Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Locate-Then-Detect: Real-time Web Attack Detection via Attention-based
Deep Neural Networks

Tianlong Liu ', Yu Qi >*, Liang Shi® and Jianan Yan '
! Alibaba Cloud Intelligence Business Group, Alibaba Group, China
2College of Computer Science and Technology, Zhejiang University, China
3 Al&Data Department, Dingxiang Tech.Inc, China

tim.ltl@alibaba-inc.com, qiyu@zju.edu.cn,
liang_shi@hotmail.com, jianan.yjn @alibaba-inc.com

Abstract

Web attacks such as Cross-Site Scripting and SQL
Injection are serious Web threats that lead to catas-
trophic data leaking and loss. Because attack pay-
loads are often short segments hidden in URL re-
quests/posts that can be very long, classical ma-
chine learning approaches have difficulties in learn-
ing useful patterns from them. In this study, we
propose a novel Locate-Then-Detect (LTD) sys-
tem that can precisely detect Web threats in real-
time by using attention-based deep neural net-
works. Firstly, an efficient Payload Locating Net-
work (PLN) is employed to propose most suspi-
cious regions from large URL requests/posts. Then
a Payload Classification Network (PCN) is adopted
to accurately classify malicious regions from suspi-
cious candidates. In this way, PCN can focus more
on learning malicious segments and highly increase
detection accuracy. The noise induced by irrelevant
background strings can be largely eliminated. Be-
sides, LTD can greatly reduce computational costs
(82.6% less) by ignoring large irrelevant URL con-
tent. Experiments are carried out on both bench-
marks and real Web traffic. The LTD outperforms
an HMM-based approach, the Libinjection system,
and a leading commercial rule-based Web Applica-
tion Firewall. Our method can be efficiently imple-
mented on GPUs with an average detection time of
about Sms and well qualified for real-time applica-
tions.

1 Introduction

Most enterprises provide Web services open to the public and
thus are prone to Web attacks. A large portion of these attacks
are Cross-Site Scripting (XSS) and SQL Injection (SQLi),
which are two of the most frequently seen threats toward Web
applications according to the OWASP report !. Through suc-
cessful attacks, attackers can obtain more-than-need access
to Web resources such as databases and major sensitive data
leaking/loss would happen.

*Corresponding author.
"https://www.owasp.org/index.php/Top_10-2017_Top_10

4725

Researchers have developed various approaches to deal
with the Web attack problem. Since XSS and SQLi vul-
nerabilities are basically caused by insufficient input valida-
tion or type checking, defensive coding practices have been
widely applied to mitigate XSS and SQLi attempts [Johari
and Sharma, 2012; Gupta e al., 2014]. However, it is usually
difficult for the programmers to keep every input check com-
pletely, rigorously, and correctly. Black and white box secu-
rity testing can help discover Web risks [Gupta et al., 2014;
Kindy and Pathan, 2011], however, they still have limita-
tions. The white-box testing statically checks code structure
and logic safety. It works poorly when the code contains dy-
namic contents. The black-box testing checks possible XSS
and SQLi points with attempting payloads of all known types
at a website [Bau er al., 2010]. This may slow down the
website responses and can have a side effect of real data
damage caused by payload replaying. A popular option for
XSS and SQLi detection is Web Application Firewall (WAF),
which monitors real-time Web traffic. Traditional WAF usu-
ally works in a knowledge-driven way, and typically inte-
grates a set of heuristic rules. Despite that rules are usually
effective, they usually have difficulties in detecting unseen at-
tacks. Besides, the development and maintenance of the rules
highly depends on specialized human knowledge and experi-
ence. Recent studies trend to build WAF in a data-driven way,
which learns the rules directly from Web data. One pioneer
study to this end is the Libinjection system [Galbreath, 2012]
for SQLi detection. Different from regular expression based
rules, the input strings are firstly tokenized with semantic syn-
tax, and then the system learns the *malicious signatures’ of
SQLi from labeled data. The Libinjection method obtains
good performance upon many types of SQLi attacks and has
been used in several industry products such as the Google
Chrome.

Machine learning algorithms especially deep learning
models [LeCun et al., 2015] are powerful in data-driven
learning, and many efforts have been made to improve gener-
alization ability in Web attack detection by using them. Ad-
vanced machine learning models such as Neural Networks,
Support Vector Machines [Pinzén et al., 2010], and proba-
bility based models [Kar et al., 2016] have shown effective-
ness for XSS or SQLi classification. To capture unknown at-
tacks, anomaly detection approaches such as the HMM-Web
[Corona er al., 2009] have been proposed. Compared with

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

knowledge-driven methods, data-driven approaches usually
have a better generalization ability in detecting unseen at-
tacks. Besides, they are more friendly in quick deployment
and capable of rapid updating.

Although machine learning methods are promising to pro-
vide superior performance in Web attack detection, they are
still not practical in real-time applications. The first problem
in Web attack detection lies in that, the attacks are usually
short text segments called payloads hidden in background
strings that could be very long, which make it difficult for
model training. Specifically, URL requests/posts are often
large in size, sometimes can be several-thousand-character
long, while a payload can be as short as 6 characters. The
second problem is real-time detection. Keeping a website’s
response fast is critical to its Web service, which is often chal-
lenging for machine learning based detections such as deep
neural networks. Thirdly, traditional machine learning meth-
ods are mostly so called black-box methods. The black-box
property of machine learning models makes it difficult for
WAF operations and incident analysis, which is also a seri-
ous barrier to practical applications.

In this paper, we propose a novel Locate-Then-Detect
(LTD) system that can precisely detect Web threats such as
SQLi and XSS in real-time by using attention-based deep
neural networks. In our approach, an efficient Payload Locat-
ing Network (PLN) [Ren et al., 2015] is employed to propose
the most suspicious regions from large URL requests/posts.
Then the proposed regions are fed to Payload Classification
Network (PCN) to classify the malicious regions. With the
Locate-Then-Detect process, the attack classifier can focus
more on classifying malicious segments from suspicious ones
thus higher accuracy can be reached. Besides, with payload
locating, 95% of the background contents can be ignored,
which highly reduces computational costs. Further, the LTD
method is interpretable and is able to point out the exact at-
tack payloads and their types, which is beneficial for security
investigation.

The LTD system is evaluated on both a benchmark and a
real-world Web traffic dataset. Our approach outperforms
other methods such as an HMM-based method, the Libin-
jection system, and a leading commercial rule-based WAF,
and can be efficiently implemented on GPUs with an average
detection time of about 5ms and well qualified for real-time
applications.

2 Method

The Locate-Then-Detect (LTD) system consists of two main
modules: a Payload Locating Network (PLN) to propose
suspicious regions from large requests/posts, and a Payload
Classification Network (PCN) to accurately recognize attacks
from the suspicious regions. The framework of the LTD sys-
tem is illustrated in Figure 1. Training of LTD require large
amount of annotated data, which can be highly strenuous and
time-consuming. Therefore, we specially propose a Hidden
Markov Model (HMM)-based anomaly detection system to
facilitate attack annotating process.

4726

2.1 Payload Locating Network (PLN)

PLN scans a Web request and extracts the suspicious frag-
ments from long texts. The idea of region proposal has been
successfully applied in image processing [Ren et al., 2015]. Tt
can facilitate Web attack detection with higher efficiency and
accuracy. PLN is a multilayer neural network which takes
Web request text with fixed length as its input, and outputs
the location and suspicious confidence of the regions.

Web Request Embedding

The Web request text is first embedded in character level
[Kim er al., 2016; Xiao and Cho, 2016]. A embedding layer
projects one-hot presentations into a k-dimensional continu-
ous vector space R¥ by multiplying the vectors with a weight
matrix W € RF*IVI where |V| is the number of unique
characters in vocabulary. Suppose the length of an input text
is L. Then the input is an L x k matrix. Before text embed-
ding, the characters that are not included in ASCII set have
been removed. To guarantee that all inputs share the same
size, we set a maximum text length L,,,,, and pad all em-
bedding matrices to L4, X k with zeros.

Feature Extraction

We make embedding matrices go through a feature extraction
layer to learn useful and compact features. A variant of the
Xception model[Chollet, 2016] is used for feature extraction.
To accelerate computing, we use thin feature maps with small
channels, which can highly improve the speed without loss
much accuracy [Li et al., 2017].

Region Proposal
After feature extraction, Web requests are presented in the
feature space. Then we slide several mini-networks along
the feature maps to detect suspicious segments. This net-
work takes an n x m spatial window of the input feature map.
Two sibling 1 x m convolutional layers following the mini
network—a region regression layer (reg) and a region classifi-
cation layer (cls). In order to preserve the semantic integrity
of those vectors in the embedding tensor, we let m equal the
embedding size of the character vector. Simultaneously, we
predict p proposals at each sliding-window location. The p
proposals, also called anchors, have the same width and are
centered at the sliding window with different scale ratios (the
heights of proposals are different). So the reg layer outputs
2p coordinates of p proposals, which are the start and the end
positions of the payload in the sequence. The cls layer has 2p
scores that predict probabilities of attack payloads for each
proposal. For the feature map of a size W x H, there are
H X p anchors in total.

However, not all anchors are valid. Denote the start and
the end positions of an anchor as start and end. The filter
conditions are defined as follows:

1. Anchor size should be greater than 3, that is end —
start > 3;

2. Anchor should be in the range of [0, Ly;az], SO We set
start = max(start,0) and end = min(end, Lz);

3. Anchor should not contain too many zero padding parts,
that is start < L and end —m < L, where m is a hyper
parameter.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

/ ST T T Ty Proposed Regions
: : URI I
TN e
='_-hl ﬂ‘q—,i Logating
q?quest | '+ Network

- — 1

:
o]

|
|
; s "N
E—rl =5 ‘Classification: |
: | | : Network I
|
|

‘ > ' .
| Meccccesans o ‘o -
|
Post Data I |
| -— = - L

update model

egion N ||

Region 1

batch Payload

Region 2

I
I
I
I
I
I
I
I
|

Training §

phase |

False

- 3\
' Positve | Analysis
— 3N

1 Novel
Attack)
=

Human-in-the-loop fine-tuning /

Figure 1: Detection phase of the Locate-Then-Detect framework.

For training the model, each anchor needs to be classified
as a payload or not. We assign a positive label to two types of
anchors:

1. An anchor with the highest IoS (Intersection over Se-
quence) overlap with a ground-truth box.

2. An anchor that has an IoS greater than 0.5 with any
ground-truth box.

A negative label is assigned to an anchor if its IoS is
less than 0.2 for all ground-truth boxes. Anchors that nei-
ther have a positive label nor a negative label are ignored in
the training stage. Usually the negative anchors are much
more in quantity than the positive anchors, and the ratio of
negative anchors to positive ones is adjusted to 3:1 when
Npeg : Npos > 3 : 1. The loss function of PLN contains
two parts:

N 1
L(l;, pos;, pi, pos;) = N, ZLcls(lhpi)

) ()
Nreg Z liL'reg (POSi ’ pos:)7

where ¢ denotes the index of an anchor in a training batch, the
ground-truth label /; is 1 if the anchor is positive, otherwise
0. pos; and pos; here are ground-truth bounding positions
associated with the positive anchor and a predicted bounding
position, respectively. L is a log loss for the anchor classi-
fication. The second part of the loss function, l; L., means
the regression loss is only for positive anchors (I; = 1), oth-
erwise the I; Lyeq is 0 (I; = 0). For the regression loss L;.cg,
we choose the smooth—L [Girshick, 2015]

2 .
smoothLl (x) _ { 0.5x if |.T‘ <1,)

|x] — 0.5 otherwise.
x denotes the loss between the ground-truth coordinates and
predictions. There is a hyper-parameter A in Eq.(1). It con-
trols the importance between the losses of two parts. For
training the PLN, we set A = 1.0, set N5 as the mini-batch
size, and set N,.., as the number of anchor locations.

+A

4727

2.2 Payload Classification Network (PCN)

After PLN, the suspicious regions of a request are located.
Then the PCN is applied to further analyze these regions and
recognize malicious attacks from the candidates. The PCN is
a text classification neural network [Kim, 2014] sharing the
request embedding layer with the PLN, and outputting the
label (attack types or benign) of the given segment.

The model architecture of the PCN use 5-layer convolution
networks with different filter windows h, and each convolu-
tion network is followed by a max-overtime pooling opera-
tion [Collobert er al., 2011]. The diverse filters guarantee that
the PCN is able to identify attack precisely with multiple fea-
tures. These features are concatenated and passed into three
fully connected layers with rectified linear units. The output
layer is a soft-max layer whose output is probabilities of dif-
ferent attack types.

The loss function of PCN is composed of a multi-class
cross entropy loss and an L5 regular term:

N K

1
Lpen = -+ Zzyijl(’g(]?ij) + AW,
i

3)

where y;; denotes the true label of the ith sample in a train-
ing batch belonging to the jth class, and p;; denotes the cor-
responding prediction probability. The first part is the multi-
class cross entropy loss, and the second part is the Lo regular
term.

2.3 Web Attack Annotation

Training of the LTD system requires large amount of labeled
attack data, which is a very resource-consuming work for
security experts. Therefore, we propose using an anomaly
detection system, the HMM-Web [Corona et al., 2009], to
collect attack samples from Web traffic. The HMM-Web
anomaly detection system consists of a large number of
HMM models. Each HMM model is trained for a specific
parameter value in a particular URI of a targeted host. The

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

HMM-Web can annotate payload locations. Then all the de-
tected anomalies will be gathered and fed into a rule-based
attack detection system. For those anomalies that are able to
be classified into specific attack types (e.g. SQLi, XSS, etc.),
start and end positions are marked in their original requests.
For example, for uri; = /a.php?id=1&name=1" and 1=1,
each parameter value is extracted first. Among the two val-
ues ({valy : 1,valy : 1" and 1 = 1}), valy is an anomaly
detected by an HMM model, and it is correctly classified as a
SQLi attack. We then find the location of vals in uriy. The
annotated data is as: [Start (17), End (27), Label (1)].

2.4 Locate-Then-Detect (LTD) System

The LTD system merges the PLN and PCN models that are
trained separately. A feedback work-flow is used to fine-tune
the whole network in a human-in-the-loop way.

Attack Detection

The framework of the LTD system is shown in Figure 1. A
given request is parsed and split into several different parts
(e.g., URI, User-Agent, and Cookie). Each part then is fed
into the PLN, and the model would predict whether a region
is a suspicious payload or not and the model would give pay-
load positions as well. All the suspicious fragments proposed
by the PLN are processed by the attack classification model.
If all fragments are classified as benign, the request will be
passed as benign. Otherwise the request will be marked as
malicious with the attack type given by the classifier. In the
right of the Figure 1, Region 2 is classified as SQLi attack
and Region N as XSS attack, thus the request will be miti-
gated because of its malicious contents.

Human-In-The-Loop Tuning

In order to make the system more robust, and to hopefully
be able to discover zero-day attacks, we integrate our sys-
tem with a work-flow for diagnosis and incrementally up-
dated weights for the PLN and the PCN, which could help
the models to detect never-seen attacks. In the real-world
network environment, the number of Web attacks is far less
than the number of benign Web requests. Security experts
are able to do analysis on the small amount of the detected
attacks. As shown in Figure 1, the system’s false positives
will be further used to improve the PCN. For the fine-tuning
PLN, those samples should be annotated with payload posi-
tions and attack types, then they would be fed back into the
training samples for the next iteration.

3 Experiments

Experiments are carried out to evaluate our LTD system. Two
datasets of one CSIC 2010 benchmark dataset and one real-
world Web traffic dataset are used. We compare our meth-
ods with three leading Web attack detection methods. 1) A
rule-based commercial Web Application Firewall (RWAF),
in which different rules are assigned for parameters in the
GET and the POST data. 2) Libinjection [Galbreath, 20121,
which is a leading SQL Injection detection system via lex-
ical syntax-aware analysis. 3) HMM-Web, an anomaly de-
tection based Intrusion Detection System (IDS) implemented
with Hidden Markov Model (HMM) methods [Corona et al.,

4728

2009]. The HMM-Web can only be trained with a great
amount of data, so we only introduce it in the experiment of
the large real traffic dataset.

3.1 Implementation Details

Both PLN and PCN are optimized using Adam optimizer
[Kingma and Ba, 2014]. For the PLN, the learning rate and
weight decay are le — 6 and 0.99 respectively. For the PCN,
the parameters are set to le — 5 and 0.995, respectively. The
number of candidate regions is set to 3.

For PLN, an input sequence is projected into a tensor T
with shape of 1000 x 8 x 1. The size of the feature map is
32 x 8, so there will be 32 x 75 = 2400 anchors in total. We
also use a Non-Maximum Suppression method to reduce the
redundant anchors, and the IoS (Intersection over Sequence)
threshold is set to 0.7. Moreover, in the training phase, we
set a limit of the ratio of negative anchors to positive anchors
as 3:1 when Ny.y @ Npos > 3 : 1. For PCN, the maxi-
mum length is set to 512 and the embedding size is set to 64.
In detection phase, we select the top-3 ranked proposals per
sequence from the PLN and pass them to the PCN for classi-
fication.

3.2 Performance on the CSCI Benchmark

The CSCI 2010 dataset contains a generated traffic targeted to
an e-Commerce Web application[Nguyen et al., 2011]. This
dataset contains more than 25,000 anomalous requests and
36,000 benign requests. Human experts manually review all
the samples to label attack types. In the labeled dataset, we
have 2,072 SQLi and 1,502 XSS samples. We treat SQLi and
XSS detection as a two-class classification problem. Only
SQLi/XSS samples are regarded as attacks while others are
benign, even they would be other types of attacks.

As shown in Table 1, LTD method outperforms RWAF on
both precision and recall. The LTD method has the same per-
fect 100% precision as the Libinjection, while the LTD has a
much higher recall than the Libinjection. In term of the F1-
score, the LTD method outperforms the other two methods.

3.3 Performance on Real-World Traffic

Datasets

To evaluate the strength of the LTD system, we construct a
RealDataset from real-world Web traffic. In the RealDataset,
we collect 3 millions Web traffic logs including 38,600 attack
samples from eight Web servers of a busy cloud environment.
The attack samples are labeled with SQLi or XSS by security
experts.

Results

The performance of LTD attack detection on the real traf-
fic is shown in Table 3. LTD obtains the highest precision.
HMM-Web achieves the highest recall, slightly better than
LTD, while it suffers from high FPR, which is unacceptable
for real-world WAF applications where the FPR is usually
required to be less than 0.01%. For Web attack detection,
there is a trade-off between the FPR and recall, while a low
FPR is a prerequisite in a production environment. A sys-
tem with high FPR may block normal user requests which
is unacceptable for real-time detection. In this experiment,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Method #Detect | TP TN FP | FN | Precison Recall Acc FPR F1-score

RWAF 3325 3323 | 35998 | 2 251 99.93% 92.97% | 99.361% | 0.005% 0.963
Libinjection 2002 2002 | 36000 | O | 1572 100% 43.980% | 96.02% | 0.0000% 0.611
LTD (ours) 3513 3513 | 36000 | O 61 100% 98.29% | 99.845% | 0.0000% 0.991

Table 1: Performance on the CSCI Dataset. #Detect denotes number of total detections; TP, TN, FP, FN are true positive, true negative, false

positive and false negative, respectively.

Dataset Benign URLs | Malicious URLs | Attack type(s)

RealDataSet 3000000 38600 SQLi1, XSS

Table 2: Description of the real dataset.

the FPR of HMM-Web is significantly higher than LTD’s. It
is because as an anomaly-based approach, HMM-Web would
classify anything as malicious if it is unseen before. Besides,
when Web applications are updated, the HMM-Web has to
be re-trained with new samples to comply with new user be-
havior patterns, otherwise the FPR will increase significantly.
According to the reasons stated above, the HMM method is
not a good candidate for real-time detection, it’s otherwise a
good choice for offline ad-hoc analysis.

The Libinjection method is widely adopted in many real-
world applications such as Google Chrome. It obtains a per-
fect 100% precision (zero FPR) the same as what LTD has.
However, its recall is only slightly larger than 70%, while
LTD detects more than 99% of the attacks. Compared with
Libinjection, the LTD system achieves much higher detec-
tion rate. In Table 4, we list several samples that Libinjection
mis-classifies, while LTD detects them correctly. The token
sequence of the Ist and the 2nd payload 0oUEn, s&1o. are
not in the fingerprint database. Other token sequences, such
as s&lo(, s&1lof, s&1los, appear as attacks in the fingerprint
list. However, the only difference among them is their last
character. Obviously, the last two payloads in Table 4 are be-
nign requests, but their token sequences 1c and nc are listed
in the attack fingerprint list of Libinjection. From the above
examples we could see that even though the Libinjection sys-
tem has analyzed the lexical and syntax contents of requests,
it still could not avoid certain mis-classifications. Compared
with Libinjection, the LTD system based on deep learning
methods shows better flexibility, stronger generalization and
higher adaptability to avoid those mis-classifications.

Compared to the RWAF, LTD outperforms it in both re-
call and precision. In term of the F1-score, the LTD method
outperforms all other three methods.

3.4 Effectiveness of Payload Proposal

In order to evaluate the importance of payload proposal, ex-
periments are conducted to explore the influence of payload
proposal on both efficiency and accuracy.

Efficiency

In this experiment, we compare LTD with or without payload
proposal. In the system without payload proposal (VPCN),
the parameters of a URL are split into a Key-Value format,
and the values are regarded as the regions to input to PCN
for attack classification. We compare VPCN and LTD with
10,000 randomly sampled real requests. The experiments are

conducted on both CPU and a GPU environment. The setting
and results are shown in Table 5.

As shown in Table 5, with the CPU environment, the LTD
method’s RT,,, (detection time in average) is 8 times faster
than those of the VPCN. While on the GPU environment, the
RTyg4 of the LTD method is only 5.58 ms, which is nearly 6
times faster than VPCN.

With payload proposal, the LTD system is computationally
much more efficient because there is 27.5% URLSs having too
many parameters to be split (13 parameters or more), and the
split function consumes lots of time. In real-word Web envi-
ronment, an typical URL may contain as many as dozens of
parameters, which requires lots of split operations. More-
over, many Web developers tend to rewrite original URLSs
with URL-rewrite module to hide the parameters for several
reasons. Under this circumstances, rule-based split method
would take complicated computation to extract values. Com-
pared with traditional methods, LTD reduces the computa-
tional time by restricting the detection scope in a controllable
way in case of too many parameters presenting in URLs. Ad-
ditionally, LTD also avoids the problem that the parameters
are resolved inaccurately or very slowly in URL rewriting.

Accuracy

The second experiment is carried out to evaluate accuracy im-
provement of the payload proposal. We compare LTD with
a typical char-level CNN approach [Kim et al., 2016] that
classifies attacks from raw requests instead of proposed re-
gions. For fair comparison, we re-train both LTD models and
CNN on a new-constructed training data. We randomly pick
3,200,000 normal web traffic logs from a real-world cloud
platform and 800,000 attack samples from our attack database
by random sampling to construct a training dataset. The test-
ing dataset is constructed by randomly extracting 100,000
normal Web traffic logs at different days from a popular cloud
platform to form the benign testing samples. We randomly
replace one parameter value by an arbitrary SQLi/XSS at-
tack payload for each URL of the previously extracted benign
100,00 logs to form the malicious samples.

As illustrated in Table 6, The FPR and FNR of the CNN
model are significantly higher than those of LTD. It mostly
results from that some payloads are short in length while
the URL request can be very long. Certain attack payloads
could be as short as 6-char-long. These short payloads can
hide themselves in a relatively long background string, and
these background strings reduce the performance of the CNN
model due to the poor generalization. Therefore, it would
be difficult for the char-level CNN model to learn and de-
tect such a short malicious value hiding in a long URL. The
locating mechanism of LTD enables the detection system to
discover short attack payloads that hide themselves in long

4729

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Method #Detect TP TN FP FN Precison | Recall Acc FPR F1-score

RWAF 37856 | 37809 | 2999953 | 47 744 99.87% | 97.95% | 99.972% | 0.0015% 0.989
HMM-Web | 38752 | 38600 | 2999848 | 152 0 99.61% 100% | 99.994% | 0.0051% 0.998
Libinjection | 27638 | 27638 | 3000000 0 10962 100% 71.60% | 99.639% | 0.0000% 0.834
LTD (ours) 38548 | 38548 | 3000000 0 52 100 % 99.86% | 99.998% | 0.0000 % 0.999

Table 3: Performance on the real-world traffic. #Detect denotes number of total detections; TP, TN, FP, FN are true positive, true negative,

false positive and false negative, respectively.

XSS ROC curve SQLi ROC curve

XSS PR curve SQLi PR curve

B 0.975 r’ 8 0.975 ‘1 0.9
< < 0.8
o 0950 g 0950 4 0.8
2 ooz 1(AUC=0.970) |2 oo 1(AUC=0.965) | § . 1(AP=0.927) 8o 1(AP=0.910)
-§ 0500 2(AUC=0.993) -‘§ 0500 2(AUC=0.991) § 2(AP=0.981) 8 as 2(AP=0.972)
o

S oars 3(AUC=0.993) & oers 3(AUC=0.999) | &£ o 3(AP=0.969) £ os 3(AP=0.993)
E 0850 —— 4(AUC=0.996) E 0850 —— 4(AUC=0.996) Ll T 4(AP=0.980) 0a{ —— 4(AP=0.986)

0s2s — 5(AUC=0.996) 0825 — 5(AUC=0.996) —— 5(AP=0.982) 03 —— 5(AP=0.989)

‘ False Positive Rate ' False Positive Rate ' Recall ' ~ Recall »

Figure 2: The performance of LTD with different number of proposals,the numbers “1,2,3,4,5” in the legends represent the number of
proposals

Value Libin | LTD | Label
*/UNION SELECT password FROM users— X VA Vv
> or 1< @. union select @ @version,version(J# X Vv Vv
78-cfb85327-9f81-43e8-9206-32341b8be733 v X X
image/* v X X
Table 4: Misclassified examples of Libinjection.
Test environment Method | RT,.4(ms)
MacBook Pro Intel Core i7, VPCN 274.67
16GB RAM LTD 34.36
64 Intel™ Xeon™ CPU@2.50GHz, | VPCN [3198
Nvidia Tesla P100 GPU *2,32GBRAM [LTD | 5.58

Table 5: Comparison of average response time (R7gqg)-

URLSs and by filtering out those irrelevant parts. Therefore,
LTD can more accurately classify between the actual attack
payloads and those malicious-like benign URL fragments.

Influence of Proposal Number

To explore the influence of different numbers of candidate
proposals (i.e., the numbers of payload proposals) on LTD’s
performance, we test the PLN’s performance by choosing dif-
ferent N proposed regions. The experiment is carried out with
the CSCI dataset. In Figure 2, we plot the curves (PR and
ROC) of SQLi and XSS prediction results, respectively. For
both the SQLi and the XSS detection, the system achieves
best or close-to-best performance (For XSS detection the 5-
region is slightly better than the 3-region) in PR curve when
#R = 3. Extracting more payload proposals may lead to a
better recall, however, extracting 4 or more proposal regions
would trigger more false positives. In production environ-
ment, a low FRP is more important than other metrics. In or-
der to have a relatively good recall with an as-low-as-possible
FPR, we choose # R = 3 in the PLN.

Method Precision | Recall FPR FNR
char-level CNN | 75.85% 59.37% | 7.66% | 40.63%
LTD 98.17% 96.45% | 0.11% | 3.55%

Table 6: Comparison between LTD and char-level CNN.

3.5 Interpretability

Deep learning methods release us from the burden of com-
plicated and error-prone feature engineering. However, deep
learning models are so-called black-boxes, which have little
interpretability. This black-box property brings great chal-
lenges to researchers, developers and especially the engineers
who are responsible for interpreting model results usually in a
daily or oftener basis. Through a locate-then-detect approach,
we can clearly know where the attack payload is and which
type the attack payload is. In case that there are false pre-
dictions, security experts can easily locate problems and op-
timize the LTD model.

4 Conclusion

In this paper, we introduce a novel Locate-Then-Detect (LTD)
detection system that can precisely detect Web threats in real-
time by using attention-based deep neural networks. LTD
firstly extracts suspicious segments from long requests, then
the proposed regions are further inspected by a classifier. By
effectively filtering out irrelevant background strings, LTD
can increase accuracy by 22.3% and reduce 82.6% of com-
putational costs. Experiments on real Web traffic show that,
LTD outperforms several leading methods and can efficiently
detect attacks with an average response time of Sms and thus
be well qualified for real-time applications. Despite of many
advantages of LTD, it can only deal with SQLi and XSS at-
tacks currently. The ongoing LTD work covers detection of
more Web hacks such as File Inclusion and Code Execution.

4730

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Bau et al., 2010] Jason Bau, Elie Bursztein, Divij Gupta,
and John Mitchell. State of the art: Automated black-
box web application vulnerability testing. In Security and
Privacy (SP), 2010 IEEE Symposium on, pages 332-345.
IEEE, 2010.

[Chollet, 2016] Frangois Chollet. Xception: Deep learning
with depthwise separable convolutions. arXiv preprint,
2016.

[Collobert et al., 2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost)
from scratch. Journal of Machine Learning Research,

12(Aug):2493-2537, 2011.

[Corona et al., 2009] Igino Corona, Davide Ariu, and Gior-
gio Giacinto. Hmm-web: A framework for the detection
of attacks against web applications. In Communications,
2009. ICC’09. IEEE International Conference on, pages
1-6. IEEE, 2009.

[Galbreath, 2012] Nick Galbreath. Libinjection. Blackhat,
2012.

[Girshick, 2015] Ross Girshick. Fast r-cnn. In Computer
Vision (ICCV), 2015 IEEE International Conference on,
pages 1440-1448. IEEE, 2015.

[Gupta et al., 2014] Mukesh Kumar Gupta, MC Govil, and
Girdhari Singh. Static analysis approaches to detect sql
injection and cross site scripting vulnerabilities in web ap-
plications: A survey. In Recent Advances and Innovations
in Engineering (ICRAIE), 2014, pages 1-5. IEEE, 2014.

[Johari and Sharma, 2012] Rahul Johari and Pankaj Sharma.
A survey on web application vulnerabilities (sqlia, xss) ex-
ploitation and security engine for sql injection. In Commu-
nication Systems and Network Technologies (CSNT), 2012
International Conference on, pages 453—458. IEEE, 2012.

[Kar et al., 2016] Debabrata Kar, Khushboo Agarwal,
Ajit Kumar Sahoo, and Suvasini Panigrahi. Detection
of sql injection attacks using hidden markov model. In
Engineering and Technology (ICETECH), 2016 IEEE
International Conference on, pages 1-6. IEEE, 2016.

[Kim er al., 2016] Yoon Kim, Yacine Jernite, David Sontag,
and Alexander M Rush. Character-aware neural language
models. In AAAI pages 2741-2749, 2016.

[Kim, 2014] Yoon Kim. Convolutional neural networks for
sentence classification. arXiv preprint arXiv:1408.5882,
2014.

[Kindy and Pathan, 2011] Diallo Abdoulaye Kindy and Al-
Sakib Khan Pathan. A survey on sql injection: Vulnera-
bilities, attacks, and prevention techniques. In Consumer
Electronics (ISCE), 2011 IEEE 15th International Sympo-
sium on, pages 468-471. IEEE, 2011.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

4731

[LeCun er al., 2015] Yann LeCun, Yoshua Bengio, and Ge-
offrey Hinton. Deep learning. nature, 521(7553):436,
2015.

[Li et al., 2017] Zeming Li, Chao Peng, Gang Yu, Xiangyu
Zhang, Yangdong Deng, and Jian Sun. Light-head r-cnn:
In defense of two-stage object detector. arXiv preprint
arXiv:1711.07264, 2017.

[Nguyen et al., 2011] Hai Thanh Nguyen, Carmen Torrano-
Gimenez, Gonzalo Alvarez, Slobodan Petrovié, and Katrin
Franke. Application of the generic feature selection mea-
sure in detection of web attacks. In Computational Intel-
ligence in Security for Information Systems, pages 25-32.
Springer, 2011.

[Pinz6n et al., 2010] Cristian Pinzén, Juan F De Paz, Javier
Bajo, Alvaro Herrero, and Emilio Corchado. Aiida-sql:
An adaptive intelligent intrusion detector agent for detect-
ing sql injection attacks. In Hybrid Intelligent Systems
(HIS), 2010 10th International Conference on, pages 73—
78. IEEE, 2010.

[Ren et al., 2015] Shaoqing Ren, Kaiming He, Ross Gir-
shick, and Jian Sun. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In Advances
in neural information processing systems, pages 91-99,
2015.

[Xiao and Cho, 2016] Yijun Xiao and Kyunghyun Cho. Ef-
ficient character-level document classification by com-
bining convolution and recurrent layers. arXiv preprint
arXiv:1602.00367, 2016.

