix. According to [Ding et
al., 2010], the two matrices correspond to the cluster centroid
and indicator, respectively. Thus we obtain the clustering re-
sult directly by the cluster indicator matrix without doing ex-
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tra post-processing. Spectral clustering can adapt to a wider
range of geometries and detect non-convex patterns and lin-
early non-separable clusters [Ng et al., 2002]. The general
spectral clustering method needs to construct an adjacency
matrix and calculate the Eigen decomposition value of the
corresponding Laplacian matrix [Chung and Graham, 1997].

In the past few years, many algorithms and frameworks
have been proposed in order to improve the data clustering
performance. For K-means methods, Liu [Liu et al., 2017]
proposed a compressed K-means method for fast large-scale
clustering. Besides, Shen [Shen et al., 2017] tried a sparse
embedded algorithm to accelerate K-means clustering. For
NMF-based algorithms, Cai [Cai et al., 2011b] kept the local
geometry of the data in low dimensional space by proposing
Graph Regularized NMF. Wang [Wang et al., 2018] incor-
porated the ordinal relations and proposed a novel ranking
preserving NMF approach. To enhance the robust of matrix
factorization, Ke [Ke and Kanade, 2005] replaced l2-norm
with l1-norm to improve the robustness, but the l1-norm still
cannot guarantee the feature rotation invariance. Jin [Huang
et al., 2013] utilized l2,1-norm to factorize the data matrix.
And then, Zhang [Zhang et al., 2017a] adopted l2,1-norm to
learn the low-dimensional representation of the original data
and showed its effectiveness. Lu [Lu et al., 2017] attempted
to establish a connection between Linear Discriminant Anal-
ysis (LDA) and NMF in a supervised or semi-supervised way,
but it can not be applied to data clustering.

In particular, the manifold regularization term has been
combined with clustering models to improve the perfor-
mance. Cai [Cai et al., 2011a] proposed a graph model cap-
turing the local manifold geometry to address the underly-
ing concepts which are consistent with the intrinsic manifold.
To learn a better affinity matrix, Zhang [Zhang et al., 2017b]
adopted the adaptive manifold regularization to matrix factor-
ization. Wang [Wang et al., 2017] tried to learn a mapping in
a relative low-dimensional with a more discriminative ability
by a Grassmann manifold. What’s more, Ma [Ma et al., 2018]
extended the standard concept factorization model with an
adaptive manifold regularizer which can represent of the raw
data itself and a graph manifold regularizer which can reveal
the local structure information of original data. And Zhang
[Zhang et al., 2017a] incorporated the manifold regulariza-
tion terms on both the low-dimensional feature representation
and the cluster labels and get better local geometrical infor-
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mation. All of those models show that the manifold regular-
ization term has an extraordinarily good clustering ability and
can be expanded to other frameworks.

However, there are still some drawbacks in those existing
methods. First, the framework based on NMF only factor-
izes matrices on high dimensional data space while ignores
the intrinsic data information in the low-dimensional sub-
space. Thus, ordinary NMF needs more constraints to capture
complicated structures. Second, local relationships among all
data points got in the optimization process, such as pseudo-
information, cannot be used in most spectral clustering and
manifold regularization methods. The geometry-metric struc-
ture of data distribution lacks an effective way to capture.
Third, matrix factorization squares the residue error of each
data point with a l2-norm objective function, so the clustering
results are easily affected by the outliers.

In this paper, a novel unsupervised matrix factorization
method, Pseudo Supervised Matrix Factorization (PSMF), is
proposed for data clustering. The major contributions of this
paper are summarized as follows:

1. A unified framework to cluster in the discriminant sub-
space is proposed, which combines LDA with NMF. So
the intrinsic data structure in the low-dimensional sub-
space can be found and utilized.

2. A pseudo supervised manifold regularization term is
proposed in order to find the subspace that discriminates
different classes. This regularization term utilizes the
pseudo-information to instruct itself and to refine the
clustering results.

3. A novel Augmented Lagrangian Method (ALM) based
optimization algorithm is designed to effectively and can
efficiently seek the optimal solution of the problem.

The reminder of this paper is organized as follows: the
derivation of our model is described in detail in Section 2.
And then, the optimization algorithm is proposed in Section
3. After that, the experimental results on several benchmark
datasets and further study are presented in Section 4, followed
by the conclusion in Section 5.

2 Proposed Model
2.1 Non-negative Matrix Factorization
Given the data matrix X = [x1, x2, ..., xn], xi ∈ Rd×1,
among which d and n are the dimensionality and sample
number, respectively. NMF approximates X with the prod-
uct of two non-negative matrices:

min
F≥0,G≥0

‖X − FGT ‖2F , (1)

where F ∈ Rd×c is the cluster centroid and G ∈ Rn×c is
the cluster indicator matrix. Note that the product of δF and
GT /δ results in the residue error when the scalar δ > 0. To
get the unique solution of problem (1), Huang [Huang et al.,
2013] imposed the orthogonal constraint on G. Problem (1)
can be reformulated as:

min
G≥0,GTG=Ic

‖X − FGT ‖2F , (2)

where Ic ∈ Rc×c is the identity matrix. Then the optimal
solution maintains its uniqueness.

2.2 Linear Discriminant Analysis
LDA tries to learn a linear projection matrix W ∈ Rd×m to
project the d-dimensional data into the m-dimensional rep-
resentation. Given a label matrix L = [l1, l2, ..., ln]T ∈
{0, 1}n×c, Yang [Yang et al., 2011] defined total-class scatter
St, between-class scatter Sb and within-class scatter Sw:

St =
n∑
i=1

(xi − µ)(xi − µ)T = XHHXT ,

Sb =
c∑
i=1

ni(µi − µ)(µi − µ)T = XHSSTHXT ,

Sw = St − Sb,

(3)

where µ is the mean of all data points, µi is the mean of points
in the i-th class, ni is the number of points in the i-th class.
S = L(LTL)−1/2 is the scaled label matrix and H ∈ Rn×n
is In − 1

n1n1Tn . (In is the n-dimensional identity matrix and
1n ∈ Rn×1 is a column vector with all its elements as 1)

One of the aims of LDA is to find the optimal W to make
points from the same class closer to each other. Thus, the
objective function can be written as:

min
WTStW=Im

Tr(WTSwW ), (4)

where Im ∈ Rm×m is an identity matrix, and Tr(·) is trace
operator. According to Eq.(3), problem (4) is equivalent to:

min
WTStW=Im

Tr(WT (St − Sb)W )

= min
WTStW=Im

‖WTXH(In − SST )‖2F .
(5)

2.3 Matrix Factorization in Discriminative
Subspace

For most of the applications nowadays, high dimensional data
is difficult to capture its intrinsic structure but to count on its
low-dimensional subspace. In order to find it, a connection
between matrix factorization and LDA is proposed. Consid-
ering the framework of NMF, when G is fixed, the optimal F
is computed as XG. Replace F with XG, then problem (2)
becomes:

min ‖X −XGGT ‖2F = min ‖X(In −GGT )‖2F , (6)
which is similar to problem (5). The difference between prob-
lem (5) and problem (6) is that X and G are replaced with
WTXH and S, respectively. What’s more, the optimal G
for problem (2) is the cluster indicator matrix in the matrix
framework while S in problem (5) is the scaled label ma-
trix. In this way, G and S have similar meanings in practice.
Therefore, the unsupervised matrix factorization framework
is connected to LDA:

min
F,G,W

‖WTXH − FGT ‖2F ,

s.t. F ∈ Rm×c, G ∈ Rn×c,W ∈ Rd×m,
G ≥ 0, GTG = Ic,W

TStW = Im,

(7)

where G can be considered as the cluster indicator matrix or
the pseudo-information matrix. What’s more, W is the pro-
jection matrix that can find the discriminant subspace in the
matrix factorization framework.
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According to [Huang et al., 2013], we replace the Frobe-
nius norm with the l2,1-norm to improve the robustness. In
this way, we get a robust unsupervised framework:

min
F,G,W

‖WTXH − FGT ‖2,1,

s.t. F ∈ Rm×c, G ∈ Rn×c,W ∈ Rd×m,
G ≥ 0, GTG = Ic,W

TStW = Im,

(8)

2.4 Pseudo Supervised Manifold Regularization
Considering the original data matrix X ∈ Rd×n and its pro-
jected low-dimensional data matrix Y ∈ Rm×n, W ∈ Rd×m
is the matrix which projects the d-dimensional data into the
m-dimensional representation, i.e. Y = WTX .

LDA tries to find the subspace that discriminates differ-
ent classes by minimizing the trace of the within-class scatter
matrix SW while maximizing the trace of the between-class
scatter matrix SB . According to [Zhang et al., 2009], to min-
imize SW , we need to solve the following problem:

minTr(SW )

= min
~y
(j)
i

Tr

(
C∑
i=1

Ni∑
j=1

(~y
(j)
i − ~y

m
i )(~y

(j)
i − ~y

m
i )T

)
,

(9)

where C is the number of classes; Ni is the number of sam-
ples in the i-th class; ~y(j)

i is the j-th sample in the i-th class
and ~ymi is the centroid of the i-th class. Problem (9) can be
reduced into:

min
Yi

N∑
i=1

Tr(YiL
W
i Y

T
i ), (10)

where

LWi =
1

N2
i

[
Ni − 1

−~eNi−1

]
[Ni − 1 − ~eTNi−1],

Yi = [~yi, ~yi1 , ..., ~yiNi−1
] and ~eNi−1 = [1, ..., 1]T ∈ RNi−1.

LW =
∑N
i=1 SiL

W
i S

T
i is the alignment matrix which can

be obtained by an iterative procedure [Zhang and Zha, 2004]:

LW (Fi, Fi)← LW (Fi, Fi) + LWi , (11)
for i = 1, ..., N with the initialization LW = 0.

With LWi and Eq.(11) [Zhang et al., 2009], we get:

min
Y

Tr(Y LWY
T ). (12)

According to the definition of LDA, we replace Y with the
form ofWTX . So problem (12) is equivalent to this problem:

min
W

Tr(WTXLWX
TW ),

s.t. WW T = Id.
(13)

Problem (13) is a manifold regularizer which is developed
from LDA, so it needs data structure information to instruct
itself.

In addition, we assume that any two points in high-density
region of the low-dimensional manifold should share the

same cluster in perspective of manifold learning. The low-
dimensional data graph S ∈ Rn×n is built by WTX when
W is fixed. Naturally, we minimize the following problem to
get its geometry structure from low-dimensional subspace:

min
G

Tr(GTLmG), (14)

where Lm is the Laplacian matrix of the data graph S.

2.5 Objective Function
By combing the problem (8), (13) and (14) together, we fi-
nally get the objective function of the proposed Pseudo Su-
pervised Matrix Factorization (PSMF) method:

min
F,G,W

‖WTXH − FGT ‖2,1 + λ1Tr(G
TLmG)+

λ2Tr(W
TXLWX

TW ),

s.t. F ∈ Rm×c, G ∈ Rn×c,W ∈ Rd×m, G ≥ 0,

GTG = Ic,W
TStW = Im,WWT = Id,

(15)

where λ1 and λ2 are two non-negative manifold regulariza-
tion parameters. Every time when W and G are updated, we
reconstruct Lm and LW which are a Laplacian matrix and an
alignment matrix for further updates.

3 Optimization
With the constraint WTStW = Im, problem (15) is difficult
to solve. So we first disturb the diagonal elements of St by a
scalar ε > 0 which is small enough, and then St is positive
definite. We can decompose the constraint with Cholesky de-
composition in the form of St = RTR. Thus, denoting RW
as P , and denoting (R−1)TXH and (R−1)TX as A and B,
respectively. Problem (15) is simplified into:

min
F,G,P

‖PTA− FGT ‖2,1 + λ1Tr(G
TLmG)+

λ2Tr(P
TBLWB

TP ),

s.t. F ∈ Rm×c, G ∈ Rn×c, P ∈ Rd×m, G ≥ 0,

GTG = Ic, P
TP = Im.

(16)

The above problem is not convex with three variables, so we
propose to solve it with Augmented Lagrangian Multiplier
(ALM) [Nie et al., 2015]. Since problem (16) depend on P
and G, we introduce three auxiliary variables E = PTA −
FGT , Z1 = G and Z2 = P . Then problem (16) is equivalent
to the following ALM problem:

min
E,G,Z1,P,Z2,F

‖E‖2,1 + λ1Tr(G
TLmZ1)+

λ2Tr(P
TBLWB

TZ2) +
µ

2
‖PTA− FGT − E +

Λ1

µ
‖2F+

µ

2
‖G− Z1 +

Λ2

µ
‖2F +

µ

2
‖P − Z2 +

Λ3

µ
‖2F ,

s.t. Z1 ≥ 0, G ≥ 0, GTG = Ic, P
TP = Im,

(17)

where µ ∈ R1×1 is the ALM parameter, and Λ1, Λ2 and
Λ3 are ALM multipliers. Then we optimize each variable
iteratively.
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3.1 Update E
When fixing all the variables except E, we have:

min
E
‖E‖2,1 +

µ

2
‖E −M‖2F , (18)

where M = PT − FGT + Λ1

µ . According to [Huang et al.,
2013], the optimal E is computed as:

E:,q =

{
(1− 1

µ‖M:,i‖2 )M:,i, if ‖M:,i‖2 ≥ 1
µ .

0, else.
(19)

3.2 Update Z1

When updating Z1, problem (17) becomes:

min
Z1

λ1Tr(G
TLmZ1) +

µ

2
‖G− Z1 +

Λ2

µ
‖2F ,

s.t. Z1 ≥ 0,

(20)

which can be further reduced into a closed-from problem:

min
Z1

‖Z1 − T‖2F ,

s.t. Z1 ≥ 0,
(21)

where T = G+ Λ2

µ −
λ1

µ LmG. Therefore, the optimal Z1 is:

Z1ij
= max(Tij , 0). (22)

3.3 Update Z2

To update Z2, problem (17) is reduced to:

min
Z2

λ2Tr(P
TBLWB

TZ2) +
µ

2
‖P − Z2 +

Λ3

µ
‖2F ,

s.t. ZT2 Z2 = Im.

(23)

By expanding the objective function and removing the irrele-
vant terms, we get:

min
Z2

‖Z2 −R‖2F ,

s.t. ZT2 Z2 = Im,
(24)

where R = −λ2

µ BLWB
TP + P + Λ3

µ . It is equivalent to:

max
Z2

Tr(ZT2 R),

s.t. ZT2 Z2 = Im.
(25)

And [Huang et al., 2013] proved that the optimal solution of
the above problem is:

Z2 = U3V
T
3 , (26)

where U3 ∈ Rd×m and V3 ∈ Rm×m are the left and right
singular vectors of the compact singular value decomposition
of R.

3.4 Update G
To update G, problem (17) is reduced to:

min
G

λ1Tr(G
TLmZ1) +

µ

2
‖PTA− FGT − E

+
Λ1

µ
‖2F +

µ

2
‖G− Z1 +

Λ2

µ
‖2F ,

s.t. G ≥ 0, GTG = Ic.

(27)

Similar to Z2, the optimal solution of the above problem is:

G = U1V
T
1 , (28)

where U1 ∈ Rn×c and V1 ∈ Rc×c are the left and right singu-
lar vectors of the compact singular value decomposition ofK
and K = (−λ1

µ LmZ1) + (PTA−E+ Λ1

µ )TF + (Z1− Λ2

µ ).

3.5 Update P
To update P , problem (17) is reduced to:

min
P

λ2Tr(P
TBLWB

TZ2) +
µ

2
‖PTA− FGT

− E +
Λ1

µ
‖2F +

µ

2
‖P − Z2 +

Λ3

µ
‖2F ,

s.t. PTP = Im.

(29)

Similar to Z2, the optimal solution of the above problem is:

P = U2V
T
2 , (30)

where U2 ∈ Rd×m and V2 ∈ Rm×m are the left and right
singular vectors of the compact singular value decomposition
of D and D = −λ2

µ BLWB
TZ2 + A(FGT + E − Λ1

µ )T +

(Z2 − Λ3

µ ).

3.6 Update F
Optimizing problem (17) with regard to F yields the follow-
ing sub-problem:

min
F

µ

2
‖PTA− FGT − E +

Λ1

µ
‖2F . (31)

Because GTG = Ic, the above problem is reformulated as:

min
F
‖F − (PTA− E +

Λ1

µ
G)‖2F . (32)

Finally, the optimal F can be computed as:

F = (PTA− E +
Λ3

µ
)G. (33)

3.7 Update µ,Λ1,Λ2 and Λ3

The ALM parameters are updated as follows:

Λ1 = Λ1 + µ(PTA− FGT − E),

Λ1 = Λ1 + µ(G− Z1),

Λ1 = Λ1 + µ(P − Z2),

µ = ρµ,

(34)

where the parameter ρ controls the convergence speed.
With the updating rules discussed in this section, the opti-

mization algorithm of problem (17) is summarized in Algo-
rithm 1.
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Algorithm 1 Algorithm to solve problem (17)
Input:
Original data matrix X ∈ Rd×n;
Number of clusters k;
Regularization parameters λ and µ;
Output:
Cluster indicator G.

1: Initialize G ∈ Rn×c and W ∈ Rd×m;
2: Initialize F = WTXG and P = RW and compute
H,A,B, St, Sb, Sw;

3: while not converge do
4: Update E by Eq.(19);
5: Update Z1 by Eq.(22);
6: Update Z2 by Eq.(26);
7: Update G by Eq.(28);
8: Update P by Eq.(30);
9: Update F by Eq.(33);

10: Calculate ALM parameters by Eq.(34);
11: end while

4 Experiments
In this section, the effectiveness of the proposed PSMF is
demonstrated by nine real-world datasets. Parameter sensi-
tivity of it is also discussed here.

4.1 Performance on Benchmark Datasets
In this part, we evaluate the performance of several methods
on benchmark datasets to show the effectiveness of our algo-
rithm on data clustering.

Datasets
There are in total nine datasets used in experiments, includ-
ing one object image dataset, i.e. COIL20 [Cai et al., 2011b],
two face image datasets, i.e. YALE [He et al., 2005] and
UMIST [Wechsler et al., 2012], and six datasets from the
UCI Machine Learning Repository, i.e. Dermatology, Move-
ment, Scale, Iris, Automobile, and Lung-discrete. Table 1
summarizes the characteristics of the datasets used in our ex-
periments.

Evaluation Metrics
Following [Liu et al., 2018], we adopt two widely used eval-
uation metrics to quantitatively measure clustering perfor-
mance of our algorithm.

Clustering Accuracy (Acc) [Cai et al., 2005] discovers
the one-to-one relationship between clusters and classes and

Dataset Number of Samples Dimensions Classes
COIL20 1440 1024 20
YALE 165 1024 15

UMIST 575 644 20
Dermatology 366 34 6
Movement 360 90 15

Scale 625 4 3
Iris 150 4 3

Automobile 205 25 6
Lung-discrete 73 325 7

Table 1: Description of Datasets

measures the extent to which each cluster contains data points
from the corresponding class. It is defined as follows:

Acc =

∑n
i=1 δ(map(ri), li)

n
, (35)

where ri denotes the cluster label and li denotes the true class
label, n is the total number of samples, δ(x, y) is the delta
function that equals 1 if x = y and equals 0 otherwise, and
map(ri) is the permutation mapping function that maps each
ri to the equivalent label from the data set.

Normalized Mutual Information (NMI) [Estévez et al.,
2009] is used for determining the quality of clusters. Given a
clustering result, it is estimated by:

NMI =

∑c
i=1

∑c
j=1 ni,j log

ni,j

nin̂j√
(
∑c
i=1 ni log ni

n )(
∑c
j=1 n̂j log

n̂j

n )
, (36)

where ni denotes the number of data contained in cluster Ci,
n̂j is the number of data belonging to class Lj , and ni,j de-
notes the number of data that is in the intersection between
cluster Ci and class Lj .

Compared Algorithms
Six state-of-the-art clustering methods are taken for compar-
ison, including K-means, Normalized Cut (NCut) [Shi and
Malik, 2000], NMF [Lee and Seung, 1999], Graph Regu-
larized NMF (GNMF) [Cai et al., 2011b], Robust Manifold
NMF (RMNMF) [Huang et al., 2013] and Robust manifold
Matrix Factorization (RMMF) [Zhang et al., 2017a]. For all
the clustering methods, the number of clusters is known as
input.

Initialization and Parameters Setting
For K-means, we use a faster Matlab method [Cai, 2011]. For
NCut, the data graph is based on the Euclidean distances be-
tween two data points. For GNMF and RMNMF, the graph
is constructed by finding the five nearest neighbors, in which
every edge is weighted from 0 to 1. For NMF, GNMF will
degrade to the ordinary NMF when the regularization param-
eter is 0. For RMMF and our method, the cluster indicator is
initialized with the method in [Nie et al., 2014]. All the ini-
tial values of µ and Λ are set empirically since they have little
influence on the clustering results. K-means, NCut, NMF,
GNMF, and RMNMF are sensitive to the initialization, so we
run 10 times and calculate the average results.

To compare these methods fairly, we run them with some
selected parameter combinations and choose the best results
for comparison. For GNMF and RMNMF, we set the reg-
ularization parameters α and µ by searching the grid of
{10−5, 10−4, ..., 104, 105}. For RMMF, we set the number
of iterations as 200 and choose the regularization parameters
α and β by searching the grid of {10−5, 10−4, ..., 104, 105}.
Finally, for the proposed PSMF method, we set the number of
iterations as 50 and choose the regularization parameters λ1

and λ2 by searching the grid of {10−5, 10−4, ..., 104, 105}.
Note that there is no parameter selection required for K-
means and NMF since the number of clusters is given as in-
put.
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Datasets K-means NCut NMF GNMF RMNMF RMMF PSMF

COIL20 54.48 61.85 47.60 49.65 67.92 67.01 84.58
YALE 36.85 41.82 36.47 34.24 34.36 32.73 42.42

UMIST 38.89 44.28 35.27 33.50 42.05 56.00 57.04
Dermatology 77.76 82.60 71.20 87.16 82.21 85.25 95.36
Movement 43.89 45.61 36.50 37.78 48.33 47.22 50.28

Scale 51.20 47.31 48.82 48.54 51.39 48.80 53.12
Iris 82.07 84.20 70.27 70.60 88.93 86.67 90.00

Automobile 35.76 30.44 34.83 31.37 34.63 33.17 37.07
Lung-discrete 65.62 72.47 72.19 70.41 68.12 75.34 84.93

Table 2: Clustering results of different algorithms by the measure-
ment of ACC in percentage

Clustering Results
Table 2 and 3 present the ACC and NMI comparison results of
all included clustering algorithms on nine datasets. From two
tables, we can easily observe that our method always achieves
the highest ACC and NMI. In addition, we can find the fol-
lowing detailed points from the results:

1. Compared with other algorithms employing the idea of
manifold regularization, such as GNMF, RMNMF, and
RMMF, our algorithm shows a better performance both
in the measurement of ACC and NMI, which suggests
that our method can preserve the local geometrical struc-
ture embedded in the high dimensional space well. In
other words, PSMF performs better on discovering the
intrinsic geometrical and discriminative data structure
for the clustering task.

2. The clustering performance of PSMF in datasets with
high dimensionalities, such as COIL20, YALE, and
Lung-discrete, is extremely better than other algorithms
both in the measurement of ACC and NMI, which in-
dicates that our method can effectively figure out the
clustering problem of high dimensional data compared
with other methods. What’s more, PSMF can project the
high-dimensional data into a low-dimensional subspace
while maintains a good performance on clustering. It
shows that PSMF can find a good intrinsic data repre-
sentation in the low-dimensional subspace.

3. For datasets with categorical attributes, such as Der-
matology, COIL20, and UMIST, the clustering perfor-
mance of PSMF is also better than other algorithms in
both two measurements. The reason for it may be that
our method can extract comprehensive information of
the original data, no matter what type of data is (numer-
ical, categorical or mixed).

4.2 Parameter Sensitivity
In the proposed PSMF method, there are two manifold reg-
ularization parameters, i.e. λ1 and λ2, which determine the
weight of two manifold regularizations. In order to study the
influence of λ1 and λ2 on the clustering performance, we tune
λ1 and λ2 in the same range of {10−5, 10−4, ..., 104, 105}
and show the clustering accuracy of PSMF by a 3D visual-
izable way in Figure 1. According to Figure 1, it is easy to
learn that the regularization parameters have much effect on

Datasets K-means NCut NMF GNMF RMNMF RMMF PSMF

COIL20 70.23 74.78 59.03 60.78 76.67 74.50 92.00
YALE 43.15 45.59 50.71 38.87 39.91 37.81 45.60

UMIST 57.64 62.41 41.96 47.70 63.37 76.66 78.02
Dermatology 84.67 83.18 69.86 84.60 86.52 76.44 91.18
Movement 57.25 59.71 42.81 42.13 60.47 61.63 61.97

Scale 9.57 5.92 9.19 10.18 9.79 5.01 17.82
Iris 70.47 75.64 52.95 54.73 74.24 72.85 78.69

Automobile 10.46 3.64 6.91 8.10 9.85 9.23 11.39
Lung-discrete 63.45 67.60 66.95 67.38 66.36 64.90 75.71

Table 3: Clustering results of different algorithms by the measure-
ment of NMI in percentage

clustering accuracy. Therefore, one of the important future
work is to develop a regularization parameter setting rule to
get the optimal parameter combination.

5 Conclusion
In this paper, we propose a novel Pseudo Supervised Ma-
trix Factorization (PSMF) in discriminative subspace for data
clustering. Different from other manifold regularized cluster-
ing methods, our method utilizes the pseudo-information to
optimize the objective function iteratively. In addition, the
intrinsic geometry structure can be captured in the discrimi-
native subspace by PSMF. Furthermore, the l2,1-norm is in-
troduced to enhance the robustness, so that our method is not
sensitive to the data outliers. The proposed PSMF can be sat-
isfactorily optimized by the suggested ALM-based method.
Extensive experiments on multiple benchmark datasets illus-
trate that the proposed model outperforms other state-of-the-
art clustering algorithms. In future research, we may develop
a regularization parameter setting rule for an optimal param-
eter combination.
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with varying λ1 and λ2
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