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Abstract
Recently, deep learning-based single image dehaz-
ing method has been a popular approach to tack-
le dehazing. However, the existing dehazing ap-
proaches are performed directly on the original
hazy image, which easily results in image blurring
and noise amplifying. To address this issue, the pa-
per proposes a DPDP-Net (Dual-Path in Dual-Path
network) framework by employing a hierarchical d-
ual path network. Specifically, the first-level dual-
path network consists of a Dehazing Network and a
Denoising Network, where the Dehazing Network
is responsible for haze removal in the structural lay-
er, and the Denoising Network deals with noise in
the textural layer, respectively. And the second-
level dual-path network lies in the Dehazing Net-
work, which has an AL-Net (Atmospheric Light
Network) and a TM-Net (Transmission Map Net-
work), respectively. Concretely, the AL-Net aims
to train the non-uniform atmospheric light, while
the TM-Net aims to train the transmission map that
reflects the visibility of the image. The final de-
hazing image is obtained by nonlinearly fusing the
output of the Denoising Network and the Dehaz-
ing Network. Extensive experiments demonstrate
that our proposed DPDP-Net achieves competitive
performance against the state-of-the-art methods on
both synthetic and real-world images.

1 Introduction
Single image dehazing has become a promising research area,
which can be widely used to object detection [Xiaogang et al.,
2014] and object recognition [Zheng et al., 2012]. However,
it is still a challenging task due to its uncertainty of scene
transmission map and atmospheric light.

Recently, the renaissance of deep learning greatly pro-
motes the development of single image dehazing technique.
Early studies employ Convolutional Neural Networks (C-
NNs) to estimate the transmission map and then follow the
conventional method to estimate the atmospheric light to re-
cover clear images [Cai et al., 2016; Ren et al., 2016; Xi et al.,
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2018]. A major drawback for this line of work is the neglect
of atmospheric light. If the transmission map is not well esti-
mated, it will lead to a wrong estimation of atmospheric light.
To this end, it is of great interest to jointly estimate the trans-
mission map and atmospheric light [Zhang and Patel, 2018;
Yang et al., 2017], or recovering the dehazing image from
the hazy image with end-to-end methods [Li et al., 2017;
Ren et al., 2018; Liu et al., 2018; Li et al., 2019].

However, the existing approaches suffer from the follow-
ing drawbacks. First, few of them consider the noise in the
hazing image. They perform the dehazing operation directly
on the original hazy image, which easily leads to the blur-
ring and noise amplifying in the dehazing image [Cai et al.,
2016; Ren et al., 2016; Li et al., 2017; Ren et al., 2018;
Zhang and Patel, 2018; Yang et al., 2017; Liu et al., 2018;
Li et al., 2019], as shown in Figure 1. Second, they usually
estimate both the transmission map and global atmospheric
light with one integrated loss function, which is prone to s-
low training and unpredictable errors [Zhang and Patel, 2018;
Yang et al., 2017]. The reason lies in the fact that the atmo-
spheric light is independent of the transmission map in the
atmospheric scattering model (as shown in Eq.(1)), and there
is no necessary connection between the two variables. Third,
these approaches generally estimate the atmospheric light as
a constant. In fact, this assumption is unsuitable for hazy im-
ages, particularly for those with large sky regions, since it
may cause unacceptable brightness imbalance and color dis-
tortion in dehazing images, as shown in Figure 2.

To address these issues, this paper proposes a DPDP-Net
(Dual-Path in Dual-Path network) framework by employing
a hierarchical dual-path network, which tackles the dehazing
and denoising steps with two individual networks. Specifi-
cally, to restore more details during the operation of dehaz-
ing as well as remove the noise, the first dual-path network
decomposes the hazy image into the structural layer and the
texture layer, respectively. One path is designed to perform
dehazing on the structure layer, and the other is constructed
to perform denoising on the texture layer. The second-level
dual-path network is designed for the purpose of avoiding in-
teractive interference between the transmission map and the
atmospheric light. It lies in the Dehazing Network and consist
of two independent CNNs with their corresponding loss func-
tions to estimate the transmission map and the spatial variant
atmospheric light, respectively. The overview of the proposed
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Figure 1: Dehazing results on the noisy image. (a) Hazy image.
(b) DCP. (c) BCCR. (d) DehazeNet. (e) MSCNN. (f) DPDP-Net
(Ours). The bottom row shows the detail of the marked regions,
from which we could observe that the competing methods result in
noise amplification in the sky regions, while our proposed DPDP-
Net has natural sky region, and well preserves the details.

 (a)                       (b)                      (c)                      (d)                      (e)                          (f)

Figure 2: Comparison of dehazing effects on image with large sky
region. (a) Hazy image. (b) DCP. (c) BCCR. (d) DehazeNet. (e)
MSCNN. (f) DPDP-Net (ours). The bottom row shows the detail of
the marked regions, from which we could observe that the compet-
ing methods result in brightness imbalance and color distortion.

DPDP-Net is illustrated in Figure 3.

1.1 The Contributions Are Summarized as Follows
(1) We present a novel Dual-Path in Dual-Path network
(DPDP-Net) to address the image denoising issue for single
image dehazing. As far as we know, it is the first deep ar-
chitecture to tackle this issue. Specifically, Dehazing Net-
work and Denoising Network constitute the first-level dual-
path network, which is responsible for haze removal in the
structural layer and noise removal in the textural layer, re-
spectively. This design guarantees the purpose of haze re-
moval without amplifying the noise and damaging the details.

(2) We propose to estimate the atmospheric light and trans-
mission map with independent loss function. The two opera-
tions are respectively realized in the Dehazing Network with
Atmospheric Light Network (AL-Net) and Transmission Map
Network (TM-Net), which constitute the second-level dual-
path network. Concretely, the AL-Net aims to estimate the
non-uniform atmospheric light, while the TM-Net aims to
learn the transmission map that reflects the visibility of the
image. The two networks share the same visual features, but
have their independent loss functions, which avoids their in-
teractive interference and guarantees better estimations.

(3) The AL-Net is built to acquire the non-uniform atmo-
spheric light value to avoid the color shift issue that is easy to
occur in the sky part of the hazy image.

2 Related Work
Image dehazing technique has witnessed many achievements
in last decades. It can be roughly classified into four cat-
egories: additional information-based methods [Narasimhan
and Nayar, 2002; Nayar, 1999], contrast enhancement-based
methods [Narasimhan and Nayar, 2003], prior-based meth-
ods [He et al., 2009; Qingsong et al., 2015; Tan, 2008;
Berman et al., 2016; Meng et al., 2014], and learning-based
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Figure 3: The proposed DPDP-Net framework. The Dehazing-Net
and the Denoising-Net constitute the first-level dual-path, TM-Net
and the AL-Net make up the second-level dual-path.

methods [Cai et al., 2016; Ren et al., 2016; Li et al., 2017;
Ren et al., 2018; Zhang and Patel, 2018; Yang et al., 2017;
Liu et al., 2018; Li et al., 2019]. The first two categories
have their obvious shortcomings. The additional information-
based methods is hard to applied in cases where additional in-
formation or multiple images are not available. And the con-
trast enhancement-based methods do not consider the degra-
dation cause of the haze image, leading to the results often
have severe color distortion.

Prior-based methods [He et al., 2009; Qingsong et al.,
2015; Lai et al., 2015; Berman et al., 2016; Meng et al., 2014]
are proposed to address the ill-posed issue caused by the un-
known transmission map and global atmospheric light. The
dark channel prior (DCP) presented by [He et al., 2009] is
one of the most famous one. [Meng et al., 2014] enhanced it
by optimizing the inherent boundary constraint with weight-
ed L1-norm contextual regularization to estimate the trans-
mission map. [Qingsong et al., 2015] proposed a color atten-
uation prior (CAP) to recover depth information by creating
a linear model and learning the parameters of the model with
a supervised learning method. In contrast, [Berman et al.,
2016] introduced a non-local haze-line prior, which is based
on an approximation of the entire dehazing images including
a few hundred distinct colors.

Recently,learning-based methods have attracted great at-
tention, which employ CNNs or GANs (Generative Adversar-
ial Network) for single image dehazing. Specifically, CNN-
based methods mainly focus on estimating transmission map
or atmospheric light [Cai et al., 2016; Ren et al., 2016;
Li et al., 2017; Ren et al., 2018] to restore haze-free im-
ages via atmospheric scattering model. For example, [Ren
et al., 2016] proposed a Multi-Scale CNN (MSCNN) mod-
el, which consists of coarse-scale and fine-scale networks to
estimate the transmission map. [Cai et al., 2016] proposed a
DehazeNet approach, which is an end-to-end CNN network
for estimating the transmission map with a novel BReLU unit.
In addition, All-In-One Dehazing Network (AOD-Net) [Li et
al., 2017] reformulated a new atmospheric scattering model
from the classic one by leveraging a linear transformation to
integrate both the transmission map function and the atmo-
spheric light into a unified map. More recently, [Zhang and
Patel, 2018] proposed a multi-task method with three com-
ponents, including a densely connected encoder-decoder net-
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work to estimate the transmission map, a U-net network to
predict the atmospheric light, and a GAN to discriminate the
generated images and the real ones, respectively.

It can be known that the existing prior-based and learning-
based methods estimate the transmission map and atmospher-
ic light directly from the hazy image. However, few existing
methods take the image noise into consideration, which may
lead to image blurring and noise amplifying in dehazing im-
ages.

3 The Dual-Path in Dual-Path Network
(DPDP-Net)

To have a better understanding of our work, we first briefly re-
view the atmospheric scattering model. Then a detailed intro-
duction of our proposed DPDP-Net, including the first-level
and the second level dual-path networks is presented. Finally,
we illustrate how to use the estimated transmission map and
non-uniform atmospheric light to restore the dehazing image.

3.1 The Atmospheric Scattering Model with Noise
The atmospheric scattering model Eq.(1) for the hazy image
is expressed as:

I(x) = J(x)t(x) + A(1− t(x)) , (1)

where I(x) is the hazy image, and J(x) is the dehazing im-
age. The atmospheric light vector A(x) describes the intensi-
ty of the ambient light for a particular scene set to be location
related in this paper. And t(x) is a transmission matrix de-
fined as:

t(x) = e−βd(x), 0 < t(x) < 1 , (2)

where β is the scattering coefficient of the atmosphere, and
d(x) is the distance between the object and the camera. De-
note n(x) be the noise, then the hazy image and the dehazing
image are respectively expressed as:

I(x) = J(x)e−βd(x) +A(1− e−βd(x)) + n(x) . (3)

J(x) = I(x)eβd(x) +A(1− e−βd(x))
− n(x)e−βd(x) .

(4)

3.2 The First-level Dual-path Network
The first-level dual-path network includes a Dehazing Net-
work and a Denoising Network, where the Dehazing Network
is responsible for haze removal in the structural layer, and the
Denoising Network deals with noise in the textural layer, re-
spectively. In this subsection, we first introduce how to de-
compose an image into a structural layer and a textual layer,
and then provide the details of the Denoising Network.

Image Structure-texture Decomposition
A common drawback in the existing single image dehazing
methods is that they ignore the presence of noise, which is
actually inevitable in natural images. According to [Li et al.,
2014], haze or fog is mostly related to the structural layer and
noise or artifact is related to the textural layer in an image. To
preserve more details as well as suppress the noise and arti-
facts, we propose to address the image noise in single image

dehazing by considering dehazing and denoising simultane-
ously. First, we decompose the hazy image into a structural
layer and a textural layer as follows:

I = IT + IS , (5)

where IS is the structural layer corresponding to the object-
s with large gradient magnitudes in the image I , and IT is
the textural layer reflecting the fine details. Based on the To-
tal Variation (TV) regularization technique [Li et al., 2014],
the structural layer is obtained by minimizing the following
objective function:

min
IS

∑
i

(IS − Ii)2 + λ| 5 IS | , (6)

where i represents the position of a pixel, λ is the regulariza-
tion parameter and 5 is the gradient operator. The textural
layer is obtained by calculating the difference between the
input image and its structural layer:

IT = I − IS . (7)

The Denoising Network
The structure-texture decomposition explores the fact that the
structural layer is related to large gradient magnitudes, while
the textural layer captures the smaller gradient magnitudes,
exhibiting the fine image details, noise and some artifacts.
To preserve more details and suppress the noise and artifacts,
we apply FFDNet [Zhang et al., 2017] in the textural lay-
er. FFDNet is a fast and flexible denoising net, it can han-
dle many types of noises, such as camera noise, video noise,
JPEG compression noise and some spatially variant noise.

3.3 The Second-Level Dual-Path Network (The
Dehazing Network)

The second-level dual-path network lies in the Dehazing Net-
work. It consists of two branches with cascaded convolu-
tional layers, as shown in Figure 4. Specifically, the TM-Net
branch learns relationship between the hazy image and the
transmission map, while the AL-Net branch learns the rela-
tionship between the hazy image and the atmospheric light.
Compared with the previous methods, our Dehazing Network
is directly applied to the structural layer of the hazy image,
which is devoid of noise and artifacts. In addition, we es-
timate the transmission map and non-uniform atmospheric
light respectively in a cascaded CNN model through inde-
pendent loss function, which guarantees an accurate dehazing
performance and improves the flexibility of the network.

Transmission Map Network (TM-Net)
The task of predicting transmission map is to learn a pixel-
wise non-linear mapping from a given input image to the cor-
responding transmission map by minimizing the loss between
them. The TM-Net includes three layers and each layer con-
sists of filters with different sizes and numbers. Concretely,
the first layer and the second layer have 96 filters of size 9×9
and 64 filters of size 5×5, respectively. Both take structural
layer of hazy images as input to extract the features. And
the last layer sets up a convolutional layer to convert the in-
put data into a feature map with a single channel image with
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Figure 4: The illustration of the proposed Dehazing Network.

32 filters of size 3×3. Meanwhile, the non-linear activation
function ReLU is used after the first two convolutional layer.
Zero padding is applied to the convolutional layer to ensure
the same input and output sizes. Besides, we use the filtered
transmission map by the guide filtering [He et al., 2010] as
the ground truth to compute the loss.

Non-uniform Atmospheric Light Network (AL-Net)
Most of the exiting dehazing methods focus on the estima-
tion of transmission map, paying less attention to the pre-
diction of atmospheric light. For example, [He et al., 2009;
Meng et al., 2014; Ren et al., 2016] estimates the atmospheric
light by predicted transmission map and consider atmospheric
light to be a global constant. However,as shown in Figure 5,
suspended particles in the atmosphere such as haze aerosols
are always distributed near the surface of the earth. Under the
assumption that there is a constant atmospheric light L∞, the
airlight component at p in Figure 5 is calculated as

La = L∞(1− e−βd(p)) + Lsun(p) (8)

where Lsun is the brightness of direct sunlight. The closer
to the sun, the stronger brightness it has. Because d(p) <
∞ , then La 6=L∞ . Only if Lsun can be ignored, we have
La < L∞ . If not, there will be La > L∞ . It implies
that when an image has a large sky region, the restored image
will have color distortion due to the improper assumption of
atmospheric light.

Therefore, we treat the atmospheric light as a non-uniform
3-channel matrix, which is able to reflect the spatial-varying
intensity of the ambient light. The ground truth and the

P

Sun

Haze

Atmospheric 
Environment

d  

Figure 5: Non-uniform airlight due to haze inhomogeneity and in-
fluential sunlight. p is the point in the sky that is closer to the sun
and d is the scene depth, i.e., the distance from the point p to the
camera.

spatial-varying 3-channel atmospheric light image predict-
ed by the DPDP-Net are shown in Figure 6. The constan-
t atmospheric light, the true transmission map and the clear
image are used to generate the hazy image in Figure 6(a).
To back-propagate errors to the AL-Net, the ground truth of
atmospheric light in Figure 6(b) is synthesized by the hazy
structural layer, the clear structural layer, and the true trans-
mission map. It can be observed that the intensity of the sky
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(a) (b) (c) (d)

Figure 6: Atmospheric light predicted by DPDP-Net and filtered
results. (a) Hazy image. (b) the ground truth of atmospheric light.
(c) the predicted non-uniform atmospheric light of DPDP-Net. (d)
the filtering result of (c).

region is stronger than the non-sky region. The Figure 6(c) is
the predicted atmospheric light,it can be apparently seen that
the sky region has a consistent and higher atmospheric light
value. Then, to ensure its smoothness, we use guide filtering
on the predicted atmospheric light in Figure 6(d). The specif-
ic results from different algorithm are compared as shown in
Figure 2.

Specifically, the AL-Net includes 3 convolutional layer-
s with different filter sizes followed by ReLU nonlinearity
function. Different from the TM-Net, the AL-Net enjoys s-
mall amount of filters with lighter weights. Specifically, the
first layer consists of 64 filters with the size of 9×9, the sec-
ond layer consists of 32 filters with the size of 5×5, and the
third layer has 16 filters with the size of 3×3, which interact-
s with the loss layer by combing the 32 channels into feature
maps. Zero padding is also performed to ensure the same size
of input and output.

Loss Functions
Most of the existing learning-based methods tend to jointly
optimize the estimation of atmospheric light and transmis-
sion map [Zhang and Patel, 2018; Yang et al., 2017]. They
expect to learn the atmospheric light and transmission map
simultaneously and design a joint loss function by combining
the atmospheric light estimation error and the transmission
map estimation error. However, this leads to a result that the
dehazing image is a combination of the atmospheric light and
the transmission map estimated by their networks. When the
error is back propagated, the joint error composed of atmo-
spheric light and the transmission map will respectively back
propagate to each of them to cause mutual influence. What’s
more, the ground truth of atmospheric light in [Yang et al.,
2017] is obtained by using hazy image, clear image and the
estimated transmission map. When the error back propagates,
the inaccuracy of the transmission map will affect the correct-
ness of atmospheric light. That is to say, the errors in one
subnetwork will affect the other, leading to the inaccurate es-
timation of atmospheric light and transmission map. To this
end, we design two independent loss functions to respective-
ly train the two subnetworks to eliminate the interactive error
influences, as shown in Figure 4.

For the TM-Net, we minimize its MSE loss function LTM
between the predicted transmission f(t) and the correspond-
ing ground truth of the transmission map tgt , which is ex-
pressed as:

LTM =
1

NHW

N∑
i=1

||f(t)i − tgti ||2 , (9)

where H×W is the dimension of the predicted transmission,
H and W are the height and the width of the image, respec-
tively. And N is the total number of training batches, f(t) is
the learned transmission mapping function , tgt is the corre-
sponding truth filtered transmission map by guide filtering.

For the AL-Net, we also minimize the MSE loss function
LAL between the estimated value f(A) and corresponding
ground truth of the atmospheric light obtained from the true
structural layer Jstruct,which is expressed as:

LAL =
1

NHW

N∑
i=1

||f(A)i −Agt||2 , (10)

where

Agt = (Istruct − Jstruct × tgt)/(1− tgt) . (11)

3.4 The Final Fusion
When obtaining the dehazing structural layer and the denois-
ing textual layer, the next step is to combine them. Howev-
er,since most enhancement functions f are not linear, then
f(IS + IT ) 6= f(IS) + f(IT ), we cannot sum them directly.
As a consequence, we have to approximate the enhancemen-
t function by setting a scale multiplication factor β, which
can obey the following condition:f(I) = f(IS) + βD(IT ),
Where, D(IT ) is the denoising operation. Thus, we rewrite
the Eq. (1) as:

J(x) =
I(x)−A(x)

t(x)
+A(x) . (12)

The dehazing operation on the right side of the Eq.(12) can
be regarded as an operator f(•), according to the Taylor’s
expansion method: f(t+5t) ≈ f(t)+f ′(t)5 t, the Eq.(12)
is rewritten as:

J = f(I) = f(IS +D(IT )) ≈ f(IS) + f ′(IS)D(IT )

= JS +
1

t
D(IT ) .

(13)

According to Eq.(13), the denoising textural layer D(IT ) is
added to the dehazing structural layer JS to generate the de-
hazing, artifacts-free and denoising image J .

4 Experimental Results
In this section, we demonstrate the superiority of the pro-
posed DPDP-Net on the Synthetic and Real-World Image
datasets against several state-of-art single image dehazing
methods, including DCP [He et al., 2009], BCCR [Meng et
al., 2014], MSCNN [Ren et al., 2016], DehazeNet [Cai et
al., 2016], AOD-Net [Li et al., 2017], Gated-Net [Ren et al.,
2018], GMAN [Liu et al., 2018] , PAD-Net [Liu and Zhao,
2018] , Bilinear-Net [Yang et al., 2017] and DFCRN [Xi et
al., 2018].

4.1 Experimental Settings
Datasets
The training dataset is composed of 400 synthesized hazy im-
ages, which are generated with Eq.(1). Among them, 300
indoor images are from the NYU2 depth dataset [Silberman
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Figure 8: Dehazing results on the Indoor D-Hazy dataset (top) and Outdoor SOTS dataset (bottom). (a) Hazy image. (b) DCP. (c) BCCR. (d)
DehazeNet. (e) MSCNN. (f) AOD-Net. (g) Bilinear-Net .(h) DFCRN. (i) DPDP-Net (ours). (j) Ground truth.

et al., 2012] and 100 outdoor images (most of them have
large areas of the sky) are from ImageNet dataset [Deng et
al., 2009]. Because there is no depth information avaliable
in ImageNet dataset, we extract it for outdoor images based
on the method in [Liu et al., 2015]. Following [Ren et al.,
2016], we randomly set different atmospheric light A(x) by
choosing each channel uniformly between [0.7,1.0]. As for
the atmospheric attenuation coefficient, we set it from 0.5 to
1.5 for the indoor images since they contain thin haze, and
from 1.5 to 3 for outdoor images to improve the generaliza-
tion capability of the DPDP-Net. The training is conducted
on patches with size 64×64 samples from synthesized hazy
images. In total, we sample more than 30, 000 patches to train
the network. In addition, a small validation dataset of some
additional hazy and ground truth pairs are selected randomly
for tracking model performance and empirically determining
the parameters of the proposed model.

To keep the error curve smoothly, the learning rate is set
to 0.001 for the first 60 epochs, and 0.0001 for the remain-
ing epochs. Stochastic Gradient Descent (SGD) is employed
for learning transmission map and atmospheric light with 0.9
momentum and 0.05 decay parameter for training. The batch
size is 64. The whole experiment is conducted on a PC with
an Intel(R) Xeon(R) CPU E5-1607 v3@3.1GHz and an N-
vidia GeForce GTX 1080 Ti GPU.

4.2 Comparisons on Synthetic Test Datasets
To demonstrate the effectiveness of the proposed DPDP-Net,
we compare it with several state-of-the-art methods on four
synthetic test datasets. To fully evaluate these methods, we
employ the popular PSNR (peak signal-to-noise ratio), SSIM
( structural similarity ) and FSIM ( feature similarity) [Zhang
et al., 2011] as the image dehazing evaluation criteria.

First, we synthesize hazy images by using stereo images

Figure 7: Synthetic image examples on Middlebury Stereo Dataset
and their corresponding DPDP-Net results.

from Middlebury stereo dataset (2003-2007) [Scharstein and
Szeliski, 2003; Scharstein and Pal, 2007] as test images to re-
port the comparison results in Table 1. We can observe that
the proposed DPDP-Net performs the best among the com-
petors. Figure 7 illustrates some dehazing results, from which
we can find that the DPDP-Net achieves good visual contrast
and restores vivid edge information.

Then, we demonstrate the comparisons on the indoor im-
ages from SOTS released by RESIDE [Li et al., 2019] dataset
in Table 2. Since there are no FSIM provided in the com-
peting approaches, we do not apply it in Table 2. It is ob-
served that our DPDP-Net achieves the highest SSIM as well
as maintaining a good PSNR.

Next, we show the comparison on indoor hazy images us-
ing 100 hazy images from D-Hazy dataset [Ancuti et al.,
2016], as shown in table 3. We can observe that the DPDP-
Net has the highest performances on PSNR and FSIM, and
competing performance on SSIM. Several dehazing exam-
ples are shown the top line in Figure 8. It can be observed
that although the haze can be removed by DCP and BCCR,
there still exist serious color distortion in the dehazing images
since some priors could be invalid for certain images. On
the other hand, DehazeNet often makes some parts of image
darker, whereas MSCNN and Bilinear-Net often significantly
leads to be oversaturation in images. In addition, AOD-Net
and DFCRN can only remove haze to a small extent. In con-
trast, the results from DPDP-Net are clear and the details are
better enhanced with perceptual qualities due to the accurate
estimation of the atmospheric light and transmission map.

Finally, we show the comparison result on outdoor images
from the SOTS released by RESIDE as shown in the bottom
line in Figure 8. The dehazing results of DCP and BCCR have
some color distortions and blocking artifacts when the scene
objects are similar to the atmospheric light (e.g., the part en-
closed in red box on the image from the bottom row). The
deep learning-based methods, such as DehazeNet, Bilinear-
Net and DFCRN , tend to result in color oversaturation on
the ground. The result of MSCNN and ADO-Net have col-
or oversaturation to a small extent, and also have some hazy
residuals. In contrast, our proposed DPDP-Net is able to re-
move haze from the image while preserving the image details
well. What’s more, from the bottom line of Figure 8, we can
see that our results have better color characteristics in the sky
than the competing methods.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4632



4.3 Comparisons on Real-World Images
To prove the generalization ability of the proposed method,
we evaluate DPDP-Net and other methods on some real-
world hazy images. For space limitation, we only provide
the results against the latest end-to-end dehazing methods, in-
cluding Gated-Net [Ren et al., 2018], AIP-Net [Wang et al.,
2019], and DCPDN [Zhang and Patel, 2018], as illustrated in
Figure 9. It can be observed that dehazing images by Gated-
Net have apparent color shift. AIP-Net has a significant color
cast and low visual quality. The results by DCPDN also have
significant color cast. In contrast, the results of our method
not only restore similar visual effect to the original ones, but
have better contrast, vivid color and visually pleasing visibil-
ity.

(a)                                     (b)                                    (c)                                    (d)                                  (e)

Figure 9: Qualitative Results against end-to-end approaches. (a)
Hazy image. (b) Gated-Net. (c) AIP-Net. (d) DCPDN. (e) DPDP-
Net (ours).

4.4 Robustness Analysis
Following [Cai et al., 2016], we further demonstrate the ro-
bustness of our DPDP-Net. The Airlight Robustness Evalua-
tion (ARE), Coefficient Robustness Evaluation (CRE), Scale
Robustness Evaluation (SRE), and Noise Robustness Evalua-
tion (NRE) are employed as criteria.

ARE is an important impact to the restoration quality of
dehazing image. This paper generates different test images
with different atmospheric light values to verify the robust-
ness of atmospheric light. CRE reflects the haze concentra-
tion. An excellent dehazing algorithm should show a good
performance to images with different haze concentrations.
This paper generates test images with different scattering co-
efficients to demonstrate the robustness of the scattering coef-
ficient. SRE is necessary for the adaptability of the algorithm.
Image scaling and transformation in visual fields usually oc-
cur in real life. This paper generates different test images with
different scales to verify the robustness of image scales. NRE
reflects the noise robustness of the algorithm. It is unavoid-
able that hazy images containing noise. This paper generates
test images with different types of noise and different noise
levels to verify the noise robustness.

Metric DCP BCCR MSCNN DehazeNet AOD-Net Bilinear-Net DPDP-Net (ours)
PSNR 18.03 17.26 16.46 18.76 18.74 18.74 18.76
SSIM 0.82 0.80 0.70 0.82 0.89 0.90 0.91
FSIM 0.92 0.90 0.91 0.93 0.92 0.74 0.94

Table 1: Quantitative comparison on Middlebury stereo dataset.

Metric DCP BCCR MSCNN DehazeNet AOD-Net Gated-Net GMAN PAD-Net DPDP-Net (ours)
PSNR 16.62 16.88 17.57 21.14 19.06 22.30 20.53 20.68 20.18
SSIM 0.81 0.74 0.81 0.84 0.85 0.88 0.81 0.82 0.88

Table 2: Quantitative comparison on SOTS dataset from RESIDES.

Metric DCP BCCR MSCNN DehazeNet AOD-Net Bilinear-Net DFCRN DPDP-Net (ours)
PSNR 18.09 14.51 17.99 20.91 16.40 20.46 20.32 21.24
SSIM 0.82 0.80 0.86 0.81 0.75 0.92 0.90 0.86
FSIM 9.96 0.91 0.94 0.96 0.93 0.67 0.97 0.97

Table 3: Quantitative comparison on D-Hazy dataset.

In Table 4, we show the average performances of PSNR
and SSIM on an additional 200 pictures from the NYU2
dataset except for training dataset. For ARE, we synthesize
hazy images with β =1 and A (0.7,1.0). For CRE, hazy im-
ages are synthesized with A = 0.85 and β (0.5, 1.5). To ana-
lyze the influence of the scale variation, we select four scale
coefficients, i.e., 1, 0.8, 0.6, 0.4, to generate multi-scale im-
ages with β = 1 and A = 0.85. Finally, Gaussian noise and
salt-and-pepper noise are added to the hazy images with β
= 1 and A = 0.85 for NRE. It can be found that our method
achieves the best performance on 7 metrics among 8 indica-
tors. The reason is that we optimize the atmospheric light
and transmission map via the independent loss function that
avoids interact effects. Moreover, due to the Denoising Net-
work, the metrics of the NRE are significantly higher than the
other methods.

Metric DehazeNet MSCNN AOD-Net Bilinear-Net DFCRN DPDP-Net (ours)

ARE PSNR 21.01 17.75 19.26 22.60 20.43 21.67
SSIM 0.89 0.84 0.86 0.90 0.89 0.91

CRE PSNR 21.09 18.21 19.79 22.44 20.66 22.55
SSIM 0.88 0.84 0.86 0.90 0.89 0.90

SRE PSNR 21.76 18.46 20.31 21.82 20.4042 23.17
SSIM 0.9013 0.82 0.87 0.91 0.87 0.91

NRE PSNR 15.56 14.82 14.64 16.13 15.33 18.52
SSIM 0.34 0.33 0.35 0.36 0.34 0.60

Table 4: Quantitative comparison on NYU2 dataset.

5 Conclusion
The Dual-Path in Dual-Path Network (DPDP-Net) proposed
in this paper perform dehazing and denoising operations si-
multaneously and outperforms the state-of-the-art methods.
The Dehazing Network estimates atmospheric light and trans-
mission map with independent loss functions that ensures an
accurate estimation. Particularly, the atmospheric light is set
to a non-uniform value to restore illumination intensity of the
ambient light to eliminate color imbalance.
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