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Abstract

Epistemic Halpern-Shoham logic (EHS) is an in-
terval temporal logic defined to verify properties of
Multi-Agent Systems. In this paper we show that
model checking Multi-Agent Systems with regu-
lar expressions against EHS specifications is de-
cidable. We achieve this by reducing the model
checking problem to the satisfiability problem of
Monadic Second-Order Logic on trees.

1 Introduction

Model checking is the leading technique in verification. De-
spite its advantages, the number of commercial applications
of this technique is still relatively small. This is often ex-
plained by the high entry level for model checking specialists
— writing appropriate specifications requires a lot of knowl-
edge and, at the same time, a lot of precision. Therefore, for
many companies, it is much easier and cost-efficient to per-
form tests rather than to verify the software. This means that
one of the most important challenges for the verification com-
munity is to lower the difficulty of performing formal verifi-
cation. Among many approaches to this problem, one is to
use a specification language that treats intervals (processes),
rather than time points, as primary objects. It is believed that
many important properties are significantly easier to express
in terms of intervals and their temporal correspondence than
using time points [Lomuscio and Michaliszyn, 2013].

Early attempts to interval-focused verification include the
Moszkowski’s Interval Temporal Logic [Moszkowski, 1983]
and the Propositional Dynamic Logic [Fischer and Ladner,
1979]. The former, however, uses quite a complicated lan-
guage (one of the main operators allows to split a given inter-
val into two parts, which is quite unreadable), and the latter,
while allows for actions that may be seen as intervals, is still
essentially point based.

Recently, two lines of research emerged to define a logic
for the model checking problem in which intervals are first-
class citizens. First, in [Lomuscio and Michaliszyn, 2013],
the Epistemic Halpern-Shoham (EHS) logic was introduced.
Not much later, [Montanari et al., 2014] employed the logic
HS, later extended with regular expressions [Bozzelli erf al.,
2017]. Both EHS and HS are based on the Halpern-Shoham
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logic [Halpern and Shoham, 1991], but work on different as-
sumptions.

The most significant difference, we believe, is the way that
both logics treat past events. To exemplify this, consider the
following property: if the server is offline, then there was
an interval earlier where a warning message was sent. In the
EHS setting, every property is considered in an interval with a
history, i.e., a computation from the initial state to the begin-
ning of this interval. So, the backward modality “there was
an interval earlier” refers to an event that really happened dur-
ing this computation. In the HS case, on the other hand, there
are no histories, therefore this means “it was possible to reach
this interval by a computation containing sending a warning”.
This makes the semantics of HS easier, but also less intuitive.

The other difference between EHS and HS is less funda-
mental but easier to notice: EHS is defined for multi-agent
systems while HS typically considers a single-agent system.
Therefore, EHS contains also epistemic modalities, typical
for multi-agent systems: K; (“agent ¢ knows...”) and Cp (“it
is common knowledge among the group of agents I'...”).

A lot of research was performed to establish the decidabil-
ity and complexity status of the model checking problem with
HS [Molinari et al., 2015; Bozzelli et al., 2016a; Molinari
et al., 2016; Bozzelli et al., 2018a; Bozzelli et al., 2018b;
Molinari et al., 2018], as well as its expressibility [Bozzelli et
al., 2016b; Goranko et al., 2004]; perhaps the best summary
is the Alberto Molinari PhD thesis [Molinari, 2019]. For the
whole logic, the model checking problem is decidable, but
no elementary upper bound is known. The best known lower
bound, on the other hand, is the EXPSPACE lower bound that
works for any fragment containing two modalities: “begins
with” and “ends with”. On the other hand, the decidability
status of the model checking against EHS specifications was
not known. Here, we show that the model checking prob-
lem for EHS is decidable. The obtained complexity is non-
elementary, which matches the best known upper bound for a
(simpler) logic HS.

To show the decidability, we reduce the problem to the sat-
isfiability problem of the monadic second-order logic on trees
(SkS), which is known to be non-elementary decidable. To
deal with epistemic modalities, we consider a variant of SkS
in which the trees are infinite in both directions, i.e., every
node has a predecessor and successors.

To complete the study on the decidability status, we also
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consider EHS in an LTL-like scenario, where the question
of interest is whether all the tracks of a given model satisfy
a given EHS formula (that is, once a track is selected, the
modalities refer only to intervals within this track). Under
such assumptions, the model checking problem is undecid-
abile even if only epistemic modalities are allowed.

Related work A large number of point-based logics is used
in the model-checking scenario, including LTL, CTL, ATL
and so on; in some restricted cases, their expressive power
matches the expressive power of the logic HS [Bozzelli et al.,
2016b]. However, none of them is equivalent (in terms of the
expressive power) to the logic EHS.

Two extensions of the Propositional Dynamic Logic are
seemingly close to EHS. First one is E-PDL [van Benthem
et al., 2006], which adds epistemic modalities to PDL. These
modalities, however, are interpreted over points rather than
over intervals. The other one is called “PDL with all ex-
tras” [Lange, 2006], and allows to use conjunction and com-
plementation with PDL actions. However, the semantics of
these operations is still point-based: for example, the action
(a1 A a2) means “there is a path satisfying a; and there is a
path satisfying as... 7, rather than “there is a path satisfying
a1 and as... 7, so it cannot be used to express conjunctions of
properties of intervals.

2 Interval-Based Interpreted Systems

We assume a set of agents A = {0, ..., m} to be fixed for the
rest of this paper; the agent 0 is often called the environment.

The models we use for verification are called interpreted
systems with regular labellings (ISRL). These models are
similar to standard Multi-Agent Systems, except that the la-
belling function is defined on sequences of states rather than
single states by means of regular expressions.

Given a family of finite alphabets X = {Xo,...,X,,},
the set of regular expressions over X, denoted by REx, is
defined by the following BNF expression:

ex=c¢|s|e-e|letele
where s is a Boolean combination of conditions i: [, where
1€{0,...,m}and ! € X;. We allow parentheses for group-
ing and often omit the concatenation symbol *“-”.

A regular expression over X is interpreted over a word
whose letters are from the product Xy x - -- x X,,. The se-
mantics of regular expressions over X is defined in the usual
manner, i.e., by a function Lang that for a regular expression
returns a language of words accepted by this expression. The
only difference is the case of s, where we define Lang(s) to
be the set of letters (zo, . . ., &, ) such that s is satisfied when
we replace each “¢: 7 by “z; =".

The languages definable with such regular expressions are
regular, and therefore can be recognized by finite automata.

Example 1. The regular expression (0: a V 1: b)* over

{{a.b},{a,b}} defines the language {(co,do) . .. (¢ ) |
VZCZ =aV d1 = b}

The models we study are defined as follows.
Definition 2 (ISRL, [Lomuscio and Michaliszyn, 2016]). An

interpreted system with regular labellings (ISRL) is a tuple
IS = ({L;,l1, ACT;, P;,t; }ica, \), where for each i € A:
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e [ is a finite set of local states for agent 1,
e [ € L, is the initial state for agent 1,
o ACT; is a finite set of local actions available to agent i,

e P;: L; — 24T is alocal protocol function for agent i,
returning the set of possible actions in a local state,

e t; C L; x ACT x L;, where ACT = ACTy X -+ X
ACT,,, is alocal transition relation for agent i returning
the next local state when a joint action is performed by
all agents on a given local state.

Furthermore, \: Var — RE(p, . r.1 is a labelling func-
tion, where Var is a finite set of propositional variables.

Paths For an ISRL as above, we define the set of global
configurations G as Ly X --+ X L,,, and the initial global
configuration 1L, as (If,...,11)). The transition relation t¢
between global configurations is induced by IS as follows:
ta((oy. - ylm), (1§, ..,10,)) iff there exists a joint action
(ag, - -,am) € ACT such that for all 7 we have a; € P;(l;)
and tl(lz, (a(), ey am), l;)

A path is a finite sequence g1g2 ... gy of elements of G
such that for each 7 < k we have t¢(gi, gi+1)-

For each global configuration g = (I, ...,
an agent ¢, by /;(g) we denote the local state [}.

Definition 3 (Model). Given an ISRL IS =
({Li, l{, ACT;, P;, ti}ieA; )\), the model of IS is a tu-
ple M = (S, s',t, {~;}ica, \), where

e S is the set of paths of IS starting in IL,

l;,) € G and

o sl = lé is the (single-state path containing the) initial
state of the system,

e { is the transition relation such that t(s1, $2) iff there is a
global state g such that s1g = ss (i.e., the path sy is the
prefix of ss of length |sa| — 1),

o ~;C S? is the epistemic equivalence relation for agent 7
such that gy ... g ~i g1 - 9, iff li(gr) = Li(g))-

e )\ is the labelling function (same as in 1.5).

We assume that the system is deadlock-free, i.e., for every
state there is at least one possible joint action of agents. This
assumption is only to make the presentation easier: any sys-
tem can be easily amended to meet this requirement, e.g., by
adding a “sink state”. Therefore, the models are labelled infi-
nite unordered trees with the set of nodes .S, the root s;, the
set of edges ¢, the labelling A and epistemic relations ~;.

For paths p1, p2, we write p; [ po if p; is a proper prefix
of po and p; C py if p1 C pg or p1 = pa. An interval is a pair
[s,t], such that s,t € S and s C ¢. An interval represents a
path in a system augmented with a history of states that lead
to this path from the initial state of the system. It is worth to
note that in a model, s T ¢t means that ¢ is a descendant of s.

Comment. The definition presented here is essentially
equivalent to the one in [Lomuscio and Michaliszyn, 2016].
The main difference is that they defined intervals as pairs
(p, pr) such that pyp is a path from a starting configuration.
In our notion, this is represented as [pyg, pnp|, where g is the
first element of p. We decided to use an alternative repre-
sentation to make the translation from EHS to MSO on trees
easier to present.
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st 8 t
------ A
After: k
[s,t]RAls', 1] ifft:s’l_ o #
Later:
[s,t|RL[s', ¥ iff t T SI|_ o 4
Begins:
[s,t]|Rp[s', '] iff s = &' % t’
and t' C t F------ A
Ends:
[s, t|Rp[s', '] iff t = ¢/ s/ #
and s C ¢’ ke A
During:
[s,t]Rp[s', '] iff sC & s t/
and t/ C ¢t bo-mo--s A
Overlaps:
[s,t]Ro[s,t'] iff s T S/I_E tct s 4
----------- A

Figure 1: Basic temporal relations. Dashed lines represent the his-
tories of intervals.

3 The Logic EHS

EHS uses twelve temporal operators, defined as in [Halpern
and Shoham, 1991]. Six of these relations are presented in
Figure 1. The remaining six relations are defined as their in-
verses: Ry = Rx ~'. EHS allows also for two kinds of epis-
temic modalities: K; for an agent ¢ (“agent 7 knows”) and Cp
for a set of agents I' (“it is common knowledge in I'”).

Definition 4 (Syntax of EHS). The syntax of EHS is defined
by the following BNF.

o u= ploeleAe| Kip|Cre | (X)e
where p € Var is a propositional variable, © € A is an agent,

I' C A is a set of agents, and X is one of the HS modalities:
A A B B D, D, EE,L,L OorO.

We use standard abbreviations, including [X]¢ for
—(X)—¢ (universal temporal operator) and the usual Boolean
connectives V, =, < and the constants T, L.

Two intervals I, I’ are indistinguishable for an agent 4,
denoted as I ~; I, if they have the same length and the
states on corresponding positions are indistinguishable [Lo-
muscio and Michaliszyn, 2013]. Formally, [s, sg1 ... gk] ~:
s, 8'g)...g)iff k=18 ~; s"and 591 ...9; ~i §'g1 ... g]
for each j < k. Similarly, for a group of agents I', we define
~r on states as the transitive closure of (|J;. ~), and then
we extend this to intervals in the same manner.

We now define the satisfaction relation.

Definition 5 (Semantics of EHS). Given an EHS formula ¢,
an ISRL IS, its model M = (S, s’ t,{~;}ica,\), and an
interval I = [g1 ... 9k, q1-- - i), the formula ¢ holds in the
interval I, denoted M, 1 |= o, iff one of the following holds:
e p=pandgy...q € Lang(\(p)),
o o =~ and it is not the case that M, I |= ¢/,
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e p=yp1 Npgand M, I = vy and M, I = s,

e p=K;p,i €A, and M,I' Epforall ~; I,
0=Crp, T CA, and M, 1" | pforall I' ~r I,

¢ = (X)p and there is an interval I’ such that IRx I’
and M, I' |= o, where Rx is a temporal relation.

We write 15,1 |= ¢ if M, I |= ¢, where M is the model
of IS, and IS = pif IS, [s!, s!] = ¢.

The problem of model checking ISRL against EHS speci-
fication is defined as follows: given an ISRL .S and an EHS
specification ¢, decide whether IS |= .

3.1 Example

Consider a bit transmission protocol, where an agent Sender
wants to deliver a single bit message to an agent Receiver
via a faulty communication channel, modelled using Environ-
ment. Assume that the Sender first computes the bit (which is
modelled as a non-deterministic choice of the bit), and then
repeatedly tries to send the bit. Sending the bit requires three
actions (not necessarily happening immediately one after the
other): opening the communication channel, sending the bit
and closing the communication channel. For each i € {0, 1}
being the possible value of the bit, we consider two labellings:
A(s;) matching the intervals starting with opening the com-
munication channel, ending with closing the communication
channel and sending the bit ¢ during the interval, and A(r;)
matching in every state (point interval) where the bit to be
sent is chosen and its value is ¢.
In this scenario, we can verify whether, for example:

o [Gl(KReceiverro — (L)so) —if Receiver knows that the
value of the bit is 0, then it means that Sender has sent 0.

e [G](s0Vs1) = [0O](—spA—s1) — sending actions do not
overlap.

o [GI{L)KReceiver(ro V 1) — it is always possible that
Receiver will eventually know the value of the bit.

where [G]y = [A] A [L]y, interpreted in [s!, s!], means
“globally”. For more examples, please refer to [Lomuscio
and Michaliszyn, 2013; Lomuscio and Michaliszyn, 2014]
and [Lomuscio and Michaliszyn, 2016].

4 Decidability of Model Checking

The infinite tree of degree k is, as usual, a connected structure
with a single root such that each node has exactly k (ordered)
successors, and every node has a single predecessor except
for the root that has no predecessors. The doubly-infinite tree
of degree k is a connected structure such that each node has
exactly k (ordered) successors, and every node has a single
predecessor (e.g., the set of the integers with the successor
relation is the doubly-infinite tree of degree 1).

To show the decidability, we reduce the model checking
problem to the satisfiability problem of SkS™ (where k is the
degree of the models of a given 1.5), the Monadic Second-
Order Logic on the doubly-infinite tree of degree k. To show
that SkS* is decidable, we use the decidability of SkS, the
Monadic Second-Order logic on infinite trees of degree k.
Below we define SkS° and SkS.
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Syntax Terms of SkS are formed out of individual (first-
order) variables z, y, z, etc., the empty string ¢, and right
concatenation with 1...k%. Atomic formulas are of the form
w=w,w < w and w € X, where w,w’ are terms and X
is a (second-order) variable. Formulas are built from atomic
formulas using the logical connectives A , V, =, — and the
quantifiers 3, V of both individual and second-order variables.
The syntax of SkS™ is the same.

Semantics SkS is interpreted over the infinite tree of degree
k; individual variables are interpreted as nodes of the tree
and second-order variables are interpreted as sets of nodes.
The concatenation xzi, for ¢ € {1,...,k} is interpreted as
the ith successor of the interpretation of x. We define a re-
lation succ(z,y) that holds if y is a successor of z; then, the
inequality < is interpreted as the transitive closure of succ.
Inclusion and equality of sets, are definable in SkS in an ob-
vious way. The semantics of SkS™ is the same except that it
is interpreted over the doubly-infinite tree of degree k. This
semantics can be extended to formulas with free variables and
labelled trees in the usual manner.

The decidability (of the satisfiability problem) for SkS was
shown in [Rabin, 1977]. Here we show that SkS* is also
decidable with the same complexity.

Theorem 6. There are polynomial time reductions from SkS
to SkS™ and from SkS™ to S(k + 1)S.

The reduction from SkS to SkS™ is straightforward — we
can express that there exists a second-order variable Root
with exactly one element and relativise the formula so that
each quantifier ignores the nodes above this element. The
other reduction uses the £ + 1th successor of the root to sim-
ulate its predecessor, and then repeats it for the predecessor
and so on. Then, another relativisation is needed to remove
unused k + 1th successors. It turns out that the successor re-
lations and the relation < can be expressed in this encoding.

4.1 Proof Overview

For a given ISRL IS5, its model M and an EHS formula ¢,
our goal is to construct an SkS* formula ¥ such that U is sat-
isfiable iff IS |= ¢. Since checking the former is decidable,
the decidability of the latter follows.

We will present the construction of the formula W in three
steps. Here we give a simplified description of these steps:

Step 1 We construct a formula @75 whose models, viewed
as unordered trees, have a clearly-marked substructure iso-
morphic with M without the relations ~;. For any model of
®;g, let h be the isomorphism from this substructure to M.
Notice that we cannot express the relations ~; because SkS™
with binary predicates is undecidable.

Step2 We show that the formulas of EHS without epistemic
modalities can be translated to SkS°°: for every EHS formula
¢, we construct an SkS™ formula ¥(x,y) such that ®rg A
U(v,v") holds for some nodes v, v’ if 1.5, [h(v), h(v')] = ¢
(this part is the reason for the alternative definition of the se-
mantics, as commented in Section 2).

Step 3 We extend the translation to cover epistemic modal-
ities. This is more technical, so we discuss this using an ex-
ample. Assume that the upper tree in Figure 2 represents a
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Figure 2: An example of translating epistemic modalities.

model of IS and that sg ~1 sS4, S1 ~1 S5, 8o ~71 Sg and
s3 ~1 s7. Consider the formula K. A naive approach is
to try to write an SkS°°formula with variables x, y that states
“for all ', %y’ such that the paths from z to y and from z’ to 3/’
have the same length and their corresponding states are indis-
tinguishable for agent 1, o (translated to SkS®) holds”. The
logic SkS® is too weak to express this.

To perform Step 3, we actually need a stronger version of
the constructions mentioned in Steps 1-2 that allows us to “re-
root” the tree. We assume that the formulas are parametrised
by a “current root”, which defines a subtree isomorphic with
the model of IS. Then, to deal with an epistemic modality,
we allow to move the root and relabel the whole tree (us-
ing fresh second-order variables) such that in the relabelled
tree, an indistinguishable interval ([s4, s7] in our example) is
in the same place as the interval [z,y,] ([so, s3] in our ex-
ample). The construction guarantees that both intervals have
the same length and their relative states are indistinguishable
as required. By using universal quantifiers of SkS™ we can
check all relevant intervals.

Notice that indistinguishable intervals can have very long
histories; this is why we use doubly-infinite trees — to make
sure that we have room to include the whole history. Alter-
native approaches to this problem are possible, but we found
this solution the most elegant.

4.2 Representing a Model

Fix an ISRL IS = ({L;, I}, ACT;, P;,t;}ica, \) and its
model M. Assume that the maximal number of successors
of a global state in M is k. Let G and {g be as above
and let G = {go,...,9n} be an enumeration of all global
states. We treat each g; as a second-order predicate. By G-
substructure of a model N we denote the substructure of N
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consisting of all the elements satisfying any of g;. We define
an SkS* formula model;g, whose G-substructure, viewed
as an unranked tree, is isomorphic with M. The formula
model;s (7, go, - .., gn) (Where r is an individual variable
and g; are second-order variables) is the conjunction of the
following formulas.

e go(r) — the root r is the initial state of M.

o Vo(Vyeq 9(@) N # 1) = x> 1 AVy.suce(y,z) =
Ve 9(y) — the G-substructure is a tree rooted in 7.

® Vu Ny geclore ~(9(@) A g'(x)) — no node is labelled
by two different gs

o Yy, o.suce(z, y)Asuce(x, 2) Ay # z = /\geG(g(y) =
—g(z)) — no node has two successors labelled by the
same g.

* Ng.g)gto YeVy-succ(z,y) = —g(x) V ~¢'(y) and

(g.9)et Vo-9(&) = Fy(suce(z,y) A g'(y)) — the

successors in the G-substructure of a state satisfying g
are exactly {¢’ | t¢(g, ')}, i.e., the successors of g.

The construction guarantees the following.

Lemma 7. Let IS be an ISRL and M be its model of de-
gree k and global states {qgo, . ..,gn}. The SKS™ formula
model;s (7, go, - . -, gn) is satisfiable, and if T' is its model,
then the {go,...,gn }-substructure of T viewed as an un-
ranked tree is isomorphic with M.

4.3 Translation of Formulas

Hereafter we abbreviate g, . . ., g, to g. We inductively de-
fine an “EHS to SkS°°” translation ets.

We start by defining the translation function for p being a
propositional letter. This can be done in a standard way —
we transform the regular expression A(p) into an automaton,
and then write a formula that labels the path from x to y with
the states of the automaton, starting from an initial one and
ending with a final one.

Conjunction and negation are translated directly. For any
EHS formulas ¢, ¢, we define:

b ets—wp(xvyara g) = ﬁetsip(x’yara g)
L4 etsgo/\tp' (xvyarra g) = etssﬁ(z?y7r7 g) /\etssﬁl (zmyvrv g)

We now proceed to definition of translation function for
temporal relations. Define ets x),(z,y,7, §) as:

Jy < zAetsy(y, 2,7, 9)if X = A,
dr<z<zAetsy(z,z,7,9)if X = A,
o .o <z<yAets,(z, 2,19 if X =B,

oy <zAetsy(x,z,r,g)if X = B,
o J.x<z<yAets,(z,y,7,9)if X =E,
o J.r<z<uxAetsy(z,y,rq) if X = E.

The translation for remaining temporal operators is defined
in a similar way. Notice that so far we never modify r and g,
and therefore the construction would work also in SkS.

Now we discuss epistemic modalities (Step 3). For every
i € A define ~;C G% as g ~; ¢ iff [;(g) = 1;(¢'). Similarly,
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for every I' C A define ~pC G? as the transitive closure of
Uier ~i- Since ~; is just ~y;, it is enough to define the
transition function for epistemic modalities of the form CT,
where I' C A.

Define etscy.o(z,y,7, 9o, - - -, gn) as
ViV equivp(z,y,7, 4,1, g'") = ets,(x,y,1', ')

where equivy states that 7’/ ,97 give a model in which
the interval [z,y] is indistinguishable for I" with the in-

terval [z,y] in the model given by r,g.  Formally,
equivp(x,y,r, g,7’,¢') is defined as:
model;s(r', ¢ )NV, .2<z<y = \/ (9i(2)Agj(2))

i,51(gi,95)E~r

4.4 Correctness of the Construction
We show that the construction is correct.

Lemma 8. Let IS be an ISRL with the model M and ¢ be
an EHS formula. Let N be a model of model;s(r, §) and h
be the isomorphism from M to {go, ..., gn }-substructure of
N. For every interval [s,t] in M we have M, [s,t] E ¢ iff
ets,(h™1(s),h"1(t),r, §) holds in N.

Recall that the isomorphism exists due to Lemma 7. The
proof goes by induction and is omitted due to the page limit.
The main result follows:

Theorem 9. Model checking ISRL against EHS specifica-
tions is decidable.

Proof. For an ISRL 1S and an EHS formula ¢, the model
checking amounts to constructing the formula

3,37.model;5(r, §) A etsy(r,7,7,§)

and checking whether this formula is satisfiable (which is
equivalent to being true as it has no free variables). It
follows from Lemma 8 that this formula is satisfiable iff
M, [s',s] = o, because h(s!) = r for any isomorphism
h defined as in Lemma 7. O

The resulting complexity is non-elementary. However, SkS
and SkS° are elementary when the number of quantifiers
alternations is bounded. Therefore, a better complexity can
be obtained, if needed, by considering EHS formulas with
bounded alternation depth.

5 LTL-like Semantics Leads to Undecidability

In a sense, the way that the intervals are quantified in EHS
is similar to CTL: a single formula may depend on differ-
ent branches of computation. An alternative, LTL-like, ap-
proach would be to consider the specification over each possi-
ble computation separately. More precisely, for a given ISRL
1S and its model M, a trace is an infinite path in the tree M
starting in the root. By traces(1.S) we denote the set of all
such traces.

We adjust the definition of the semantics of EHS (Defi-
nition 5) to traces in a straightforward way: each time the
semantics refers to an interval, it has to be an interval in
this particular trace. We define IS =pr; « iff for all
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1s 1 1 le 2s 2 2
A GO (L)
a (q1>B) B B a (qlvB) B

JE () () GO0

Figure 3: An example of an interval encoding a computation of a Turing machine (states of agent 3 are omitted for readability).

T € traces(IS) and all the intervals [s, #] (i.e., starting from
the initial state) we have T, [s],#] |= .

Just like LTL is computationally harder than CTL, the LTL-
like semantics makes EHS harder.

Theorem 10. For an ISRL IS and an EHS formula ¢, check-
ing whether IS =111, @ is undecidable, even if © contains
only epistemic modalities.

Proof. We reduce the boundedness problem for Turing ma-
chines. We assume a Turing machine M with the alphabet
including the letter B (blank), set of states (), a single initial
state o, and a transition function § : ¥x@Q — Qx X x{L, R}
such that M starts with the empty tape. A machine M is
bounded iff M visits only finitely many configurations dur-
ing its computations. It is well known that checking if such a
machine is bounded is undecidable.

We construct an ISRL IS and a formula ¢ such that there
is a trace T of IS and t such that T, (s,t) & ¢ iff M
is bounded. This implies that I.S =1 —p iff M is not
bounded, thus the undecidability.

We use an abbreviation IA(Z» defined, for each agent i, as
K;v = =K;—. Notice that K;7) means “there is an interval
indistinguishable for ¢ from the current one that satisfies ).

We use four agents: 0 with states {15, 1, 1., 2s,2,2.,—},
1,2 with states S = X U (Q x X) U {—}, and 3 with a single
state —. All the agents have a single action a that is allowed
in every state and allows to move from any state except — to
any state; from — an agent can move only to —.

The idea is that the interval that satisfies ¢ will encode the
initial configuration of M, and we will require that for each
configuration, there is an interval (somewhere in the trace, not
necessary below the current interval) encoding the next con-
figuration. We will also stipulate that there are only finitely
many configurations, which means that M is bounded.

First, we define the labelling A(I) = (1: (qo, B))(1: B)*
— it labels the intervals where the states of the agent 1 encode
the initial configuration. We will also employ A(a;) defined
as (0: 45)(0: 2)*(0: 4.) for i € {1,2}. We will call inter-
vals matching A(a;) i-blocks; blocks will be used to encode
configurations (e.g., Figure 3 contains three blocks). Further-
more, let A(end) be defined by T*(0: — Al: — A2: —)T*.

So far, we can express the following: the interval encodes
the initial configuration in the states of agent 1 and there are
only finitely many configurations: a; A I A K send.

It remains to express that if there is an interval expressing
a configuration, then there is an interval expressing the next
configuration. To do this, we need two more labellings.

Let 1=2 and 2=1. Fori € {1, 2}, let the labelling A(next;)
match the intervals matched by a; where the states of agent
1 and the states of agent 2 describe a configuration (contain

exactly one pair (g, a) in each case) and the configuration de-
scribed by the states of i is the configuration following the
configuration described by the states of ¢. This can be ex-
pressed as a regular expression in standard way.

Let ¢; = a; = K;(a; A next;) be a formula for every i-
block there is an i-block I’ such that the configuration stored
by agent 7 is the same in both cases. Moreover, because of
next;, the states of ¢ in I’ encode the next configuration.

Finally, we define ¢ = a3 AT A IA(gend A K3(1 A ba).

If M visits only a bounded number of configurations, then
we can easily construct a trace satisfying ¢ that contains
all these configurations and then all the states are triples
(—,—,—). On the other hand, if there are a trace T and an
interval I that satisfy ¢, then 7' contains finitely many config-
urations including the initial one. By vy and v, T' contains
all the configurations that M visits, meaning that M visits
only a bounded number of configurations. O

A similar question: does T, [s',s!] | ¢ for all T €
traces(1S) (as in the definition of I.S = ¢), is also unde-
cidable, but only if we also have at least one modality among
{A,A,B,D,E, L, L}. Otherwise, the model checking is de-
cidable, as only point intervals are reachable from the initial
interval. Interestingly, LTL-like model checking EHS without
epistemic modalities is decidable [Bozzelli et al., 2016b].

6 Conclusions

We showed that the model checking problem for EHS is de-
cidable in non-elementary time. The only known lower bound
is EXPSPACE. The problem of establishing the precise com-
plexity, however, remains open and is hard to predict. On
the one hand, the non-emptiness problem of regular expres-
sions with complementation is TOWER-complete, and EHS
can express regular expressions and negation; however, the
proof of the non-elementary lower bound for regular expres-
sions with complementation alternates complementation and
Kleene star, and it does not seem to be possible to do this
in EHS. On the other hand, even for a simpler logic, HS, no
elementary algorithm is known.

We also showed that LTL-like semantics combined with
epistemic modalities on intervals lead to undecidability. The
undecidability of the satisfiability problem for EHS without
temporal modalities can be shown in the same way.
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