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Abstract

In this paper, we propose a novel Heterogeneous
Gaussian Mechanism (HGM) to preserve differen-
tial privacy in deep neural networks, with provable
robustness against adversarial examples. We first
relax the constraint of the privacy budget in the tra-
ditional Gaussian Mechanism from (0, 1] to (0, in-
fty), with a new bound of the noise scale to preserve
differential privacy. The noise in our mechanism
can be arbitrarily redistributed, offering a distinc-
tive ability to address the trade-off between model
utility and privacy loss. To derive provable robust-
ness, our HGM is applied to inject Gaussian noise
into the first hidden layer. Then, a tighter robust-
ness bound is proposed. Theoretical analysis and
thorough evaluations show that our mechanism no-
tably improves the robustness of differentially pri-
vate deep neural networks, compared with baseline
approaches, under a variety of model attacks.

1 Introduction

Recent developments of machine learning (ML) significantly
enhance sharing and deploying of ML models in practical
applications more than ever before. This presents critical
privacy and security issues, when ML models are built on
personal data, e.g., clinical records, images, user profiles,
etc. In fact, adversaries can conduct: 1) privacy model at-
tacks, in which deployed ML models can be used to reveal
sensitive information in the private training data [Fredrik-
son et al., 2015; Wang et al., 2015; Shokri et al., 2017;
Papernot et al., 2016]; and 2) adversarial example attacks
[Goodfellow et al., 2014] to cause the models to misclassify.
Note that adversarial examples are maliciously perturbed in-
puts designed to mislead a model at test time [Liu et al., 2016;
Carlini and Wagner, 2017]. That poses serious risks to de-
ploy machine learning models in practice. Therefore, it is of
paramount significance to simultaneously preserve privacy in
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the private training data and guarantee the robustness of the
model under adversarial examples.

To preserve privacy in the training set, recent efforts have
focused on applying Gaussian Mechanism (GM) [Dwork and
Roth, 2014] to preserve differential privacy (DP) in deep
learning [Abadi et al., 2016; Hamm et al., 2017; Yu ef al.,
2019; Lee and Kifer, 2018]. The concept of DP is an ele-
gant formulation of privacy in probabilistic terms, and pro-
vides a rigorous protection for an algorithm to avoid leaking
personal information contained in its inputs. It is becoming
mainstream in many research communities and has been de-
ployed in practice in the private sector and government agen-
cies. DP ensures that the adversary cannot infer any infor-
mation with high confidence (controlled by a privacy budget
€ and a broken probability §) about any specific tuple from
the released results. GM is also applied to derive provable ro-
bustness against adversarial examples [Lecuyer et al., 2018].
However, existing efforts only focus on either preserving DP
or deriving provable robustness [Kolter and Wong, 2017;
Raghunathan et al., 2018], but not both DP and robustness!

With the current form of GM [Dwork and Roth, 2014] ap-
plied in existing works [Abadi ef al., 2016; Hamm et al.,
2017; Lecuyer et al., 2018], it is challenging to preserve
DP in order to protect the training data, with provable ro-
bustness. In GM, random noise scaled to N (0,c?) is in-
jected into each of the components of an algorithm out-
put, where the noise scale o is a function of €, §, and the
mechanism sensitivity A. There are three major limitations
in these works when applying GM: (1) The privacy bud-
get € in GM is restricted to (0, 1], resulting in a limited
search space to optimize the model utility and robustness
bounds; (2) All the features (components) are treated the
same in terms of the amount of noise injected. That may
not be optimal in real-world scenarios [Bach er al., 2015;
Phan et al., 2017]; and (3) Existing works have not been de-
signed to defend against adversarial examples, while preserv-
ing DP in order to protect the training data. These limitations
do narrow the applicability of GM, DP, deep learning, and
provable robustness, by affecting the model utility, flexibility,
reliability, and resilience to model attacks in practice.
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Our Contributions

To address these issues, we first propose a novel Heteroge-
neous Gaussian Mechanism (HGM), in which (1) the con-
straint of € is extended from (0, 1] to (0, 00); (2) a new lower
bound of the noise scale o will be presented; and more im-
portantly, (3) the magnitude of noise can be heterogeneously
injected into each of the features or components. These sig-
nificant extensions offer a distinctive ability to address the
trade-off among model utility, privacy loss, and robustness
by redistributing the noise and enlarging the search space for
better defensive solutions.

Second, we develop a novel approach, called Secure-SGD,
to achieve both DP and robustness in the general scenario,
i.e., any value of the privacy budget e. In Secure-SGD, our
HGM is applied to inject Gaussian noise into the first hidden
layer of a deep neural network. This noise is used to derive a
tighter and provable robustness bound. Then, DP stochastic
gradient descent (DPSGD) algorithm [Abadi er al., 2016] is
applied to learn differentially private model parameters. The
training process of our mechanism preserves DP in deep neu-
ral networks to protect the training data with provable robust-
ness. To our knowledge, Secure-SGD is the first approach to
learn such a secure model with a high utility. Rigorous ex-
periments conducted on MNIST and CIFAR-10 datasets [Le-
cun et al., 1998; Krizhevsky and Hinton, 2009] show that our
approach significantly improves the robustness of DP deep
neural networks, compared with baseline approaches.

2 Preliminaries and Related Work

In this section, we revisit differential privacy, PixelDP
[Lecuyer et al., 2018], and introduce our problem definition.
Let D be a database that contains n tuples, each of which
contains data x € [—1,1]¢ and a ground-truth label y € Z.
Let us consider a classification task with K possible cate-
gorical outcomes; i.e., the data label y given x € D is as-
signed to only one of the K categories. Each y can be consid-
ered as a one-hot vector of K categories y = {y1,..., YK }-
On input = and parameters #, a model outputs class scores
f : R? — RX that maps d-dimentional inputs z to a vector
of scores f(z) = {fi(x),..., frx(x)}s.t. Vk : fr(z) € [0,1]
and Zle fr(z) = 1. The class with the highest score
value is selected as the predicted label for the data tuple, de-
noted as y(x) = maxgex fr(x). We specify a loss function
L(f(x),y) that represents the penalty for mismatching be-
tween the predicted values f(z) and original values y.

Differential Privacy

The definitions of differential privacy and Gaussian Mecha-
nism are as follows:

Definition 1 (¢, §)-Differential Privacy [Dwork et al., 2006].
A randomized algorithm A fulfills (e, d)-differential privacy,
if for any two databases D and D' differing at most one tuple,
and for all o C Range(A), we have:

Pr[A(D) =o] < e‘Pr[A(D') = o] + 4 (1)
Smaller € and § enforce a stronger privacy guarantee.

Here, € controls the amount by which the distributions in-
duced by D and D’ may differ, and § is a broken probability.
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DP also applies to general metrics p(D,D’) < 1, includ-
ing Hamming metric as in Definition 1 and [ )¢ {1 2 o0}-norms
[Chatzikokolakis er al., 2013]. Gaussian Mechanism is ap-
plied to achieve DP given a random algorithm A as follows:

Theorem 1 Gaussian Mechanism [Dwork and Roth, 2014].
Let A : R — RE be an arbitrary K-dimensional function,
and define its ly sensitivity to be Ay = maxp p/||A(D) —
A(D")||2. The Gaussian Mechanism with parameter o adds
noise scaled to N'(0, 02) to each of the K components of the
output. Given e € (0, 1], the Gaussian Mechanism with o >

v/21In(1.25/8)A 4 /e is (e,0)-DP.

Adversarial Examples

For some target model f and inputs (&, Yiye), 1-€., Ytrue 1S
the true label of =, one of the adversary’s goals is to find an
adversarial example v*" = r+«, where « is the perturbation
introduced by the attacker, such that: (1) 2% and z are close,
and (2) the model misclassifies 2%, i.e., y(z*®) # y(z).
In this paper, we consider well-known classes of I (1,2 00}~
norm bounded attacks [Goodfellow et al., 2014]. Let {,,(1) =
{a € R : ||a]|, < pu} be the [,-norm ball of radius . One of
the goals in adversarial learning is to minimize the risk over
adversarial examples:

0" = arg Inein E(w,y“ue)wD [ ”gﬁa)é# L(f(f +a, 0)7 ylrue):|
where a specific attack is used to approximate solutions to
the inner maximization problem, and the outer minimization
problem corresponds to training the model f with parameters
6 over these adversarial examples 2*% = z + .

We revisit two basic attacks in this paper. The first one
is a single-step algorithm, in which only a single gradi-
ent computation is required. For instance, Fast Gradient
Sign Method (FGSM) algorithm [Goodfellow er al., 2014]
finds an adversarial example by maximizing the loss function
L(f(2*,0), yue ). The second one is an iterative algorithm,
in which multiple gradients are computed and updated. For
instance, in [Kurakin ef al., 2016], FGSM is applied multi-
ple times with small steps, each of which has a size of /T,
where T, is the number of steps.

Provable Robustness and PixelDP

In this paper, we consider the following robustness definition.
Given a benign example x, we focus on achieving a robust-
ness condition to attacks of [,,(11)-norm, as follows:

Va € ly(p) : fulz 4+ a) > max filz + ) )

where k = y(x), indicating that a small perturbation « in the
input does not change the predicted label y(z).

To achieve the robustness condition in Eq. 2, [Lecuyer et
al., 2018] introduce an algorithm, called PixelDP. By con-
sidering an input = (e.g., images) as databases in DP par-
lance, and individual features (e.g., pixels) as tuples in DP,
PixelDP shows that randomizing the scoring function f(z) to
enforce DP on a small number of pixels in an image guar-
antees robustness of predictions against adversarial examples
that can change up to that number of pixels. To achieve the
goal, noise N (0, 02) is injected into either input = or some



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

hidden layer of a deep neural network. That results in the
following (e, 0, )-PixelDP condition, with a budget ¢, and a
broken brobability §,. of robustness, as follows:

Lemma 1 (e¢,,0,)-PixeIDP [Lecuyer et al., 2018]. Given
a randomized scoring function f(x) satisfying (€.,0r)-
PixelDP w.r.t. a l,,-norm metric, we have:

VkVaely(n=1):Efy(z) < e Efp(xr +a)+ 0, (3)
where E fi.(x) is the expected value of fi(x).

The network is trained by applying typical optimizers, such
as SGD. At the prediction time, a certified robustness check
is implemented for each prediction. A generalized robustness
condition is proposed as follows:

Vo€ l(p=1) : By fr(z) >
)

where I[:Zlb and IAEub are the lower bound and upper bound of
the expected value B f (z) = + 3y f(x)n, derived from the
Monte Carlo estimation with an 7-confidence, given N is the
number of invocations of f(z) with independent draws in the
noise o,. Passing the check for a given input = guarantees
that no perturbation exists up to l,( = 1)-norm that causes
the model to change its prediction result. In other words, the
classification model, based on I@f(x), i.e., arg maxy ]Efk(x),
is consistent to attacks of [,,( = 1)-norm on z with probabil-
ity > 7. Group privacy [Dwork er al., 2006] can be applied to
achieve the same robustness condition, given a particular size
of perturbation I,,(1). For a given o, ¢,., and sensitivity A, o
used at prediction time, PixelDP solves for the maximum g
for which the robustness condition in Eq. 4 checks out:

Umaz = ,Itrel%}i p suchthat Vo € l,(p):
oy fr(z) > € m?e}ﬂ::ubfi(x) + (1 +e7)d,
or =+/2In(1.25/6,)A, ap1/€, and €, <1 5)

3 Heterogeneous Gaussian Mechanism

We now formally present our Heterogeneous Gaussian Mech-
anism (HGM) and the Secure-SGD algorithm. In Eq. 5, it is
clear that e is restricted to be (0, 1], following the Gaussian
Mechanism (Theorem 1). That affects the robustness bound
in terms of flexibility, reliability, and utility. In fact, adver-
saries only need to guarantee that By fx(x + «) is larger than
at most e? max;.; fEubfi(x +a)+ (1+e)d,ie, e =1,in
order to assault the robustness condition: thus, softening the
robustness bound. In addition, the search space for the robust-
ness bound 4, is limited, given € € (0,1]. These issues
increase the number of robustness violations, potentially de-
grading the utility and reliability of the robustness bound. In
real-world applications, such as healthcare, autonomous driv-
ing, object recognition, etc., a flexible value of e, is needed
to implement stronger and more practical robustness bounds.
This is also true for many other algorithms applying Gaussian
Mechanism [Dwork and Roth, 2014].

To relax this constraint, we introduce an Extended Gaus-
sian Mechanism as follows:

e max B fi(@)+ (140,

—— Heterogeneous Gaussian Mechanism
— —Gaussian Mechanism
Analytic Gaussian Mechanism

+ ¢ < 1 (Gaussian Mechanism)

Figure 1: The magnitude of Gaussian noise, given the traditional
Gaussian Mechanism, Analytic Gaussian Mechanism, and our Het-
erogeneous Gaussian Mechanism.

Theorem 2 Extended Gaussian Mechanism. Let A : R —
RE be an arbitrary K -dimensional function, and define its lo
sensitivity to be Ay = maxp p||A(D) — A(D’)||2. An Ex-
tended Gaussian Mechanism M with parameter o adds noise
scaled to N'(0, 02) to each of the K components of the output.
The mechanism M is (e,0)-DP, with

\f A(\f—i—\/s—i—e) and s-ln(\/71

6)

e>0 o>

Detailed proof of Theorem 2 is in Appendix B'. The Ex-
tended Gaussian Mechanism enables us to relax the con-
straint of e. However, the noise scale o is used to inject
Gaussian noise into each component. This may not be op-
timal, since different components usually have different im-
pacts to the model outcomes [Bach et al., 2015]. To address
this, we further propose a Heterogeneous Gaussian Mecha-
nism (HGM), in which the noise scale ¢ in Theorem 2 can
be arbitrarily redistributed. Different strategies can be ap-
plied to improve the model utility and to enrich the search
space for better robustness bounds. For instance, more noise
will be injected into less important components, or vice-
versa, or even randomly redistributed. In order to achieve our
goal, we introduce a noise redistribution vector Kr, where
r € RX that satisfies 0 < r; < 1 (i € [K]) and 3.5 r; =
1. We show that by injecting Gaussian noise A(0,02KT),

where Ay = maxp p \/Zle 2 (AD) — A(D"),)°
and p(D, D") < 1, we achieve (¢, d)-DP.

Theorem 3 Heterogeneous Gaussian Mechanism. Let A :
R? — RX be an arbitrary K -dimensional function, and de-

fine its l2 sensitivity to be A 4 = maxp p|| % Il =
maxp, ps \/Zk:l W(A(D)k - A(D’)k)z. A Heteroge-

neous Gaussian Mechanism M with parameter o adds noise
scaled to N'(0,02Kr) to each of the K components of the
output. The mechanism M is (e, 0)-DP, with

1

f A(\f—i—\/s—ke) and s_ln(\/>§)

wherer € RE 5.1. 0 <r; <1 (i € [K]) and Zi:l r; = 1.

€e>0, o>

! https://www.dropbox.com/s/mjkq4zqqh6ifqir/HGM_Appendix.pdf?dl=0
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Detailed proof of Theorem 3 is in Appendix C!. It is clear
that the Extended Gaussian Mechanism is a special case of
the HGM, when Vi € [K] : r; = 1/K. Figure 1 illustrates
the magnitude of noise injected by the traditional Gaussian
Mechanism, the state-of-the-art Analytic Gaussian Mecha-
nism [Balle and Wang, 2018], and our Heterogeneous Gaus-
sian Mechanism as a function of €, given the global sensitivity
A =1,and § = le—5 (a very tight broken probability), and
Vi € [K] : r; = 1/K. The lower bound of the noise scale in
our HGM is just a little bit better than the traditional Gaussian
Mechanism when € < 1. However, our mechanism does not
have the constraint (0, 1] on the privacy budget e. The An-
alytic Gaussian Mechanism, which provides the state-of-the-
art noise bound, has a better noise scale than our mechanism.
However, our noise scale bound provides a distinctive abil-
ity to redistribute the noise via the vector Kr, compared with
the Analytic Gaussian Mechanism. There could be numerous
strategies to identify vector r. This is significant when ad-
dressing the trade-off between model utility and privacy loss
or robustness in real-world applications. In our mechanism,
“more noise” is injected into “more vulnerable” components
to improve the robustness. We will show how to compute vec-
tor r and identify vulnerable components in our Secure-SGD
algorithm. Experimental results illustrate that, by redistribut-
ing the noise, our HGM yields better robustness, compared
with existing mechanisms.

4 Secure-SGD

In this section, we focus on applying our HGM in a crucial
and emergent application, which is enhancing the robustness
of differentially private deep neural networks. Given a deep
neural network f, DPSGD algorithm [Abadi et al., 2016] is
applied to learn (e, 0)-DP parameters 6. Then, by injecting
Gaussian noise into the first hidden layer, we can leverage the
robustness concept of PixelDP [Lecuyer et al., 2018] (Eq. 5)
to derive a better robustness bound based on our HGM.
Algorithm 1 (Appendix A') outlines the key steps in our
Secure-SGD algorithm. We first initiate the parameters 6 and
construct a deep neural network f : R? — RX (Lines 1-2).
Then, a robustness noise v < A(0,02Kr) is drawn by ap-
plying our HGM (Line 3), where o, is computed following
Theorem 3, K is the number of hidden neurons in hi, de-
noted as K = |hy|, and Ay is the sensitivity of the algorithm,
defined as the maximum change in the output (i.e., which is
hi(z) = W{z) that can be generated by the perturbation in
the input z under the noise redistribution vector Kr.
hi(z)—hi(z)
“ VEKr ”2

2 = 2"l

(6)

As= <l

For [-norm attacks, we use the following bound A; =
VIR || o, where || %2 || is the maximum 1-norm of
W1’s rows over the vector Kr. The vector r can be computed
as the forward derivative of h;(x) as follows:

S 1 OL(0,x)
r=——, wheres = — — 7
D ies Si n zGZD ’ Ohy(x)

where (3 is a user-predefined inflation rate. It is clear that fea-
tures, which have higher forward derivative values, will be

ax
z,x’ A

B
o
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more vulnerable to attacks by maximizing the loss function
L(0, ). These features are assigned larger values in vector r,
resulting in more noise injected, and vice-versa. The compu-
tation of r can be considered as a prepossessing step using a
pre-trained model. It is important to note that the utilizing of
r does not risk any privacy leakage, since r is only applied to
derive provable robustness. It does not have any effect on the
DP-preserving procedure in our algorithm, as follows. First,
at each training step ¢ € 7', our mechanism takes a random
sample B; from the data D, with sampling probability m/n,
where m is a batch size (Line 5). For each tuple x; € B,
the first hidden layer is perturbed by adding Gaussian noise
derived from our HGM (Line 6, Alg. 1):

hi(z;) = Wi @i+ (8)

This ensures that the scoring function f(z) satis-
fies (e, o,)-PixeIDP (Lemma 3).  Then, the gradient
gi(x;)) = Vo,L(0,x;) is computed (Lines 7-9). The
gradients will be bounded by clipping each gradient in
I norm; i.e., the gradient vector g;(z;) is replaced by
gi(x;)/ max(1, ||g:(z;)||2/C) for a predefined threshold C
(Lines 10-12). Uniformed normal distribution noise is added
into gradients of parameters 0 (Line 14), as:

The descent of the parameters explicitly is as: 841 < 6;—
&:qt, where & is a learning rate at the step ¢ (Line 16). The
training process of our mechanism achieves both (e, d)-DP
to protect the training data and provable robustness with the
budgets (¢, d,). In the verified testing phase (Lines 17-22),
by applying HGM and PixelDP, we derive a novel robustness
bound fi,,4, for a specific input x as follows:

gt(ffi)
max(l, Hgt(gi)?H)

+ N(0, 02021)) )

Hmaz = max u, suchthat Vo € [,(p) :
pERT
Eufu(@) > € maxBu fi(@) + (1+ )3,
V2

o =
2¢,

(Vs+Vs+e)Ar x pfe, and €. > 0] (10)

where Elb and I@ub are the lower and upper bounds of the
expected value Ef(z) = + 3y f(@)n, derived from the
Monte Carlo estimation with an n-confidence, given N is the
number of invocations of f(x) with independent draws in the
noise v < N(0,02Kr). Similar to [Lecuyer et al., 2018],
we use Hoeffding’s inequality [Hoeffding, 1963] to bound the
error in f(z). If the robustness size fimq, is larger than a
given adversarial perturbation size u,, the model prediction
is considered consistent to that attack size. Given the relaxed
budget ¢, > 0 and the noise redistribution Kr, the search
space for the robustness Size fi,,q, 1S significantly enriched,
e.g., ¢, > 1, strengthening the robustness bound. Note that
vector r can also be randomly drawn in the estimation of the
expected value 1) f (). Both fully-connected and convolution
layers can be applied. Given a convolution layer, we need to
ensure that the computation of each feature map is (e, §,)-
PixelDP, since each of them is independently computed by
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Figure 3: Certified accuracy on the MNIST dataset, given HGM_PixelDP and PixelDP (i.e., no DP preservation).
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Figure 4: Conventional accuracy on the CIFAR-10 dataset, given Secure-SGD, DPSGD, and AdLM, i.e., loo(tte = 0.2), €, = 8.
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Figure 5: Conventional accuracy on the MNIST dataset, given Secure-SGD and DPSGD, i.e., loc (ta = 0.1), €, = 4.

reading a local region of input neurons. Therefore, the sensi- 5 Experimental Results
tivity Ay can be considered the upper-bound sensitivity given
any single feature map. Our algorithm is the first effort to
connect DP preservation in order to protect the original train-
ing data and provable robustness in deep learning.

We have carried out extensive experiments on two bench-
mark datasets, MNIST and CIFAR-10. Our goal is to eval-
uate whether our HGM significantly improves the robustness
of both differentially private and non-private models under
strong adversarial attacks, and whether our Secure-SGD ap-
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proach retains better model utility compared with baseline
mechanisms, under the same DP guarantees and protections.

Baseline approaches. Our HGM and two approaches, in-
cluding HGM _PixelDP and Secure-SGD, are evaluated in
comparison with state-of-the-art mechanisms in: (1) DP-
preserving algorithms in deep learning, i.e., DPSGD [Abadi
et al., 2016], AdLM [Phan et al, 2017]; in (2) Prov-
able robustness, i.e., PixelDP [Lecuyer et al., 2018]; and
(3) The Analytic Gaussian Mechanism (AGM) [Balle and
Wang, 2018]. To preserve DP, DPSGD injects random noise
into gradients of parameters, while AALM is a Functional
Mechanism-based approach. PixelDP is one of the state-of-
the-art mechanisms providing provable robustness using DP
bounds. Our HGM_PixelDP model simply is PixelDP with
the noise bound derived from our HGM. The baseline mod-
els share the same design in our experiment. We consider the
class of [ -bounded adversaries. Four white-box attack algo-
rithms were used, including FGSM, I-FGSM, Momentum It-
erative Method (MIM) [Dong et al., 2017], and MadryEtAl
[Madry et al., 2018], to draft adversarial examples (114 )-

Datasets and configurations. MNIST: We used two convo-
lution layers (32 and 64 features). Each hidden neuron con-
nects with a 5x5 unit patch. A fully-connected layer has 256
units. The batch size m was set to 128, & = 1.5, ¢ = 2,
T, = 10, and 8 = 1. CIFAR-10: We used three convolu-
tion layers (128, 128, and 256 features). Each hidden neuron
connects with a 3x3 unit patch in the first layer, and a 5x5
unit patch in other layers. One fully-connected layer has 256
neurons. The batch size m was set to 128, £ = 1.5, ¢ = 10,
T, = 3,and 8 = 1. Note that € is used to indicate the DP
budget used to protect the training data; meanwhile, €, is the
budget for robustness. The implementation of our mechanism
is available in TensorFlow?. We apply two accuracy metrics
as follows:

SltestlisCorrect ()
[test|
Lt:cft‘ isCorrect(x;) & isRobust(x;)
test|

conventional accuracy =

certified accuracy =

where |test| is the number of test cases, isCorrect(-) returns
1 if the model makes a correct prediction (otherwise, returns
0), and isRobust(-) returns 1 if the robustness size is larger
than a given attack bound i, (otherwise, returns 0).

HGM_PixelDP. Figures 2 and 3 illustrate the certified accu-
racy under attacks of each model as a function of the adversar-
ial perturbation p,. Our HGM_PixelDP notably outperforms
the PixelDP model in most of the cases given the CIFAR-10
dataset. We register an improvement of 8.63% on average
when €, = 8 compared with the PixelDP, i.e., p < 8.14e — 7
(2 tail t-test). This clearly shows the effectiveness of our
HGM in enhancing the robustness against adversarial exam-
ples. Regarding the MNIST data, our HGM_PixelDP model
achieves better certified accuracies when p < 0.3 compared
with the PixelDP model. On average, our HGM_PixelDP
(e, = 4) improves 4.17% in terms of certified accuracy given
e < 0.3, compared with the PixelDP, p < 5.89e — 3 (2 tail
t-test). Given very strong adversarial perturbation p, > 0.3,

*https://github.com/haiphanNJIT/SecureSGD
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smaller €, usually yields better results, offering the flexibil-
ity in choosing appropriate DP budget €, for robustness given
different attack magnitudes. These experimental results show
crucial benefits of relaxing the constraints of the privacy bud-
get and of the heterogeneous noise distribution in our HGM.

Secure-SGD. The application of our HGM in DP-
preserving deep neural networks, i.e., Secure-SGD, further
strengthens our observations. Figures 4 and 5 illustrate the
certified accuracy under attacks of each model as a function of
the privacy budget € used to protect the training data. By in-
corporating HGM into DPSGD, our Secure-SGD remarkably
increases the robustness of differentially private deep neural
networks. In fact, our Secure-SGD with HGM outmatches
DGSGP, AdLM, and the application of AGM in our Secure-
SGD algorithm in most of the cases. Note that the application
of AGM in our Secure-SGD does not redistribute the noise in
deriving the provable robustness. In CIFAR-10 dataset, our
Secure-SGD (e, = 8) correspondingly acquires a 2.7% gain
(p < 1.22e — 6, 2 tail t-test), a 3.8% gain (p < 2.16e — 6,
2 tail t-test), and a 17.75% gain (p < 2.05e¢ — 10, 2 tail t-
test) in terms of conventional accuracy, compared with AGM
in Secure-SGD, DPSGD, and AdLM algorithms. We regis-
ter the same phenomenon in the MNIST dataset. On average,
our Secure-GSD (e, = 4) correspondingly outperforms the
AGM in Secure-SGD and DPSGD with an improvement of
29% (p < 8.79¢ — 7, 2 tail t-test) and an improvement of
10.74% (p < 8.54e — 14, 2 tail t-test).

Privacy preserving and provable robustness. We also
discover an original, interesting, and crucial trade-off be-
tween DP preserving to protect the training data and the prov-
able robustness (Figures 4 and 5). Given our Secure-SGD
model, there is a huge improvement in terms of conventional
accuracy when the privacy budget € increases from 0.2 to 2 in
MNIST dataset (i.e., 29.67% on average), and from 2 to 10
in CIFAR-10 dataset (i.e., 18.17% on average). This opens
a long-term research avenue to achieve better provable ro-
bustness under strong privacy guarantees, since with strong
privacy guarantees (i.e., small values of €), the conventional
accuracies of all models are still modest.

6 Conclusion

In this paper, we presented a Heterogeneous Gaussian Mech-
anism (HGM) to relax the privacy budget constraint, i.e., from
(0, 1] to (0, 00), and its heterogeneous noise bound. An orig-
inal application of our HGM in DP-preserving mechanism
with provable robustness was designed to enhance the ro-
bustness of DP deep neural networks, by introducing a novel
Secure-SGD algorithm with a better robustness bound. Our
model shows promising results and opens a long-term avenue
to address the trade-off between DP preservation and prov-
able robustness. In future work, we will learn how to identify
and incorporate more practical Gaussian noise distributions
to further improve the model accuracies under model attacks.
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