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Abstract

Cross-modal hashing intends to project data from
two modalities into a common hamming space to
perform cross-modal retrieval efficiently. Despite
satisfactory performance achieved on real applica-
tions, existing methods are incapable of effectively
preserving semantic structure to maintain inter-
class relationship and improving discriminability
to make intra-class samples aggregated simultane-
ously, which thus limits the higher retrieval per-
formance. To handle this problem, we propose
Equally-Guided Discriminative Hashing (EGDH),
which jointly takes into consideration semantic
structure and discriminability. Specifically, we dis-
cover the connection between semantic structure
preserving and discriminative methods. Based on
it, we directly encode multi-label annotations that
act as high-level semantic features to build a com-
mon semantic structure preserving classifier. With
the common classifier to guide the learning of dif-
ferent modal hash functions equally, hash codes of
samples are intra-class aggregated and inter-class
relationship preserving. Experimental results on
two benchmark datasets demonstrate the superior-
ity of EGDH compared with the state-of-the-arts.

1 Introduction

With the exponential growth of multimedia data in Inter-
net, cross-modal retrieval that aims to retrieve samples from
one modality with a given query from another modality,
is increasingly important and draws much attention in ma-
chine learning. Despite the empirical success in infor-
mation retrieval [Radenovi¢ et al., 2018], cross-modal re-
trieval [Hwang and Grauman, 2012; Peng et al., 2018] is
still a challenging problem due to the heterogeneity between
modalities (e.g., image and text). To better tackle this prob-
lem, hashing based methods gradually become the main-
stream approach in the area in recent years due to its low
memory usage and high query speed [Wang er al., 2018;
Peng et al., 2018].
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Substantial efforts have been made to remove modal-
ity heterogeneity [Ding et al., 2016; Wang et al., 2017,
Cao et al., 2018; Wu et al., 2019]. One of the most well-
known method is Cross-view Hashing (CVH) [Kumar and
Udupa, 2011], which minimizes the similarity weighted dis-
tances between modalities. Another commonly used method,
Inter-media Hashing (IMH) [Song er al., 2013], encodes
data to achieve the inter-modal consistency and intra-modal
consistency. Moreover, Semantic Topic Multimodal Hash-
ing (STMH) [Wang et al., 2015] attempts to learn hash codes
by taking into consideration latent semantic information. De-
spite the effective elimination of heterogeneity, aforemen-
tioned methods neglect supervised information, resulting in
the performance degradation. To circumvent this problem,
some work has devoted to taking fully advantage of dis-
criminant information including semantic structure preserv-
ing based approaches [Deng et al., 2018; Ma et al., 2018] and
discriminative approaches [Wang er al., 2016; Xu et al., 2016;
Liu and Qi, 2018], where the former aim to express mu-
tual similarity such as pair-wise or triplet-wise relationship,
whereas the latter regard hash codes as representative features
for discriminative classification.

The representative semantic structure preserving based ap-
proach, Semantic Correlation Maximization (SCM) [Zhang
and Li, 2014], uses hash codes to reconstruct semantic simi-
larity matrix. Semantics-Preserving Hashing (SePH) [Lin et
al., 2015] minimizes KL-divergence between the hash codes
and semantics distributions. Pairwise Relationship Guided
Deep Hashing (PRDH) [Yang e al., 2017] was thereafter pro-
posed to maximize pairwise semantic inter-modal similarities
and intra-modal similarities. Although this type of methods
significantly improve the performance by the further consid-
eration of label information, they only focus on inter-class
relationships and can not push samples of the same class to
aggregate together.

As another type of approach, Multimodal Discriminative
Binary Embedding (MDBE) [Wang et al., 2016] formulates
the hash function learning in terms of classification to obtain
discriminative hash codes. Discriminant Cross-modal Hash-
ing [Xu er al., 2016] regards hash codes as features which
are easily classified and builds one common classifier for dif-
ferent modalities. Following the same idea, Discriminative
Cross-View Hashing (DCVH) [Liu and Qi, 2018] develops
a neural network to fit modal-specific classifiers for differ-
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ent modalities. Compared with semantic structure preserv-
ing methods, discriminability based methods view hash codes
as easily-classified features to make intra-class samples get
close to each other. However, it is obvious that these dis-
criminative methods neglect inter-class relationships which
are classical focus of semantic structure preserving methods.

From the in-depth analysis, the preservation of semantic
structure and the enhancement of discriminability of hash
codes are equally vital for cross-modal retrieval, and it can be
expected that the joint consideration can effectively improve
retrieval performance. To this end, we propose Equally-
Guided Discriminative Hashing (EGDH) algorithm to take
into account semantic structure and discriminability in a joint
manner based on the connection between classification and
hashing-based retrieval tasks, resulting in discriminative hash
codes which can also preserve semantic structure. Specif-
ically, the proposed EGDH consists of three sub-networks,
where the first one (i.e., labNet) is used to learn a common
classifier and the last two modal-specific sub-networks (i.e.,
imgNet and txtNet) aim to build hash functions of different
modalities. Since semantic structure preservation has been
considered in the process of common classifier learning, the
discriminative hash codes generated from imgNet (or txtNet)
also have the ability to represent semantic structure. In con-
clusion, the contributions of this paper are threefold:

e We propose a novel deep cross-modal hashing method,
which cooperates hashing-based retrieval with classifi-
cation to preserve semantic structure and make hash
codes discriminative simultaneously in a unified deep-
learning framework.

e We find that angle can connect Hamming distance and
classification under a special circumstance, where the
intra-class samples aggregate together while preserve
inter-class relationship.

e Extensive experiments on two benchmark datasets
demonstrate that the proposed EGDH algorithm outper-
forms other baselines methods for cross-modal hashing
retrieval.

The rest of this paper is organized as follows. The proposed
EGDH and its optimization are introduced in Sect. 2 and ex-
periments are conducted in Sect. 3. Finally, Sect. 4 concludes
this paper.

2 Equally-Guided Discriminative Hashing

In this section, we present Equally-Guided Discriminative
Hashing (EGDH) in detail. Here, we apply the method in
two most frequently-used modalities, image and text.

2.1 Notation and Problem Definition

Matrix and vector used in this paper are represented as bold-
face uppercase letter (e.g., W) and boldface lowercase let-
ter (e.g., w), respectively. ||-|| represents the 2-norm of vec-
tors. sign(-) represents the sign function, which outputs 1 if
its input is positive else outputs -1.

1 11 M1 2 2 N2 .
Let X' = {x}},_ and X* = {x}}  represent images

and texts, where a:ll € R%, m? € R% . And their class labels
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are represented by Y = {yk}ffil .Following [Lin et al., 2015;
Cao et al., 2016; Jiang and Li, 2017], we define the seman-
tic similarity matrix Sy, « v, between acll and w? using class
labels. If =} and x? share at least one category, they are
similar and S;; = 1. Otherwise, they are dissimilar and
Si; = 0. Given the code length c, the cross-modal hashing
is to build specific hash functions f! (x') : R4 — {—1,1}°
and f? (x?) : R% — {—1,1}" for images and texts. Mean-
while, the Hamming distance D (h%, hf) between hash codes
hi = f'(x}) and h? = f? (x?) indicates the similarity
Si; between ! and 2. If S;; = 1, D (h;,h?) should be
minimized. Otherwise, D (hz1 , h?) should be maximized. It
means:

Sij o< =D (hi,h?). (1)

2.2 Connection

The connection between classification and hashing-based re-
trieval is essential in union of discriminability and semantic
structure. The discriminative methods treat hash codes as fea-
tures which are easily classified. Hence, classifier plays an
important role. Consider a linear classifier y = Wh' + b to
classify N3 classes samples, where W = {wk}gil and b =

{bk}kNi 1- In classification tasks, the Softmax is frequently-
used in converting output into normalized probability. Han-
dled with it, the probability of i-th class is:

exp ('wihf + bi)
- >k exp (wkhiT + bk)
exp ([will -l - <08 (Bu ) + )
Z k €Xp (”wk” ’ Hh%H - COS (0wk,hi) + bk)
For Eq. (2), assume ||wy|| = ||h;| = /¢, b = 0 and the
equation is as follows:
_ o exp (llwill - il - cos (0w, n,))
> wexp ([lwl - [[Ri]l - cos (B, p))
o €xXp (\ﬁ \E'COS (ewi,hi))
" S rexp (Ve vercos (Bu n,)
exp (cos (Hwi’hi))
Z k €XP (COS (e’wk.hi)) -
Under this circumstance, maximizing the P; equals maxi-
mizing cos (Gwh hi) between w; that represents the i-th class

semantic anchor in label space and h; that represents the fea-
ture of data in ¢-th class while minimizing cos (6w, n,) be-

P,

2

P

3)

tween {wk}kj\;f;Z and h;. For a to-be-classified feature, the
cosine between vectors in label space and itself decides its
label.

Semantic structure preserving methods use hamming dis-
tance among samples to embody their relationships. When
{—1,1}° composes hash codes, the norm of hash codes is the
sqrt of its code length ¢, namely ||wg| = ||h;|| = v/c. The
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Figure 1: Equally-Guided Discriminative Hashing (EGDH) framework. Firstly, labNet encodes non-redundant multi-label annotations as
hash codes to compose the common classifier W. Later, binary feature extractor imgNet and txtNet are guided to build features which are

easily classified by W and close to their semantic hash code anchors w.

Hamming distance between wy, and h; can be also measured
by cos (0u, h,) between them:

D (wy, h;) = %( — (wg, hy;))
= 2 (e il [l - c05 (Bus, n,))
1

5 (c=+c- e cos (B, n,))
X — COS (ka,hi) . “)

From Eq. (4), the Hamming distance D (wy, h;) is posi-
tively correlated with — cos (Gw v b ) of wy, and h;. Further,
when combine Eq. (1) and Eq. (4), there exists a relationship:

Swy h; X COS (@wk,hi) . (®)]

From Eq. (5), for hashing-based retrieval, the cos (6w, n, )
indicates semantics between hash codes wy, and h;. And, the
assumption that ||wg| = /¢, ||hi]| = Ve and b = 0 is
tenable in hashing retrieval when use {—1,1} as hash codes
and set b = 0 in the classifier. Concurrently, Eq. (3) indicates
that the cosine between data binary features and hash codes
of label decides the label of data.

Combine Eq. (5) and Eq. (3), the cosine between vectors
is a connection to integrate semantic structure and discrim-
inability. In Hamming space, for a linear classifier composed
of vectors that are already encoded to preserve their inter-
class relationships, it pushes the to-be-classified binary fea-
tures near corresponding semantic anchor and far away from
non-corresponding anchors. By doing so, these features are

4769

the intra-class aggregated and inter-class relationship preserv-
ing. Namely, they are not only discriminative to be easily
classified but also semantic structure preserving because of
their cosine relationships with semantic anchors.

For cross-modal retrieval, it is also crucial to find a com-
mon space to avoid data heterogeneity. Therefore, we first
build a semantic structure preserving classifier which consti-
tutes the basics of common Hamming space. Later, the com-
mon classifier are applied to guide both binary feature extrac-
tors imgNet and txtNet to extract binary features (i.e. hash
codes) which are easily classified by it and close to their se-
mantic hash code anchors and eliminate data heterogeneity
automatically.

2.3 Framework

As shown in Figure 1, the EGDH model consists of three
parts. First, we build labNet to learn the common classi-
fier W. A two-layer Multi-layer Perception (MLP) whose
nodes are 4096 and c forms the labNet. The first layer uses
ReLU as activation function and nodes in the second layer use
tanh. Between these two layers, Local Response Normaliza-
tion (LRN) is applied. After processing of labNet, the hash
codes of non-redundant class labels are employed to com-
pose W. Then, we build binary feature extractors imgNet
and txtNet to learn hash functions. For image, we modify
CNN-F [Chatfield er al., 2014] to build imgNet. To obtain
c-length hash codes, the last fully-connected layer in origin
CNN-F is changed to c-node fully-connected layer with tanh.
For text, we first use the multi-scale network in [Li et al.,
2018] to extract multi-scale features and a two-layer MLP
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whose nodes are 4096 and c to transform multi-scale features
into hash codes. Except the activation function of last layer is
tanh, the other layers use ReL.U as activation functions. And,
the LRN is also added between layers.

Common Classifier

For ds-dimensional multi-label annotations, we regard them
as high-level semantic features and transform the non-
redundant multi-label annotations into /N3 multi-class anno-
tations Y = {yk}i\zl (Y, = {Yk1s Yk2.-- Ykds })- SO we can
use the multi-class classification method to handle multi-label
classification task and traverse more non-redundant correla-
tion. Then, the Y = {yk}ivil are encoded as hash codes
based on semantic structure. Simultaneously, these semantic
hash code anchors {w1; ws;...; wi} compose the common
classifier W. The loss function of labNet is:

%}éLy =LY+ oLl + pLY
N3
= — Z (Sijk-j — log (1 + eA’”))

k,j

N3
+ay (lwk = f Oy u6)]1%)
k=1

N3
+ 81 f Oy w12
k=1

stW = {wi N2, e {-1,1}°, (6)

where Ag; = f (0y595) f (Gy;yj)T, f (8,;y,) is the corre-
sponding labNet output of y,,, wy, is hash codes of f (6,;y;,)
handled by sign (-), and «, 8 are hyper-parameters that ad-
just weights of loss. To preserve semantic structure, the first
term of Eq. (6) makes hash codes to maximize likelihood of
semantic similarity. As the request of hash codes, the sec-
ond term aims to make the output of labNet discrete (i.e.
f(0y;y,) = /o). The last term intends to keep the num-
ber of -1 and 1 balance.

Binary Feature Extractor
Once the common classifier W is built, it guides binary fea-
ture extractor f (©,;x}*) of modality m = 1,2 to obtain
discriminative and semantic structure preserving hash codes
equally. The loss function is as follows:
minLl™ = LT +~L%
N, exp (wif (Omszr)")
=— log
i=1 >k exp (wkf (Om; $§")T)

N,
+ Y (lwi = £ Omi 2], )
=1

where {wi}fvﬁl € {—1,1}° are consisted of hash codes cor-
responding to labels and ~ is hyper-parameter. The second
term is the quantization loss, which leads extractors to out-
put binary features (i.e. | f (0,,;x")|| = v/¢). And since
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Algorithm 1 Equally-Guided Discriminative Hashing

Input: Images X 1, texts X 2, non-redundant labels Y, code
length ¢, hyper-parameters «, [3,y, learning rate Ay, A1, A,
mini-batch size M, and iteration number T}, T7, T5.

Output: Parameters 6; and 05 of imgNet and txtNet

Initialization Initialize 0, 61, 62 and wy,.
repeat
for iter=1 to T}, do
Update 6Y by BP algorithm:
Oy <0, — X\, - Vo, LY
Update W by Eq. (8)
for iter=1 to 7,,, do
Update 6,,, by BP algorithm:
Om, < O — Ay - Vo, L™
until convergence
return ¢; and 65

the norm of elements in common classifier wj, equals /c,
the connection between classification and hashing-based re-
trieval is practicable. Hence, the first term of Eq. (7) is the
Softmax loss. Guided by the common semantic structure pre-
serving classifier, the output features are discriminative and
semantic structure preserving.

2.4 Optimization

The optimization of the EGDH model includes two parts:
learning common classifier W and learning binary feature
extractors f (O,,;z"). Learning common classifier equals
to optimize 6, and W. For binary feature extractor of modal-
ity m, it needs to optimize 6,,,. The whole optimization pro-
cedure is summarized in Algorithm 1.

For 6, of labNet, Eq. (6) is derivable. Back-propagation
algorithm (BP) with mini-batch stochastic gradient de-
scent (mini-batch SGD) method is applied to update it. As
for wy, we use Eq. (8) to update it.

wy = sign (f (0y;y)) - )

For binary feature extractors, we also use BP with mini-
batch SGD method to update 6; and 6.

Once Algorithm 1 converges, the well-trained imgNet and
txtNet with sign(-) are used to handle out-of-sample exten-
sions from modality m:

hi* = sign (f (6m; 27")) - )

3 Experiments

3.1 Datasets

Performance evaluation was conducted on two benchmark
datasets: MIRFLICKR-25K [Huiskes and Lew, 2008] and
MS COCO [Lin et al., 2014].

MIRFLICKR-25K consists of 25015 images collected
from the Flickr website. Every image is associated with sev-
eral tags. Following [Jiang and Li, 2017], we use 20015
image-tag pairs annotated with 24-dimensional annotations
to conduct experiments. For text data, a 1386-dimensional
bag-of-words vector represents each text.
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MS COCO contains 82783 training images and 40504 val-
idation images. We eliminate images without category infor-
mation and use the left 87081 images. Every image has its
corresponding text description and a 91-dimensional annota-
tion. For text, we use 2000-dimensional bag-of-words vector
to represent.

3.2 Evaluation Protocols and Baselines

For MIRFLICKR-25K, we randomly sample 2000 image-text
pairs as query set and regard the rest as retrieval set. For MS
COCO, we randomly sample 5000 pairs as query set and use
the rest 82081 pairs as retrieval set. For both datasets, 10000
image-text pairs are randomly chosen from retrieval set for
training.

Evaluation Protocols

To evaluate performance, we use Hamming ranking and hash
lookup as retrieval protocols. Hamming ranking is to sort the
data points in retrieval set based on their Hamming distance
to the given query point. For comparison, we adopt mean
average precision (MAP) and Top N -precision curves to mea-
sure it. Hash lookup aims to return retrieval data in radius of
a certain Hamming distance to the given query point. We use
precision-recall curve to measure its accuracy.

Baselines

We compare EGDH with several state-of-the-art cross-modal
hashing methods, including: CMSSH [Bronstein et al.,
2010], CVH [Kumar and Udupa, 2011], IMH [Song et al.,
2013], SCM [Zhang and Li, 2014], SePH [Lin er al., 2015],
CCQ [Long et al., 2016], DCMH [Jiang and Li, 2017] and
SSAH [Li et al., 2018], where DCMH and SSAH are deep
hashing methods. To make fair comparisons with shallow-
structure-based baselines, 4096-dimensional image features
extracted by the pre-trained CNN-F network are used.

3.3 Implementation Details

We implement all deep learning methods with Tensorflow on
a NVIDIA 1080ti GPU server. Like DCMH and SSAH, we
also use the CNN-F pre-trained on ImageNet [Russakovsky
et al., 2015] to initialize the first seven layers of imgNet. The
other weights of networks are randomly initialized. We set
hyper-parameters as: « = [ = - = 1. To learn neural net-
work parameters, we apply the Adam solver with a learning
rate within 1072 — 1076 and set batch size as 128. We repeat
experiments five times with random data partitions and report
the averaged results.

3.4 Results and Discussions

In cross-modal retrieval, there are two retrieval directions: us-
ing images to query texts (I — 7T') and using texts to query
images (T' — I). We set the bit length at 16 bits, 32 bits, 64
bits and 128 bits.

For Hamming ranking, we report the MAP of EGDH and
other baselines in Table 1. From this table, EGDH outper-
forms all state-of-the-art methods in longer bit lengths. Com-
pared with the deep learning method SSAH, EGDH achieves
absolute increases of 0.06%/1.72% and 2.51%/3.07% on
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Figure 2: TopN-precision curves based on CNN-F feature with 128
bits code length.

MIRFLICKR-25K and MS COCO. EGDH achieves ab-
solute increases on the two datasets are 3.21%/2.12%
and 5.15%/2.54% compared to DCMH. Although MS
COCO contains much more data than MIRFLICKR-25K,
EGDH achieves more increases in MS COCO than that in
MIRFLICKR-25K. It is because that hash codes obtained by
EGDH are intra-class aggregated which reduces code diver-
sity while preserve inter-class relationship. The top-/N curves
of the two datasets are as shown in Figure 2, which also show
that EGDH achieves the state-of-the-art accuracy in Ham-
ming ranking.
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Figure 3: Precision-recall curves based on CNN-F feature with 128
bits code length.

For Hash lookup, we plot the precision-recall curves on
MIRFLICKR-25K and MS COCO by varying hamming dis-
tance from O to 128 in Figure 3. The curves corresponding to
EGDH in Figure 3 locate higher than others’ on the whole. It
proves that EGDH achieves the state-of-the-art efficiency in
Hash lookup as like its performance in Hamming ranking.
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MIRFLICKR-25K MS COCO
Task Method
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

CMSSH [Bronstein et al., 2010]  0.6321 0.6201 0.6251  0.6044 0.5703 0.5674 0.5652  0.5712
CVH [Kumar and Udupa, 2011]  0.5492 0.5521 0.5663 0.5754 0.4832 0.4440 0.4685 0.5236
IMH [Song er al., 2013] 0.6155 0.6042 0.5942 0.5852 0.5591 0.5489 0.5310 0.5428
SCM [Zhang and Li, 2014] 0.6961 0.7024 0.7093  0.7125 0.6865 0.7105 0.7182  0.7240

I — T SePH [Lin eral., 2015] 0.7213 0.7267 0.7304  0.7232 0.7568 0.7653 0.7757 0.7609
CCQ [Long et al., 2016] 0.6368 0.6282 0.6114 0.5941 0.6475 0.6348 0.6289  0.6162
DCMH [Jiang and Li, 2017] 0.7412 0.7407 0.7504  0.7550 0.7192 0.7377 0.7477 0.7526
SSAH [Li et al., 2018] 0.7765 0.7835 0.7892  0.7643 0.7690 0.7853 0.7849 0.7238
EGDH 0.7569 0.7729 0.7959  0.7900 0.7702 0.7884 0.8018  0.8029
CMSSH [Bronstein ef al., 2010]  0.6406 0.6277 0.6131 0.6047 0.6032 0.5807 0.5949 0.5745
CVH [Kumar and Udupa, 2011]  0.5478 0.5511 0.5674  0.5783 0.4815 0.4411 0.4685  0.5259
IMH [Song er al., 2013] 0.6199 0.6083 0.5978 0.5884 0.5617 0.5525 0.5341  0.5429
SCM [Zhang and Li, 2014] 0.7226  0.7340 0.7416  0.7452 0.6910 0.7168 0.7269 0.7323

T — I SePH [Lin et al., 2015] 0.7305 0.7352 0.7364 0.7152 0.7564 0.7653 0.7764  0.7675
CCQ [Long et al., 2016] 0.6464 0.6433 0.6395 0.6296 0.6422 0.6384 0.6349  0.6248
DCMH [Jiang and Li, 2017] 0.7629 0.7693 0.7744  0.7808 0.7475 0.7717 0.7810 0.7873
SSAH [Li er al., 2018] 0.7846 0.7935 0.7815 0.7436 0.7695 0.7891 0.7816  0.7262
EGDH 0.7787 0.7939 0.7985 0.8010 0.7717 0.7935 0.8108 0.8131

Table 1: Mean Average Precision (MAP) comparison based on CNN-F features
Task Method MIRFLICKR-25K 050! 2 T@MIRFLICKR-25K 0.0, T~ {@MIRFLICKR-25K
16 bits 32 bits 64 bits 128 bits

EGDH-1 0.7398 0.7502 0.7653  0.7680 o o 27

I—T EGDH2 06417 06538 06782 0.6619 =075 e & 2P T —a
EGDH 0.7569 0.7729 0.7959  0.7900 o* ..' - B
EGDH-1 0.7541 0.7724 0.7876  0.7895 07 0.70{s" Y

T —1 EGDH-2 06363 06559 0.6581 0.6591 0L oot oLtz goor oo ol L 2
EGDH 0.7787 0.7939 0.7985  0.8010

Table 2: MAP comparison of EGDH and its variants.

Ablation Study

For binary feature extractor, we remove the softmax loss or
quantization loss while training named EGDH-1 and EGDH-
2 respectively. The result is as shown in Table 2. The original
EGDH outperforms EGDH-1 and EGDH-2 by 2.31%/1.71%
and 12.00%/14.07% on MIRFLICKR-25K dataset. It shows
the combination of discriminability and semantic structure
preservation can improve the retrieval accuracy.

Sensitivity to Parameters

We implement a parameter sensitivity experiment for the in-
fluence of hyper-parameters. Figure 4 shows the impact of «,
[ and v on MIRFLICKR-25K dataset at 16 bits. The EGDH
is not sensitive where the hyper-parameters are within 0.01
and 2.

4 Conclusion

This paper introduces Equally-Guided Discriminative Hash-
ing (EGDH) to preserve semantic structure and improve dis-
criminability. We first build a common semantic structure
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Figure 4: Influence of hyper-parameters

preserving classifier based on the connection between classi-
fication and hashing-based retrieval. To avoid heterogeneity,
the construction of hash functions for different modalities are
guided by the classifier equally. Consequently, hash codes of
samples are intra-class aggregated and inter-class relationship
preserving. Extensive experiments show that EGDH achieves
state-of-the-art results.
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