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Abstract
Collaborative Filtering (CF) is among the most suc-
cessful techniques in recommendation tasks. Re-
cent works have shown a boost of performance of
CF when introducing the pairwise relationships be-
tween users and items or among items (users) us-
ing interaction data. However, these works usually
only utilize one kind of information, i.e., user pref-
erence in a user-item interaction matrix or item de-
pendency in interaction sequences which can lim-
it the recommendation performance. In this paper,
we propose to mine three kinds of information (us-
er preference, item dependency, and user similari-
ty on behaviors) by converting interaction sequence
data into multiple graphs (i.e., a user-item graph, an
item-item graph, and a user-subseq graph). We de-
sign a novel graph convolutional network (PGCN)
to learn shared representations of users and item-
s with the three heterogeneous graphs. In our ap-
proach, a neighbor pooling and a convolution oper-
ation are designed to aggregate features of neigh-
bors. Extensive experiments on two real-world
datasets demonstrate that our graph convolution ap-
proaches outperform various competitive method-
s in terms of two metrics, and the heterogeneous
graphs are proved effective for improving recom-
mendation performance.

1 Introduction
With the explosive growth of information, recommender
systems have become indispensable components for many
online services, such as e-commerce and online en-
tertainment. Two major branches of recommenda-
tion algorithms are collaborative Filtering (CF) method-
s [Koren and Bell, 2015] and content-based recommender
systems [Wang and Wang, 2014]. Collaborative filtering
methods, especially matrix factorization [Koren et al., 2009],
have been proved to be effective by using interactions (e.g.,
ratings and clicks) to predict user preference on items.
Recent works have shown a boost of performance of CF

methods by exploiting relationship between users and item-
∗Corresponding author

s or relationships among users (items) [Cheng et al., 2017;
Kabbur et al., 2013; He et al., 2018]. By utilizing interac-
tion data, two kinds of approaches have been proposed to
construct the relationships. One way is to store preference
relationships (i.e., interactions) between users and items in
a user-item matrix. A user’s profile is built with her his-
torically interacted items (neighbors) [Kabbur et al., 2013;
He et al., 2018]. Another approach is to convert original in-
teraction records of each user to interaction sequences of
items according to timestamps. It is believed that item
similarity/dependency can be mined from interaction se-
quences, since the next item may depend on the previous
items. The item dependency is directly used to predict the in-
teractions in the future [Feng et al., 2015; Song et al., 2016;
Yoo et al., 2017] or is used as item similarity constraints to
enhance CF methods [Cheng et al., 2017]. However, these
works usually only utilize one kind of relationships, i.e., user
preference or item dependency, which may limit the perfor-
mance of recommender systems.
Besides the item dependency, we argue that interac-

tion sequences can also reflect user similarity on behav-
iors which has not been well exploited. The number
of shared subsequences of interactions between two user-
s can indicate their similarity on behaviors. For exam-
ple, shared sequences of played songs can reveal simi-
lar tastes of users as these songs may be of the same al-
bum, artist, or genre [Cheng et al., 2017]. Repeated shop-
ping sequences may indicate a user’s profile such as occu-
pation. A student may have many shopping sequences like
pen, pencil, eraser.
In this paper, we aim to mine three kinds of information,

i.e., user preference, item dependence, and user similarity on
behaviors, from interaction data. But there are three chal-
lenges that need to be addressed. First, a suitable data struc-
ture should be designed to retain the three kinds of relation-
ships. The traditional user-item interaction matrix can only
record interactions between users and items which indicate
user preference and omits the other two kinds of information.
Second, neighbors (users or items) defined by the relation-
ships should be selected carefully as they may bring noises.
Third, for a user or an item, we need to consider how to model
the effect of its neighbors.
To solve these challenges, we first convert interaction se-

quences into three graphs including a user-item graph, an
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Figure 1: Illustration of converting interaction sequences to heterogeneous graphs.

item-item graph, and a user-subseq graph to indicate the user
preference over items, item dependency, and user similarity,
respectively. In the graphs, neighbors are selected accord-
ing to paths between vertices (path type and distance). Nex-
t, we propose a graph convolutional network named PGCN
to learn the three kinds of information with the graphs and
produce shared representations for users and items. The tra-
ditional convolution operation can only be applied on grid-
structured input. But the graphs are in non-Euclidean do-
mains and the convolution cannot handle the varied number
of neighbors [Hechtlinger et al., 2017]. To address this issue,
we design a neighbor pooling operation to cluster neighbors
according to the path type and distance. For each target ver-
tex, the pooling operation produces a fixed number of virtual
vertices by aggregating features of its neighbors with atten-
tion mechanism. We perform a convolution operation on the
virtual vertices and generate new latent vectors for each ver-
tex (users or items). Then, our neural network outputs shared
representations for users and items in heterogenous graph-
s. At last, the recommendation problem is formulated as an
edge prediction task based on the representations.
In summary, our main contributions are as follows.
• We design three heterogeneous graphs for mining user

preference, item dependency and user similarity infor-
mation contained by interaction sequences for recom-
mendation tasks.

• We propose a graph convolutional network, PGCN, to
learn shared representations for users and items with the
heterogeneous graphs. We offer a novel pooling opera-
tion to deal with a varied number of neighbors and de-
sign a graph convolution operation for aggregating fea-
tures of neighbors and retaining the locality in graphs.

• Our approach outperforms several state-of-the-art meth-
ods in terms of hit ratio and NDCG on two real-world
datasets. The experiments also prove that the heteroge-
neous graphs are effective for improving the recommen-
dation performance.

2 Preliminary
2.1 Learning from Sequence Data
We first present several fundamental definitions.

Definition 1 (Interaction Sequence) For each user, his/her
interaction records (i.e., < user, item, time >) can be sort-
ed by timestamps and form sequences as shown in Figure 1.

Definition 2 (N-item subsequence) An n-item subsequence
is a contiguous sequence of n items from a given interaction
sequence of a user. For example, a user has a shopping se-
quence {pen, pencil, eraser}. Its 2-item subsequences are
“pen, pencil” and “pencil, eraser”. We use subsequences to
denote all n-item subsequences.

We convert interaction sequences into following three
graphs (Figure 1).
Definition 3 (User-item Interaction Graph) The user-item
interaction graph GR = (V U ∪ V I , ER) records interac-
tions between users and items, where V U and V I denote sets
of users and items, respectively, and |V U | = M , |V I | = N .
ER ⊆ V U × V I is a set of edges. The weight of edge eu,i
denotes the number of interactions between u and i.

Definition 4 (Item-item Graph) The item-item graph, i.e.,
GI = (V I , EI), is designed to retain the dependency be-
tween items. The V I is the set of items. The weight of edge
ei,j in EI ⊆ V I ×V I is the number of co-occurrence of item
i and j (two adjacent items) in interaction sequences.

Definition 5 (User-subseq Graph) The user-subseq graph
GU = (V U ∪ V G, EU ) is utilized to record interactions be-
tween users and subsequences and indicates user similari-
ty on behaviors. V G is the set of n-item subsequences and
EU ⊆ V U × V G is the set of edges in GU .

At last, we use G to denote the three graphs, i.e., G =
GR ∪ GI ∪ GU . The three graphs can also be represented
by adjacency matrices, i.e., AR ∈ R(M+N)×(M+N), AI ∈
RN×N , AU ∈ R(M+O)×(M+O). The elements in adjacency
matrices record weights of edges in the corresponding graphs.
If there exists a path from vertex i to vertex j in a graph,

we define the path type T (i, j) with the types of i and j. The
number of edges in the path is defined as distance D(i, j)
between the two vertices. For example, a path user1 →
item1 → user3 in graph GR, its path type will be u-u (user
to user) and distance will be 2.

Distance=1 Distance=2
Graphs GI GR GU GI GR GU

User / u− i u− s / u− u u− u
Item i− i i− u / i− i i− i /

Subseq / / s− u / / s− g

Table 1: Path types in the three kinds of graphs. User, item and
subsequence are denoted by u, i and s, respectively.
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Figure 2: Structure of PGCN. V and E are one-hot representation and embedding matrices of vertexes, respectively. Zs and Hs are feature
tensors of virtual vertexes after neighbor pooling and real vertexes after convolution, respectively. W s are weight matrices.

Definition 6 (Neighbors) Neighbors of one vertex in hetero-
geneous graphs are chosen by two factors, i.e., path type
and distance. We define neighbors of a vertex i as Nlt(i) =
{j|D(i, j) = l, T (i, j) = t} where l is distance and t is path
type. In addition, we define each vertex as its neighbor with
distance equal to 0, i.e., N0,T (i)(i) = {i}. Neighbors of each
kind of vertex are shown in Table 1.

2.2 Recommendation Problem Formulation
In our work, interactions between users and items are repre-
sented by edges between vertices in graphs. The edges reflect
users’ preference on items. Therefore, the recommendation
problem can be cast as an edge prediction task. More pre-
cisely, given the heterogeneous graphs G, we aim to predict
the probability of existence of edge eu,i between vertex u and
i, i.e., p(eu,i|G).

3 Learning Shared Vertex Representations
In this section, we propose a new graph convolutional neu-
ral network, Path conditioned Graph Convolutional Network
(PGCN) as shown in Figure 2. In our approach, we repre-
sent vertex features and adjacency information with a matrix
and heterogeneous graphs, respectively. In what follows, we
introduce details of our approach layer by layer.

3.1 Input and Embedding Layer
As shown in Figure 2(a), each vertex (including users, item-
s and n-item subsequences) is denoted by a one-hot vector
vi indicating its ID. It should be noticed that properties or
contents of vertices can also be concatenated with one-hot
vectors to alleviate the data sparsity problem. As we aim to
study the effect of convolution on a graph with information of
neighbors, only one-hot vectors are employed for simplicity.
We use matrix V ∈ Rd0×d0 (d0 = M + N + O) to store
one-hot vectors of all vertices.
The one-hot vectors are transformed into embeddings of

low dimensions with H0 = V E and E ∈ Rd0×d1 . The em-
bedding of vertex i is denoted by h0

i . The three graphs share
embeddings and representations of users and items.

3.2 Neighbor Pooling
Now, we need to define a convolution operation to reserve
the local connectivity of graphs. The traditional convolution
operation cannot handle the varying number of neighbors for
each vertex. However, another widely-used operation, i.e.,
pooling, can solve the problem. We employ the pooling oper-
ation to aggregate features of neighbors and produce a fixed
number of virtual vertices. In previous research, pooling lay-
ers usually come after convolution layers. But the two opera-
tions are actually independent of each other. We can conduct
a pooling operation before a convolution layer.
In Figure 3(a), the pooling operation is performed on 9 re-

gions of an image with four nodes (pixels) in each of them.
The regions are constructed with nodes according to their di-
rection and distance to region 5. After pooling, a convolution
operation is performed to produce the representation for n-
ode 5. Similarly, in graphs, we select neighbors by path type
and distance to target vertices, i.e., Nlt(i), which is shown as
Figure 3(b).
We introduce the processing details of neighbor pooling.

First, neighbors are clustered by the path type and distance
to a target vertex. Then, for each cluster, a neighbor pooling
is performed and produces a virtual vertex. The equation for
pooling is as below.

zilt =
∑

j∈Nlt(i)

αijh
k−1
j , (1)

where Nlt(i) is the set of neighbors with distance l and path
type t for vertex i. hk−1

j is the representation of vertex j
in layer k − 1. αij is the weight for determining the impor-
tance of j for i. zilt denotes one virtual vertex aggregated with
neighbors Nlt of vertex i.
We provide two ways to calculate the weight αij , i.e., with

transition probability or attention. We take the graph GR as
an example. For GR, we have the adjacency matrix AR and
define D as a diagonal matrix where Dii =

∑
j A

R
ij . Then

the transition matrix for one hop can be obtained by S(1) =
D−1AR. Based on the transition matrix S(1), we can obtain
a transition matrix for two hops with A′ = S(1)S(1). We set
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A′
ii = 0 to remove the transition to the vertex itself. The

matrix is normalized with S(2) = E−1A′ and E is a diagonal
matrix where Eii =

∑
j A

′
ij . We set αij to S

(1)
ij and S

(2)
ij for

neighbors with distance equal to 1 and 2, respectively.
The weight αij can also be computed with the at-

tention mechanism according to the following equa-
tion [Velickovic et al., 2017; He et al., 2018].

αij =
exp(f(hk−1

i , hk−1
j ))∑

j′∈Nlt(i)
exp(f(hk−1

i , hk−1
j′ ))

, (2)

where f(·) is a fully connected neural network with two hid-
den layers.
We use term “PGCN-C” and “PGCN-A” to denote our ap-

proaches that use constant transition probability and attention
mechanism, respectively.

3.3 Convolution
Convolution is conducted on the virtual vertices and generates
new representations of vertices:

hk
i = g(

L∑
l=0

∑
t

W k
ltz

i
lt + bklt), (3)

where zilt is the feature vector of a virtual vertex with distance
l and path type t for vertex i. L determines the size of filters,
i.e., howmany neighbors are considered. For example, ifL =
1, neighbors within 1 hops will be utilized. In this paper, we
only consider neighbors within 2 hops. W k

lt ∈ Rdk×dk−1 and
bklt ∈ Rdk are weights and bias for convolutional filters in
layer k. All vertices in graphs share parameters W k

lt and bklt
for the same kinds of virtual vertices. g(·) is an activation
function.
With several neighbor pooling and convolution layers, we

can output a representation hi for each vertex.

3.4 Model Training
With the representations of users and items, we can compute
the probability of the existence of each edge between users

and items with p̂(eu,i|G) = σ(hu
Thi). hu and hi are repre-

sentations of user u and item i, respectively. The interaction
function (inner product) between hu and hi can also be re-
placed by a fully connected neural network [He et al., 2017].
For the space limitation, we leave this to be studied in the
future. σ is the sigmoid function. p̂(eu,i|G), p̂u,i for short,
denotes the predicted probability of existence of edge eu,i. If
a user has interacted with an item, the ground truth is set to 1,
i.e., pu,i = 1. Otherwise, pu,i = 0. The loss for optimization
can be defined with a cross-entropy function.

L = −

 ∑
(u,i)∈Y

pu,i log p̂u,i + (1− pu,i) log(1− p̂u,i)

+ λω(θ), (4)

where Y = Y+ ∪ Y−. Y+ denotes the set of existing edges
and Y− is a set of unobserved interactions between users and
items. Given one interaction (u, i), negative instances (u, j)
are sampled from items that user u has not interacted with.
ω(θ) is the regularization term and λ is the weight of it.

4 Experiments
In the experiments, we aim to answer the following three
questions.
RQ1: Do our approaches outperform other methods?
RQ2: Do the heterogeneous graphs provide valuable infor-

mation beyond the user preference on items?
RQ3: How do hyper-parameters affect the performance?

4.1 Experimental Settings

Dataset # user # item # interaction
MovieLens 943 1,682 100,000
Retailrocket 1,407,580 417,053 2,664,312

Table 2: Statistics of datasets

Datasets. In the experiments, we utilize two publicly avail-
able datasets including MovieLens-100K1 and Retailrocket2.
Their statistic information is summarized in Table 2. Their
descriptions are as follows:

1. MovieLens dataset collected ratings of movies (1-5 star)
rated by users. We treated ratings as weights of edges
between users and items in the user-item graph.

2. Retailrocket dataset recorded user interactions including
clicks, adding to carts, and transactions with items on
a real-world e-commerce website. We filtered out users
interacting with less than 10 items and items having less
than 30 users to alleviate the sparsity problem.

Evaluation protocols. We adopt the leave-one-out e-
valuation method which is widely used in many work-
s [He et al., 2017; He et al., 2018]. We compute average Hit
Ratio (HR) [Deshpande and Karypis, 2004] and Normalized
Discounted Cumulative Gain (NDCG) [He et al., 2017] by

1https://grouplens.org/datasets/movielens/
2https://www.kaggle.com/retailrocket/ecommerce-dataset
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K=2 K=6 K=10
MovieLens Retailrocket MovieLens Retailrocket MovieLens Retailrocket

Methods HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG
POP 16.12 13.54 13.32 11.41 32.77 20.59 27.44 17.40 41.68 23.35 36.81 20.32
BPR 24.74 21.89 42.59 38.21 49.28 31.87 58.38 44.25 64.06 36.25 65.68 47.44
FISM 25.99 22.81 43.79 39.05 51.33 33.65 59.40 46.47 65.53 37.95 66.71 48.80
SMF 24.93 21.88 43.59 38.44 49.57 31.85 59.43 45.83 65.66 36.91 67.11 48.24

sRMGCN 26.36 23.12 44.78 38.73 49.65 32.66 59.53 46.32 66.47 37.93 67.77 48.96
NAIS 26.95 23.73 47.75 39.44 52.58 34.30 61.27 48.27 66.06 38.53 68.23 50.68

PGCN-C 29.71 25.14 46.93 43.48 53.59 35.35 64.88 49.36 67.99 39.86 72.62 51.52
PGCN-A 29.30 24.96 49.24 44.39 54.15 35.62 66.89 51.89 67.79 39.57 73.33 54.00

Table 3: Recommendation performance (%) of compared methods.

ranking 100 items (one selected testing instance and 99 sam-
pled negative instances) for each user with predicted prefer-
ence scores.

Baselines. We compare our approaches, PGCN-C and
PGCN-A, with following recommendation methods.

• POP. This method ranks items by populari-
ty [Koren and Bell, 2015].

• BPR. It adopts a pair-wise ranking loss function for MF
models [Rendle et al., 2009].

• FISM. This method takes advantage of features of items
that a user has interacted with to obtain better represen-
tations for users [Kabbur et al., 2013].

• SMF. Item embeddings are learned with a song2vec
model and are used to compute item similarity as con-
straints in MF models [Cheng et al., 2017].

• sRMGCNN. It is a multi-graph convolutional neu-
ral network imposing smoothness priors on graph-
s [Monti et al., 2017].

• NAIS. NAIS adopts attention mechanism to ag-
gregate features of items to represent users’ pro-
file [He et al., 2018].

Settings. We implemented our approaches using Tensor-
Flow. To reduce the complexity, we only considered neigh-
bors within two hops and selected at most 100 neighbors for
each type. Only 2-item subsequences were utilized in graph
GU . We chose the LeakyReLU activation function and uti-
lized two pooling and convolution layers. We adopted the
Adam optimizer to minimize our loss function and set the
learning rate to 0.001. We chose the l2 regularization and the
weight of it was set to 10−4. The batch size was 512. To pre-
pare the training dataset, we sampled four negative instances
for each positive one. FISM and NAIS took all items that a
user had interacted with as neighbors of him/her. sRMGCNN
had three LSTM layers. For NAIS, the smoothing exponent
was β = 0.5.

4.2 Experimental Results
Performance comparison (RQ1). Table 3 shows the per-
formance of HR@K and NDCG@K with respect to the num-
ber of recommended items (i.e., K). For all methods, the size
of latent vectors is set to 64. First, we can see that our ap-
proaches (PGCN-C and PGCN-A) achieve the best perfor-

mance on the two datasets in terms of HR and NDCG. PGCN-
A achieves a relative improvement of 4.7% and 6.8% over
NAIS in terms of HR onMovieLens and Retailrocket, respec-
tively. We also find that PGCN-A seems to have better perfor-
mance on Retailrocket dataset than PGCN-C and the situation
is contrary on MovieLens. This may be because the Movie-
Lens dataset is small and PGCN-A which is more complex
than PGCN-C may have overfitting problem on it. Among
all baselines, NAIS utilizes attention mechanism to aggregate
features of neighbors (items) to represent users’ profile and
performs the best. FISM also uses this kind of information.
But it treats all items equally and its performance is a little
poorer than NAIS. sRMGCN uses spectral graph convolution
to retain the locality of user-item graph and performs better
than other baselines.

Effect of heterogeneous graphs (RQ2). To demonstrate
the effectiveness of the heterogeneous graphs, we compare re-
sults of our approaches leveraging one or two kinds of graphs.
As shown in Table 4, PGCN-C can achieve the best perfor-
mance with all the three kinds of graphs (i.e., GR, GI , and
GU ) on both datasets. PGCN-A has the best performance us-
ing all graphs on Retailrocket dataset. The two approaches
both have a better performance by adding graph GI (indicat-
ing item dependency) or graph GU (indicating user similar-
ity) than approaches with only graph GR on both datasets.
Similar to Table 3, we can see that the performance improve-
ment of adding GI and GU in Retailrocket is larger than that
in MovieLens. This is because users may have many interac-
tions with an item (buying one kind of item many times) and
interaction sequences contain richer item dependency infor-

Graphs GR GR+GI GR+GU G

MovieLens

PGCN-C
HR 66.06 66.48 67.12 67.97

NDCG 38.13 38.62 38.75 39.42

PGCN-A
HR 67.02 67.76 68.39 67.76

NDCG 38.68 39.22 39.75 39.57
Retail

PGCN-C
HR 69.00 71.35 69.60 72.51

NDCG 49.36 50.58 49.96 51.52

PGCN-A
HR 68.83 70.58 69.80 73.33

NDCG 50.15 52.21 52.02 54.02

Table 4: Performance (%) of PGCN with different graphs (K=10)
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(a) MovieLens-HR (b) Retailrocket-HR

Figure 4: Performance of PGCNw.r.t. number of convolution layers.

mation and user similarity on behaviors in Retailrocket.

Effect of the number of convolution layers (RQ3). As
PGCN is a neural network based method, a problem worth
studying is that how many neural layers are appropriate for
the recommendation tasks. We evaluate our approaches by
varying the number of neural layers (a neighbor pooling and
a convolution layer are as one neural layer). Experimental re-
sults are shown in Figure 4. For the space limitation, we only
show the performance ofHR@10. When the number of con-
volution layer is 0, our approaches become traditional matrix
factorization methods. From the figure, we can see that our
approaches with convolution layers are much better than that
without convolution layers on both datasets. As the number
of layers grows, the performance grows. When the number of
layers is 3, the performance drops. We think our approaches
may have overfitting problem when the number is 3.

Effect of the filter size (RQ3). The size of convolution fil-
ters (i.e., L) can also affect the performance of our approach-
es. With larger convolution filters, our approaches can ag-
gregate features of more neighbors. We show results of our
approaches with different sizes of convolution filters in Fig-
ure 5. When the size is bigger, the number of neighbors grows
exponentially. Therefore, we only evaluate the size of 1 and
2. Our approaches become traditional MF methods when the
size of filters is 0. We can see that with convolution, our ap-
proaches achieve better performance on both datasets. The
performance becomes better when the size of filters grows.
For PGCN-C, the performance drops a little on Retailrock-
et dataset when the size of filters is 2. We think convolution
operation may bring noise when the filter size is too large.

5 Related Work
Matrix Factorization (MF) as one of the most popular
recommendation technics is used to model users’ prefer-
ence based on explicit ratings [Koren et al., 2009] or im-
plicit feedbacks [Hu et al., 2008], and is enhanced with ad-
vanced pair-wise loss function [Rendle et al., 2009] and in-
teraction function [He et al., 2017]. Based on interaction da-
ta, features of neighbors defined by the interactions are al-
so used for improving the performance [Kabbur et al., 2013;
He et al., 2018]. Besides the direct interaction, dependency
among items in interaction sequences is also modeled by var-
ious approaches including Markov Chain [Feng et al., 2015],
tensor decomposition [Cheng et al., 2013; Li et al., 2017],
and RNN [Song et al., 2016; Yoo et al., 2017].

(a) MovieLens-HR (b) Retail-HR

Figure 5: Performance of PGCN w.r.t. the size of convolution filters.

Besides the above technics, convolutional neural net-
work is another effective method to take advantages of fea-
tures of neighbors which has been proven in various do-
mains including computer vision and natural language pro-
cessing [LeCun et al., 2015; Hinton et al., 2012]. To deal
with a varied number of neighbors in arbitrary graphs, re-
searchers proposed to design new convolutions in spec-
tral domain [Bruna et al., 2013; Henaff et al., 2015] or s-
patial domain [Bruna et al., 2013]. Compared to spec-
tral methods, spatial convolution approaches are more
flexible and design spatial convolution kernels by shar-
ing weights based on the distance between two ver-
tices [Atwood and Towsley, 2016] or performing random
walks on graphs [Hechtlinger et al., 2017]. Nguyen [2018]
and Simonovsky [2017] designed convolution filters whose
weights were conditioned on edge types. The spectral
and spatial convolutional networks have been both ap-
plied on the user-item interaction graph for recommenda-
tion [Monti et al., 2017; Berg et al., 2017]. But they only use
direct interactions between users and items and omit item de-
pendency and user similarity information.

6 Conclusion
In this paper, we converted interaction sequences to three het-
erogeneous graphs and proposed to mine three kinds of in-
formation for item recommendation. We aggregated features
of neighbors defined with paths in the graphs, and proposed
a convolutional network, PGCN, which has novel neighbor
pooling and convolution operations for learning shared rep-
resentations of users and items in the heterogeneous graphs.
The operations can retain the locality of graphs and deal with
the varied number of neighbors. Experiments on two datasets
showed that our approach outperformed other methods. Be-
sides recommendation, PGCN is a general method and can be
applied in other domains.
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