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Abstract

Destructive wildfires result in billions of dollars
in damage each year and are expected to increase
in frequency, duration, and severity due to climate
change. The current state-of-the-art wildfire spread
models rely on mathematical growth predictions
and physics-based models, which are difficult and
computationally expensive to run. We present and
evaluate a novel system, FireCast. FireCast com-
bines artificial intelligence (Al) techniques with
data collection strategies from geographic infor-
mation systems (GIS). FireCast predicts which ar-
eas surrounding a burning wildfire have high-risk
of near-future wildfire spread, based on historical
fire data and using modest computational resources.
FireCast is compared to a random prediction model
and a commonly used wildfire spread model, Far-
site, outperforming both with respect to total accu-
racy, recall, and F-score.

1 Introduction

Each year, wildfires destroy billions of dollars worth of in-
frastructure and claim the lives of people caught in their path
[Finney et al., ]. Studies indicate climate change will cause
more severe drought in vulnerable areas, leading to more dry
and dead vegetation, increasing the duration and frequency
of wildfires [Stephens er al., 2018; Westerling et al., 2006].
The United States Fourth National Climate Assessment Vol-
ume II highlights the dramatic expected future impact of cli-
mate change, including an increase in wildfire frequency and
duration that is expected to impact the global economy, hu-
man health, infrastructure, and agriculture [Reidmiller et al.,
2018]. The Dynamic Integrated Model of Climate and the
Economy (DICE) concludes that the total discounted eco-
nomic damages of climate change with no abatement are in
the order of $23 trillion USD in economic losses over the
next 80 years [Barker, 2008]. With growing concerns about
wildfire duration and frequency, increasing the efficiency of
wildfire fighting is increasingly important.
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Currently, most utilized fire modeling technologies are ei-
ther solely informative of past fire perimeters or rely on math-
ematical growth predictions and physics-based models to pre-
dict how a fire will spread. These popular models rely on
data collected during controlled forest burns, lab-burn ex-
periments of vegetation, and physics-based simulation, or
require constant and expensive drone data collection of the
area to determine fire growth in a region [Finney, 1998;
Forghani er al., 2007; Lin et al., 2019]. These systems do
not always incorporate data from past wildfire events or mea-
surements that are observed in nature from uncontrolled fire
activity, and do not systematically learn from historic events.
Although physics-based systems incorporate the impact of
a large number of precise variables, gathering the necessary
data for an active fire is often extremely difficult. The exist-
ing commonly used models are also computationally expen-
sive to run, are generally focused on hourly activity of a fire,
and most do not implement strategies and technology from
artificial intelligence (Al), such as neural networks, to assist
in the prediction process [Subramanian and Crowley, 2018].

We suggest that the problem of predicting wildfire growth
is too complex for a single discipline to effectively medi-
ate. We present FireCast, a novel solution that combines Al
and Geographic Information Systems (GIS) to predict future
wildfire spread, given a small number of location characteris-
tics and a weather forecast. Al techniques have the ability to
make classifications or predictions about a given target based
on a set of input features, and GIS has the ability to gener-
ate the appropriate geospatial input variables for such an Al
model. FireCast uses supervised learning and geospatial in-
puts, such as satellite imagery, elevation data, weather data,
and historical fire perimeters to identify patterns associated
with fire spread in certain environments to produce predic-
tions of wildfire spread. The historical fire perimeters were
manually mapped by fire fighters working to contain the fires.
To our knowledge, FireCast is the first application of super-
vised machine learning for wildfire spread prediction.

While our training and evaluation data are limited to the
Rocky Mountain region of the United States, we believe Fire-
Cast has the ability to scale to any region with proper train-
ing data. We conduct experiments and evaluate the predictive
power of FireCast both statistically and visually, and com-
pare against the most common predictive modeling software
used by fire fighters today. The major contributions of this pa-



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

per are: i) the presentation of a novel and lightweight system
for predicting wildfire spread to support informed decision-
making by experienced fire fighters; and ii) a comparison of
Al’s effectiveness at predicting wildfire growth. This work
could help reduce the impact of wildfires, saving billions of
dollars of infrastructure, and more importantly, saving lives.

2 Related Work

For decades, modeling and understanding the affects of wild-
fires has been a major area of research across multiple dis-
ciplines [Finney, 1994; Finney, 1998; Forghani et al., 2007;
Houtman et al., 2013; Lauer et al., 2017; Lin et al., 2019;
Radke, 1995; Stephens et al., 2018; Séro-Guillaume et al.,
2008; Zhang et al., 2016]. This section highlights some pop-
ular and recent efforts to solve similar problems.

2.1 Wildland Fire Decision Support System

The Wildland Fire Decision Support System (WFDSS) is a
web-based geospatial fire management portal used by some
state and federal fire agencies to manage and document large
fires [O’Connor et al., 2016]. WFDSS uses fire perimeter
mapping and a modeling framework to record fire progression
each day while incorporating real-time short-term weather
forecasts, however WFDSS does not attempt to predict fu-
ture growth. By avoiding predictions and only presenting the
user with known information, WFDSS is designed for the sole
purpose of supporting flexible and informed decision making
by fire managers about the current condition of a fire.

2.2 Farsite

Finney, a Research Scientist with the U.S. Forest Service, is
the lead developer of the most commonly used fire model-
ing tool, Farsite, which predicts fire perimeters using a two-
dimensional (2D) deterministic fire growth model [Finney,
1994; Finney, 1998]. Landscape and vegetation characteris-
tics along with weather data with physics and mathematical-
based models are used to generate predicted future fire
perimeters for a determined time period. The tool requires
a large number of location based variables, such as a man-
ually generated landscape file!, weather, winds, fuels, fuel
moisture, fire spread rate adjustments, along with other op-
tional inputs. These files can be difficult and often expensive
to generate for every location, often requiring surveyors on
the ground to collect precise information.

The fundamental fire growth shape in Farsite is based on
observations of past research which suggests 2D fire shapes
are ellipsoidal, in theory, under uniform conditions. Pure el-
lipsoidal behavior is observed in uniform environments when
factors affecting fire behaviors, such as fuels, weather and to-
pography, are constant, which is uncommon in nature. Thus,
the model incorporates mathematical interpretations of affect-
ing conditions to shape the predicted fire perimeters, and al-
tering a variable can dramatically change the predicted out-
put.

'A landscape file is a manually generated file (.Icp) which con-
tains location data for elevation, slope, aspect, fuel model, and
canopy cover of vegetation.
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2.3 Agent Based Wildfire Spread Prediction

Recent work has applied techniques from Al to predict spatial
spreading of wildfires in a model called MCTS-A3C [Sub-
ramanian and Crowley, 2018]. MCTS-A3C uses a deep re-
inforcement learning approach in which the AI agent is the
fire, given the task of spreading across the surrounding land-
scape. Similar to the approach of other models [Finney, 1998;
Kourtz and O’Regan, 1971], the agent starts in one location
and spreads outward along a satellite image.

MCTS-A3C uses a Markov Decision Process (MDP) to de-
scribe the state of any location on the landscape pertaining to
temperature, land cover type, wind speed, wind direction, hu-
midity, fire intensity, number of days since the start of the
fire, and average amount of rainfall during the coarse of the
study. MCTS-A3C uses a Monte Carlo Tree Search (MCTS)
in which each node is a cell on fire and has its own state at that
time [Kocsis and Szepesvari, 2006]. The fire is made to start
at the ignition points of the tree, and each node of the search
tree is comprised of a cell burning in the satellite image. The
model uses data from simulated and historic forest fire events
as validation data for their model. The ground truth data res-
olution used as input to MCTS-A3C varies from 30 meters to
300 meters for some locations. After various experiments, the
authors conclude that MCTS-A3C has a high burn accuracy
for all domains and environments tested.

3 FireCast Algorithm

FireCast is different from past wildfire spread prediction re-
search because of the incorporation of deep supervised ma-
chine learning methods in a unique model structure. Recently,
Convolutional Neural Networks (CNN) have been used with
remotely sensed data for different tasks, and show power-
ful capabilities [Ding er al., 2018; Maggiori er al., 2017,
Zhang et al., 2016]. Therefore, we implement the 2D CNN
detailed in Table 1, which is used for supervised learning
from the various visual inputs explained further in §4, and
is implemented using Keras with the TensorFlow backend.

The full CNN is composed of two convolutional layers of
32 and 64 hidden nodes, and uses Sigmoid and ReLU ac-
tivation functions respectively. A sliding window explores
the square area of 30 pixels around each sampled pixel-of-
interest (POI) of a given visual layer, with an actual kernel
size of 3 x 3. Additionally, the CNN has one average pooling
layer, two max pooling layers, and three dropout layers. The
CNN output tensor is concatenated with the location’s eight
atmospheric data points and used as input to a dense layer
using a Sigmoid activation function, which maps to a single
output value for each pixel. Both the CNN and the final dense
layer use the binary crossentropy loss function and do not use
regularizers. The CNN uses an RMSProp optimizer and the
final dense layer uses a stochastic gradient decent optimizer.

FireCast is trained to predict the areas surrounding the cur-
rent fire perimeter that are expected to burn during the fol-
lowing 24 hours given an initial fire perimeter, location char-
acteristics, and atmospheric data as input.

The final model is tested on a historical fire with consecu-
tively mapped perimeters, referred to as the festing fire, that
was omitted from training. FireCast receives the same input
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Layer Operation  Kernel/Pool Size  Feature Maps
1 Avg Pooling 2x2 -
2 Convolution 3x3 32
Max Pooling 2x2 -
Dropout - -

3 Convolution 3x3 64
Max Pooling 2x2 -
Dropout - -

4-Out Dense - 128
5 Concat - 136
6-Out Dense - 1

Table 1: The FireCast model architecture.

variables as the training fires for the testing fire, starting with
the first recorded fire perimeter and making next day predic-
tions for all collected perimeters. FireCast randomly samples
POISs surrounding the current fire perimeter and assigns a pre-
diction value p, so that p € [0, 1], to each pixel representing
the likelihood the model predicts the pixel will be contained
within the following fire perimeter given the input variables.
Higher values represent a higher predicted likelihood of burn.

4 FireCast Input Data

The ground truth visual and atmospheric training data are
gathered from consecutively mapped days of historical fires.
While it is appropriate to collect visual inputs such as physi-
cal geography and satellite imagery a single time just before
the fire ignition, other information such as fire perimeters and
atmospheric data are gathered for regular 24-hour and 1-hour
intervals respectively. Due to the small number of mapped
perimeters, we augment the data collected for training to gen-
erate a larger training dataset [Simard et al., 2003]. For each
fire in the training dataset, referred to as training fires, the
model is exposed to an initial fire perimeter and the future 24
hours of weather data. The ground truth fire perimeter for the
following day is used as validation data during training.

Our evaluation uses historical fire perimeters from Geo-
MAC, a United States Geological Survey (USGS) database,
for each of the training and testing fires>. The GeoMAC
database contains perimeter data for a variety of fires, al-
though the majority of these fires do not contain consecu-
tively mapped perimeters in 24 hour intervals. Consecutive
days are targeted for collection since they best support the
goal of next-day predictions.

Landsat8 satellite imagery is used as a visual input to
the model, collected from GloVis?, another USGS database.
Landsat8 is collected on an interval of every few months, so
the selected images are the most recent cloudless Landsat8
image of each location prior to the ignition of the fire. The
imagery has a resolution of 30 meters, where each pixel rep-
resents a 3030 meter square on the ground. FireCast only
uses the red, blue, green, and near-infrared bands since those
features are known to correlate with vegetation on the ground

Zhttps://www.geomac.gov
3https://glovis.usgs.gov/app?fullscreen=0
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and support abstractions such as a Normalized Difference
Vegetation Index (NDVI) for normalized vegetation health
levels so that NDV'I € [—1, 1] for each pixel, describing the
health of the vegetation in that pixel, where a greater value
describes healthier vegetation [Carlson and Ripley, 1997].

We also collect a digital elevation model (DEM), where
each pixel is the elevation value at that particular point. A 30-
meter resolution DEM is obtained from the USGS National
Map* for each fire location and geo-rectified with the Land-
sat8 pixels. The DEM is further processed to derive landscape
aspect, where each pixel contains a degree from north for the
direction the ground is facing, so that degree € [0, 359].

Weather has a significant impact on any geographically
based model, especially when predicting the highly variable
phenomena of wildfire growth. Therefore, the most precise
and accurate historical atmospheric data available for each
remote location was collected from the National Oceanic
and Atmospheric Administration (NOAA), including atmo-
spheric pressure, temperature (Celsius), dew point, wind di-
rection, wind speed, precipitation, and relative humidity for
each fire location. Each burn day from the training and test-
ing fires is exposed to 24 “future” hours of atmospheric data
to accompany the perimeter at midnight of that day. In a real
fire situation, hourly predictions of forecasts are used in place
of this historical input data. The most precise atmospheric
data available from NOAA is collected on a three-kilometer
scale, hence, the weather is interpolated for each region to
match the 30 m resolution of the other inputs.

5 FireCast Output

The output from FireCast for each day of the testing fire is an
image of the area that displays the sampled POIs which are
colored corresponding to their predicted values to burn. The
model uses all of the visual input layers, a starting known fire
perimeter, and the next 24 hours of atmospheric data for that
location, to generate the output image that displays areas that
the model believes are locations of high risk for fire spread. If
there are multiple days of input for the testing fire, the algo-
rithm will produce the corresponding number of unique out-
put images. The POIs are randomly sampled from pixels out-
side of the initial fire perimeter. The model assigns a value to
each POI based on the its characteristics and the surrounding
pixels in the sliding window.

6 Evaluation

In this paper, FireCast is statistically evaluated for total pre-
diction accuracy, total burn accuracy, and F-score. In addi-
tion, predicted FireCast outputs are visually compared to ac-
tual perimeters of the test fire, the 2016 Beaver Creek, Col-
orado fire. For the duration of the evaluation process, the total
set of predictions, T}, is classified by:

1
-y

“https://www.usgs.gov/core-science-systems/national-
geospatial-program/national-map
Shttps://www.ncdc.noaa.gov/cdo-web/

ifp>05
ifp <05 M
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Figure 1: Comparing F-scores of FireCast, Farsite, and a random
model. The line represents the percent of fire growth.

where 1 represents a predicted burn and O represents a pre-
dicted non-burn. To show that FireCast actually learns fire
patterns despite limited training data, we compare statistically
against random pixel predictions and Farsite, the most widely
used fire prediction software today.

Unlike Farsite, fuel moisture is not required for FireCast
and is not available for the testing fire location. Therefore,
Farsite is run twice for each input perimeter with wetter and
drier fuel moisture files, believing that the ground truth falls
within those parameters. Farsite is initialized to burn from an
initial perimeter with known atmospheric data, and computes
a growth prediction 24 hours into the future.

6.1 Total Prediction Accuracy

Total prediction accuracy, or how many of the randomly sam-
pled pixels are correctly predicted, is one method of eval-
uating a pixel-based prediction model. Let SetCorrectp,
denote the set of predictions p made that are correctly clas-
sified as either burned or not burned for day D; and let
Total Predictionsp,, represent all of the predictions p made
for the randomly sampled pixels during D. Thus, total pre-
diction accuracy is found for each day by,

|SetCorrect py|

Acepy |Total Predictionsp,|” @

A higher accuracy expresses greater predictive classifica-
tion capabilities of the model. Over all days of the testing
fire, we observe an average accuracy of 87.7% for FireCast,
50.4% for the random predictions, 67.8% and 63.6% for Far-
site with wet and dry fuel moisture respectively.

This metric alone is not an effective methodology to test
for overall performance. For example, one could attain high
accuracy by including more land further from the fire, lower-
ing the ratio of pixels highly vulnerable to burn in the whole
area. In this scenario, the model is less likely to predict the
pixels far away from the fire will burn, thus increasing the
overall prediction accuracy.

6.2 Recall

We define recall as the fraction of correctly classified pix-
els where p > 0.5 over the actual ground truth amount of
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Percent Fire Growth vs. F-score
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Figure 2: Comparisons between the F-score and percent of new burn
for two chunks of consecutively mapped days of the testing fire.

the sampled pixels that burned in the following 24 hours. In
theory with respect to fire modeling, we suggest it is better
to over-predict areas than to under-predict, especially where
neighborhoods are possibly at risk. Let PredictedBurnp
denote the set of pixels that FireCast predicts will burn in the
next day D, and T'otal Burnp be the set of all sampled pixels
on day D that actually did burn. Thus, recall is calculated as,

| Predicted Burnp|

Recallp, = |Total Burnp| ®)
For the testing fire, we observe an average recall of 91.1%
for FireCast, 50.4% for the randomly assigned pixels, 74.8%
and 81.1% for wet and dry condition Farsite models respec-
tively. Thus, FireCast outperforms current fire modeling tech-
nologies with respect to recall, although similar to total accu-
racy, it alone is not an effective evaluation methodology; a

model where p > 0.5 for all p will have a recall of 100%.

6.3 F-Score

The F-score is a statistical method of evaluation, defined as
the harmonic average of both precision and recall. We de-
fine precision as the fraction of correctly classified burn pixels
where p > 0.5 over the total amount of pixels that FireCast
predicts to burn in the following of 24 hours.

A higher F-score value means the model is more effective
at overall classification of the sampled pixels for prediction.
On average, FireCast achieves an average precision of 3.6%
over six consecutive days of the testing fire, yielding an av-
erage F-score of 6.4%. For the same days, the randomly pre-
dicted pixels produce an average F-score of 1.0%, and Farsite
produces 3.5% and 2.9% for wet and dry conditions respec-
tively. Therefore we conclude that FireCast outperforms the
random prediction model and Farsite when evaluated by the
F-score, detailed in Figure 1. This comparison shows that
FireCast does learn patterns of fires spread from different
landscapes in the training data, and is applicable to a new
landscape to outperform current widely used software in a
lightweight and less computationally expensive solution.

We note FireCast typically has a higher F-score on days
with more fire growth. Figure 2 visualizes this upward trend
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Figure 3: Visualization of fire islands and a fire valley.

by investigating the relationship between the percentage of
fire growth and the F-score for each day of the testing fire,
which is consistent with Figure 1. Due to limited recorded
perimeter data, our testing fire dataset observes a two week
gap in data from July 16, 2016 to August 2, 2016. We com-
pare the pixel prediction output from July 16th with the next
recorded ground truth perimeter on August 2nd and evaluate
the pixel predictions. Over this period, the testing fire grew
a massive 52.6%, and the comparison produces an F-score
of 34.4% for FireCast. The trend in Figure 2 is consistent
over the two week gap, showing that FireCast has potential
predictive power at least two weeks into the future, whereas
Farsite has an F-score of 1.3% and 1.2% for the wet and dry
scenarios respectively for the same comparison. We suggest
the reason behind this is both unreported fire fighter activity,
and a spotting phenomena that we further explain in §6.5.

6.4 FireCast Visual Output Legend

For each FireCast output figure presented in this paper, the
features follow the same legend as in Figure 3. The back-
ground of the output is the DEM input layer to provide the
user with a general understanding of the geography of the
location. The initial perimeter input layer is displayed as a
green outline, and the next day’s fire perimeter is displayed
for the user as a blue perimeter outline, though this perimeter
is hidden from the model. The sampled pixels for prediction
are colored on a scale from yellow to red. Yellow represents
pixels where p is closer to 0 and red where p is closer to 1.

6.5 Visual Evaluation

FireCast is designed to support informed decision making by
first responders, thus a visual evaluation of the output is im-
portant and useful when determining the validity and perfor-
mance of the model. The visual evaluation of the output sug-
gests that the biggest advantage of FireCast is its ability pre-
dict high-risk areas of large and rapid fire spread, and presents
the notion that the pixels incorrectly predicted to burn can ac-
tually be valuable for strategic purposes. In general, the areas
in the output image with highly dense clusters of pixels in-
correctly predicted to burn either have unique physical char-
acteristics, or were eventually overtaken by the fire.
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A

Figure 5: The same location as Figure 4, 14 days later.

Locations with Unique Characteristics

Figure 3 displays a subsection of FireCast’s output containing
examples of areas with dense clusters of pixels that were in-
correctly predicted to burn. These clusters contribute to poor
statistical results, although in a visual setting, we are able to
make alternate conclusions about them.

Areas A and B are examples of clusters of pixels that are
not within the next burn perimeter, but are completely sur-
rounded by both the current and next day perimeters. We
refer to these areas as fire islands. Area C is an example of
what we refer to as a fire valley, a collection of pixels that
are almost entirely surrounded by the fire perimeter, but are
still open to land outside of the perimeter. Both fire islands
and fire valleys are unique formations to be aware of as they
contribute to worse statistical evaluation figures, though are
areas that a fire strategist would likely not make an effort to
save when developing a tactical suppression strategy.

Locations that Eventually Burned

When visually evaluating the testing fire, a unique trend ap-
pears in the output images over time. As the model progresses
through the input perimeters, various dense clusters of pixels
where p > 0.5 develop outside of the next day’s perimeter,
and are present in all outputs once they form. We refer to
these clusters as hot spots. Hot spots are initially viewed as a
gross over-prediction by the model, as they are not contained
inside of the next day’s perimeter.

Recall from §6.3, there is a significant data gap of 14 days
between consecutively mapped fire perimeters for the test-
ing fire. Figure 4 displays the southeast corner of the out-
put image for the testing fire on the last day before the data
gap. A large hot spot extends from the initial perimeter to the
east, with an actual length extending over 9 kilometers along
the northern ridge of a mountain. Figure 5 shows the output
image for the exact same location on the first day after the
data gap, which includes the green perimeter for August 2.
Although this hot spot is initially evaluated as a large over-
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Figure 6: Western side of Beaver Creek fire. Image on left is July
16, 2016 and image on right is on August 2, 2016. This shows the
hot spots to the west of the fire eventually burned.

prediction, the fire does eventually burn the entire area, vali-
dated by the perimeter two weeks later, despite the model not
having access to atmospheric data for the data gap.

Figure 6 contains more examples of hot spots that formed
around the perimeter before the data gap. Both images in
Figure 6 are of the same location along the western edge of
the fire perimeter, where the left is the last day before the
data gap and the right is the first day after the data gap. We
notice two main areas along the western side of the fire that
contain significant hot spots, and those areas are also even-
tually overtaken by the fire, similar to the southeast corner.
Although hot spots contribute to a weaker statistical analy-
sis of the model, visual analysis unveils useful potential for
fire strategists to identify high-risk areas earlier, possibly en-
abling earlier evacuations.

7 Discussion

FireCast is a novel algorithm applying supervised machine
learning to effectively predict areas with a high-risk of burn-
ing as a wildfire progresses. Al and geospatial techniques
are applied to a new application context in an attempt to help
mitigate the costly and life threatening consequences of wild-
fires. Our model is designed to support flexible and informed
decision-making by experienced fire fighters working to con-
tain a fire. FireCast’s predictive power gives visual insights to
where the fire is likely to spread in the future instead of just
displaying past fire data and providing weather forecasts.

Although Farsite is widely adopted by fire fighters and fire
strategy experts, it is extremely computationally expensive
and requires a large number of input variables unique to each
different location. The process of initiating a Farsite simula-
tion on any landscape requires a minimum input of five files
including a land cover classification of fuels. FireCast only
requires four different kinds of input data to simulate where
a fire is likely to spread, all of which are in the public do-
main. Table 2 provides a direct comparison of the types of
input data needed for each model.

Instead of performing predetermined calculations from
manually collected input layers, machine learning within
FireCast allows the system to learn important correlations.
The reduced number of necessary and variable data, along
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FireCast Farsite
Landsat8 Fuel Model
DEM DEM
Fire Perimeters Canopy Cover
Weather/Wind Weather/Wind

Adjustment File

Fuel Moisture
Conversion File*

Fuel Model File*

Fire Acceleration File*
Fire Perimeters*

Table 2: FireCast vs. Farsite input variables. Optional input files (*).

with no need to generate both landscape and canopy cover
files makes FireCast faster, less complex, and easier to imple-
ment than Farsite, while also outperforming Farsite with re-
gards to total prediction accuracy, recall, and F-score. Visual
evaluation shows FireCast’s ability to make general predic-
tions of high-risk areas for fire spread up to two weeks prior
to the fire actually spreading to those areas.

8 Limitations, Future Work, and Conclusion

As aforementioned, FireCast is limited by the availability of
appropriate training data. Our evaluation relied on methods
such as weather interpolation and data augmentation to gen-
erate a sufficient amount of training data. We also ignored the
affect that fire fighter activity could have on the training data
since we do not have access to this information.

Future work for this project primarily involves gather-
ing more perimeter and historical data for different regions
worldwide, and exploring different resolutions of input vari-
ables. For this work, we manually gathered every fire perime-
ter in the public GeoMAC dataset for which there were con-
secutively mapped daily fire perimeters in the Rocky Moun-
tain Region since 2013, when Landsat8 began to record im-
ages. While we assume the technique is applicable to differ-
ent geographic regions, validation will require training and
test data from regions other than the Rocky Mountain Region.

We present FireCast, a novel approach to predicting the
spread of wildfire that applies supervised machine learning
techniques to wildfire prediction. FireCast is lightweight and
computationally inexpensive when compared to current pop-
ular models. Statistical analysis reveals FireCast learns pat-
terns of wildfire spread from observing historical wildfires,
and visual analysis of FireCast’s output gives insight to the
predictive power of the algorithm to identify high-risk areas
of fire spread up to two weeks into the future. FireCast al-
ready outperforms current modeling software, and with more
training data, is expected to increase in accuracy and scale to
a variety of new regions with different physical features.

Acknowledgements

The authors would like to thank Colorado College undergrad-
uate researcher Nick Crews, University of Waterloo Profes-
sors Kate Larson and Tim Brecht, and UC Berkeley Professor
John Radke for their supervision, support, and contributions.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Barker, 2008] Terry Barker. The economics of avoiding
dangerous climate change. an editorial essay on the stern
review. Climatic Change, 89(3):173-194, Aug 2008.

[Carlson and Ripley, 1997] Toby N. Carlson and David A.
Ripley. On the relation between ndvi, fractional vegeta-
tion cover, and leaf area index. Remote Sensing of Envi-
ronment, 62(3):241-252, 1997.

[Ding er al., 2018] Peng Ding, Ye Zhang, Ping Jia, and Xu-
ling Chang. A comparison: Different denn models for in-
telligent object detection in remote sensing images. Neural
Processing Letters, Jun 2018.

[Finney et al., ] Mark Finney, Isaac C. Grenfell, and
Charles W. McHugh. Modeling containment of large wild-
fires using generalized linear mixed-model analysis. Forest
Science, 55(3):249-255.

[Finney, 1994] Mark A. Finney. Farsite: a fire area simula-
tor for fire managers. The Biswell symposium: fire issues
and solutions in urban interface and wildland ecosystems,
pages 55-56, Feb 1994.

[Finney, 1998] Mark A. Finney. FARSITE: Fire Area Sim-
ulator—Model Development and Evaluation. US Forest
Service, Ogden, Utah, 1998.

[Forghani et al., 2007] Alan Forghani, Bob Cachet, John
Radke, Mark Finney, and Bret Butler. Applying fire
spread simulation over two study sites in california lessons
learned and future plans. IEEE Interantional Geosciences
Remote Sensing Symposium, pages 3008-30013, 2007.

[Houtman et al., 2013] Rachel M. Houtman, Claire A.
Montgomery, Aaron R. Gagnon, David E. Calkin,
Thomas G. Dietterich, Sean McGregor, and Mark Crow-
ley. Allowing a wildfire to burn: estimating the effect

on future fire suppression costs. International Journal of
Wildland Fire, 22:871-882, 2013.

[Kocsis and Szepesvdri, 2006] Levente Kocsis and Csaba
Szepesvari. Bandit based monte-carlo planning.
In Johannes Fiirnkranz, Tobias Scheffer, and Myra
Spiliopoulou, editors, Machine Learning: ECML 2006,
pages 282-293, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[Kourtz and O’Regan, 1971] Peter Kourtz and William G.
O’Regan. A model for a small forest fire...to simulate
burned and burning areas for use in a detection model. For-
est Science, 17(2):163-169, 1971.

[Lauer et al., 2017] Christopher J. Lauer, Claire A. Mont-
gomery, and Thomas G. Dietterich. Spatial interactions
and optimal forest management on a fire-threatened land-
scape. Forest Policy and Economics, 83:107-120, Oct
2017.

[Lin et al., 2019] Zhonghie Lin, High H. T. Liu, and Mike
Wotton. Kalman filter-based large-scale wildfire monitor-
ing with a system of uavs. IEEE Transactions on Industrial
Electronics, 66(1):606-615, Jan 2019.

4581

[Maggiori ef al., 2017] Emmanuel Maggiori, Yuliya Tara-
balka, Guillaume Charpiat, and Pierre Alliez. Convolu-
tional neural networks for large-scale remote-sensing im-
age classification. IEEE Transactions on Geoscience and
Remote Sensing, 55(2):645-657, Feb 2017.

[O’Connor et al., 2016] Christopher D. O’Connor,
Matthew P. Thompson, and Francisco Rodriguez y Silva.
Getting ahead of the wildfire problem: quantifying and
mapping management challenges and opportunities.
Geosciences, 6(3):35, 2016.

[Radke, 1995] John Radke. Modeling urban/wildland inter-
face fire hazards within a geographic information system.
Geographic Information Sciences, 1(1):9-21, 1995.

[Reidmiller et al., 2018] David R. Reidmiller, Christo-
pher W. Avery, David R. Easterling, Kenneth E. Kunkel,
Kristin L. M. Lewis, T. K. Maycock, and Bradley C. Stew-
art (eds.). Impacts, Risks, and adaptation in the united
States: Fouth National Climate Assessment, Volume II.
U.S. Global Change Research Program, Washington, DC,
USA, 2018.

[Simard et al., 2003] Patrice Y. Simard, Dave Steinkraus,
and John C. Platt. Best practices for convolutional neural
networks applied to visual document analysis. Proc. Int.
Conf. Document Anal. Recognit., 3:958-962, Aug 2003.

[Stephens er al., 2018] Scott L. Stephens, Brandon M.
Collins, Christopher J. Fettig, Mark A. Finney, Chad M.
Hoffman, Eric E. Knapp, Malcolm P. North, High Safford,
and Rebecca B. Wayman. Drought, tree mortality, and

wildfire in forests adapted to frequent fire. BioScience,
68(2):77-88, Feb 2018.

[Subramanian and Crowley, 2018] Sriram G. Subramanian
and Mark Crowley. Combining mcts and a3c for prediction
of spatially spreading processes in forest wildfire settings.
Canadian AI, LNAI 10832:285-291, 2018.

[Séro-Guillaume et al., 2008] Olivier Séro-Guillaume,
Sepehr Ramezani, Jonathan Margerit, and Didier
Calogine. On large scale forest fires propagation models.
Int. J. Thermal Science, 47(6):680-694, 2008.

[Westerling et al., 2006] Anthony L. Westerling, Hugo G.
Hidalgo, Daniel R. Cayan, and Thomas W. Swetnam.
Warming and earlier spring increase western u.s. forest
wildfire activity. Science, 313(5789):940-943, Aug 2006.

[Zhang et al., 2016] Qingjie Zhang, Jiaolong Xu, Liang Xu,
and Haifeng Guo. Deep convolutional neural networks for
forest fire detection. In 2016 International Forum on Man-
agement, Education and Information Technology Applica-
tion. Atlantis Press, 2016.



