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Abstract
Nowadays, recommender system is an indispens-
able tool in many information services, and a large
number of algorithms have been designed and im-
plemented. However, fed with very large datasets,
state-of-the-art recommendation algorithms often
face an efficiency bottleneck, i.e., it takes huge
amount of computing resources to train a recom-
mendation model. In order to satisfy the needs
of privacy-savvy users who do not want to dis-
close their information to the service provider, the
complexity of most existing solutions becomes pro-
hibitive. As such, it is an interesting research ques-
tion to design simple and efficient recommendation
algorithms that achieve reasonable accuracy and fa-
cilitate privacy protection at the same time.
In this paper, we propose an efficient recommenda-
tion algorithm, named CryptoRec, which has two
nice properties: (1) can estimate a new user’s pref-
erences by directly using a model pre-learned from
an expert dataset, and the new user’s data is not
required to train the model; (2) can compute rec-
ommendations with only addition and multiplica-
tion operations. As to the evaluation, we first
test the recommendation accuracy on three real-
world datasets and show that CryptoRec is compet-
itive with state-of-the-art recommenders. Then, we
evaluate the performance of the privacy-preserving
variants of CryptoRec and show that predictions
can be computed in seconds on a PC. In contrast,
existing solutions will need tens or hundreds of
hours on more powerful computers.

1 Introduction
Recommender system is one of the most frequently used ma-
chine learning technologies in many different applications.
Both academia and industry have spent a lot of efforts in de-
signing and implementing new recommendation algorithms.
These efforts have largely focused on improving the recom-
mendation accuracy, while some efforts have also been dedi-
cated to other useful properties such as explanability. Today,
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many state-of-the-art recommendation algorithms are very
sophisticated, due to the aim for higher accuracy. Fed with
a very large dataset, most of them face an efficiency bottle-
neck, i.e., it takes huge amount of computing resources to
train a recommender model. We argue that, although there is
a proliferation of recommendation algorithms including deep
learning based ones [Zhang et al., 2017], designing simple
and efficient recommendation algorithms with good accuracy
performance is still an interesting research question.

In parallel, with the ever-increasing personal data abuse
and new privacy regulations, privacy issues in recommender
systems has become a hot topic, even though the issues
have been mentioned many years ago, e.g., [Ramakrish-
nan et al., 2001]. So far, a number of privacy-preserving
recommender solutions have been proposed. Differential-
privacy based solutions (e.g., [McSherry and Ilya, 2009;
Berlioz et al., 2015]) often require the users to trust the ser-
vice provider and downgrade the accuracy. Cryptographic so-
lutions can allow users to protect their data without affecting
accuracy, but they are often too complex to be practical. Rep-
resentative cryptographic solutions, such as Nikolaenko et al.
[Nikolaenko et al., 2013] and Kim et al. [Kim et al., 2016],
introduce third-party crypto service providers to improve ef-
ficiency, nevertheless their performance is still far from prac-
tical and moreover the third party is difficult to be instanti-
ated in practice. From the privacy perspective, it is also an
interesting research question to design simple and efficient
recommendation algorithms that facilitate privacy protection.

1.1 Our Contribution
In this paper, we propose a new recommender, named Cryp-
toRec, which aims to facilitate privacy protection while still
achieving state-of-the-art accuracy. CryptoRec decouples
user features from the model parameter space, allowing a ser-
vice provider to estimate a new user’s preferences by directly
using a model pre-learned from an expert dataset (e.g., the
massive user data collected from the internet or a company’s
business can be used to construct such a dataset). It only re-
lies on additions and multiplications, simplifying the execu-
tion on encrypted data. Inspired by [Han et al., 2015], we
propose a new model compression strategy, named Sparse-
Quantization-Reuse, to reduce response latency without af-
fecting accuracy. We evaluate the accuracy of CryptoRec
with three real-world datasets and show that it is competitive
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with state-of-the-art recommenders. In addition, we demon-
strate CryptoRec also has a nice transferability property.

Different from existing model-based algorithms, in Cryp-
toRec, the new user’s data is not required in the recom-
mendation model training process. This is a crucial prop-
erty for efficient privacy protection, because the complex-
ity of existing solutions such as [Nikolaenko et al., 2013;
Kim et al., 2016] mainly comes from the requirement that
the user’s data need to be used to train the model! We in-
troduce two privacy-preserving protocols to compute predic-
tions for privacy-savvy users with CryptoRec: the first one
uses a pre-learned CryptoRec model to compute recommen-
dations directly; the second one allows us to fine-tune the
model parameters based on privacy-savvy user’s data to fur-
ther improve accuracy. Our results show that our first protocol
(i.e., without fine-tuning) allows securely computing predic-
tions of thousands of items within a few seconds on a single
PC, significantly outperforming existing solutions which are
also far more inefficient than the second protocol.

2 Preliminaries
In this section, we introduce collaborative filtering based rec-
ommenders and our major privacy protection building block,
namely homomorphic encryption.

2.1 Collaborative Filtering (CF)
Collaborative filtering (CF) is a state-of-the-art technique for
building recommender systems [Zhang et al., 2017]. Below,
we briefly review three representative types of CF algorithms.

Neighborhood-Based Method (NBM). The neighborhood
based method estimates a user’s rating on a targeted item by
taking the weighted average of a certain number of ratings of
the user or of the item. A typical item-based NBM (I-NBM)
is defined as r̂ui = r̄i +

∑
j∈Nu(i) sij(ruj−r̄j)∑

j∈Nu(i) |sij |
, where r̄i is the

mean rating of item i, ruj is the rating user u gave to item j.
sij ∈ Sm×m is the similarity between item i and j, m is the
number of items,Nu(i) denotes a set of items rated by user u
that are the most similar to item i. Cosine and Pearson corre-
lation are widely used similarity metrics. User-based NBM is
the symmetric counterpart of I-NBM, while I-NBM is more
accurate [Su and Khoshgoftaar, 2009].

Matrix Factorization (MF). Let Rn×m be a sparse rating
matrix formed by n users and m items, in which each user
rated a small number of the m items, and the missing values
are marked with zero. Matrix factorization (MF) decomposes
the rating matrix R into two low-rank and dense feature ma-
trices [Koren et al., 2009]: R ≈ PQT , where P ∈ Rn×d is the
user feature space, Q ∈ Rm×d is the item feature space and
d ∈ N+ is the dimension of user and item features. To predict
how user uwould rate item i, we compute r̂ui = puqT

i , where
p1×d
u ⊂ P and q1×d

i ⊂ Q denote the learned features vectors
of user u and item i, respectively. A standard way of optimiz-
ing P and Q is to minimize the regularized squared objective
function using only observed ratings ({rui > 0}(u,i)∈R)

min
P,Q

∑
(u,i)∈R

(puqT
i − rui)2 + λ(||pu||2 + ||qi||2) (1)

by using the stochastic gradient descent method (SGD) [Ko-
ren et al., 2009].The constant λ is a regularization factor.

Neural Network Approach. AutoRec [Sedhain et al.,
2015] is a notable example of neural network based rec-
ommenders, built on top of Autoencoders. Item-based Au-
toRec (I-AutoRec) reconstructs the inputs ri by computing
r̂i = f(W ·g(Vri + b(1)) + b(2)), where g(·) and f(·) are ac-
tivation functions, e.g., the Sigmoid function ( 1

1+e−x ). Non-
linear activation functions are crucial to the success of neu-
ral networks. Model parameters W ∈ Rn×d, V ∈ Rd×n,
b(1) ∈ Rd×1 and b(2) ∈ Rn×1 are learned by minimizing the
regularized square objective function

min

W,V, b(1), b(2)
∑
i∈R
||̂ri − ri||2 + λ(||W||2 + ||V||2) (2)

where using only observed ratings. The user-based AutoRec
(U-AutoRec) is defined symmetrically in the obvious way,
which is not as accurate as I-AutoRec [Sedhain et al., 2015].

2.2 Homomorphic Encryption (HE)
Homomorphic encryption (HE) is a form of encryption that
allows computations to be carried over ciphertexts without
decryption. The result, after decryption, is the same as if
the operations had been performed on the plaintexts [Gentry,
2009]. Consider two plaintexts x1 and x2 and their corre-
sponding ciphertexts Jx1K ← HE.Enc(x1, pk) and Jx2K ←
HE.Enc(x2, pk). An encryption scheme is additively homo-
morphic if it satisfies x1 + x2 = HE.Dec(Jx1K ⊕ Jx2K, sk)
or multiplicatively homomorphic if we have x1 × x2 =
HE.Dec(Jx1K⊗Jx2K, sk), where⊕ and⊗ represent the homo-
morphic additive and multiplicative operators, respectively.
In addition to the homomorphic properties of ciphertexts,
HE schemes also allow additions (⊕) and multiplications
(�) between a ciphertext and a plaintext, i.e., x1 + x2 =
HE.Dec(Jx1K⊕x2, sk) and x1×x2 = HE.Dec(Jx1K�x2, sk).

3 Encryption-aware CryptoRec
Recommender

In this section, we first present the new CryptoRec recom-
mender which is HE-friendly; then we introduce a Sparse-
Quantization-Reuse method for further improving efficiency;
lastly, we describe the transferability property of CryptoRec.

3.1 Description of CryptoRec Recommender
In CryptoRec, a user is profiled by items that the user has
consumed and, likewise, an item is essentially identified by
the ratings received from users. Therefore, it is possible to
learn item features from massive user data collected by the
server. Correspondingly, we can also construct user features
by aggregating the pre-learned item features according to a
user’s ratings history. Suppose the server has already learned
the item features Q = {qi}mi=1 from its database, we define
the user features as follows,

pu = ((ru − r̄u) · φu)Q (3)

where φu = {φui}mi=1 and (ru − r̄u) · φu denotes {(rui −
r̄u)φui}mi=1. If user u rated item i, then φui = 1, otherwise,
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we let φui = 0 and rui = 0. To approximate an observed
rating rui, we follow matrix factorization [Koren et al., 2009],
performing a dot production between user and item features,

rui ≈ r̂ui = (((ru − r̄u) · φu)Q)︸ ︷︷ ︸
pu

qT
i (4)

Real-world datasets often exhibit large systematic tenden-
cies for some users to give higher ratings than others, and
for some items to receive higher ratings than others. This fact
may prevent the model (Eq. (4)) from precisely modeling user
preferences. A common solution is to model the biases of
individual users or items, subjecting only the true user-item
interactions to the factor machine [Koren et al., 2009]. Fol-
low this, we separate the user preference estimation into the
biases approximator and user-item interaction approximator,

rui ≈ r̂ui = µ+ bu + bi︸ ︷︷ ︸
biases

+ (((ru − r̄u) · φu)Q)qT
i︸ ︷︷ ︸

interaction

(5)

where µ is the global rating average. bu = r̄u − µ and
bi = r̄i − µ approximate user and item individual biases,
respectively. As such, only the true user-item interaction is
modeled by the factor machine (i.e., Eq.(4)).

The accuracy of user-item interaction modeling only relies
on the item feature Q, which may limit the model expressive-
ness. So that we relax the item features which were used to
construct user features P, and redefine Eq. (5) as,

rui ≈ r̂ui = µ+ bu + bi︸ ︷︷ ︸
biases

+ (((ru − r̄u) · φu)A)qT
i︸ ︷︷ ︸

interaction

(6)

Note that A ∈ Rm×d is a new item feature space, which will
be optimized independently.

Model Training. The model Θ = {A,Q} can be learned
by minimizing the regularized square objective function,

L =

n∑
u=1

||(r̂u − ru) · φu||2 + λ · (‖A‖2 + ‖Q‖2) (7)

Using the back-propagation method, we have the gradient
of each model parameter of CryptoRec as follows,

∆A =
∂L
∂pu

· ∂pu

∂A
= ((eu · φu)Q) ~ rTu + λ · A

∆qi =
∂L
∂qi

= φui · (eui · ((ru − r̄u)A) + λ · qi

(8)

where eui = r̂ui − rui, eu = {eui}mi=1, ei = {eui}nu=1, and
eu · φu = {eui · φui}mi=1. ~ denotes outer product. In the
training phase, we compute the gradient for each randomly-
divided batch. Algorithm 1 outlines the training procedure.

Prediction Computation. Suppose a server has trained the
parameters {A,Q} on its dataset, then it can predict a new
client ratings for the unrated items by Eq. (6). We stress that
the client’s rating vector is not necessarily involved in training
the model. This is different from existing collaborative filter-
ing approaches, e.g., those from Section 2.1. We refer this to
be the fast-mode prediction, denoted as CryptoRec-f .

Even CryptoRec-f can provide very good accuracy, we
can still fine-tune the pre-learned parameters Θ = {A,Q}

Algorithm 1 CryptoRec training procedure T

Input: R, Φ = {φu} ,r̄u = {r̄u}, Θ = {A(0),Q(0)}
Output: Optimized Θ = {A(K),Q(K)}

1: procedure T ({R,Φ, r̄u},Θ)
2: for k ← {1, 2, · · · ,K} do
3: A(k) ← A(k−1) − η ·∆A(k−1) . η: learning rate
4: Q(k) ← Q(k−1) − η ·∆Q(k−1)

5: return Θ = {A(K),Q(K)}

with a new client v’s rating vector to achieve better recom-
mendation accuracy for this client. The fine-tuning process is
identical to Algorithm 1, where the inputs become rv , φv ,r̄v
and Θ = {A,Q}. Note that rv , φv ,r̄v are possessed by the
client v and Θ is possessed by the server. We refer this to be
the accurate-mode prediction, denoted as CryptoRec-a.

3.2 Sparse-Quantization-Reuse Method
When we apply homomorphic encryption (HE) to protect
privacy in computing predictions, shown in Section 5, the
multiplications in the user-item interaction estimation (i.e.,
((ru − r̄u)A)QT ) will dominate the runtime.

To minimize the number of multiplications on encrypted
data, we introduce a sparse-quantization-reuse method. We
first sparsify a pre-learned CryptoRec model Θ = {A,Q} by
removing parameters which don’t contribute to final predic-
tions, without losing accuracy. Specifically, we remove all
weights whose absolute values (θ ∈ Θ) fall below a thresh-
old (e.g., |θ| < 1.0 × 10−3). Next, we quantify the weights
to enforce more weights to share the same values. Following
the method in [Han et al., 2015], we classify each feature ma-
trix Q and A into 512 clusters (i.e., each feature contains 512
shared weights), without affecting the accuracy. Lastly, we
reuse the shared multiplicative results if possible, illustrated
in Figure 1.

Figure 1: Reuse: for a vector-matrix multiplication between x and
Y, if c2 = a2, reusing the result of x2a2 when computing x2c2.

In Section 4.2, we will show this method can greatly im-
prove the efficiency in privacy-preserving protocols. Besides
facilitating privacy protection, together with data compres-
sion [Van Leeuwen, 1976], the sparse-quantization step can
reduce the model size significantly. This will facilitate the de-
ployment of recommendation services on mobile devices sub-
jecting to limited network bandwidth and storage resources.

3.3 Transferability Property of CryptoRec
In recommender systems, transferring the knowledge learned
from a source domain to a target domain to improve accuracy
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and mitigate the notorious cold start problem is a challenging
task [Cantador et al., 2015]. CryptoRec naturally achieves
transferability if two datasets share the same item entries, im-
proving both efficiency and accuracy ( Section 4.3).

4 Evaluation of CryptoRec Recommender
We test CryptoRec on three movie rating datasets (Table 1):
netflix [Netflix, 2010], ml1m [Grouplens, 2010], yahoo [Ya-
hoo!, 2010]. The testbed is a PC with 8 Intel Xeon(R) pro-
cessors (3.5 GHz, 16 GB RAM), using Ubuntu 16.04.

user # item # density scale
netflix 11,000 4,768 2.17% [1,5]
ml1m 6,040 3,952 4.2% [1,5]
yahoo 7,637 3,791 0.72% [1,5]

Table 1: Datasets used for benchmarking

The baseline models include item-based NBM (I-
NBM) [Desrosiers and Karypis, 2011], matrix factorization
(BiasedMF) [Koren et al., 2009], user-based AutoRec (U-
AutoRec) and item-based AutoRec (I-AutoRec) [Sedhain et
al., 2015]. To train the CryptoRec model, we choose η =
0.0002, λ = 0.00002 and the dimension d = 500. To train
the baseline models, we perform a grid search around the
suggested settings given in their original papers. For each
dataset, we randomly split all the users into a training set
(80%) and a validation set (20%), then we randomly divide
each user vector of the validation set into a feeding set (90%,
simulating the client’s data) and a testing set (10%, denote
as D). For all the models, we repeat the accuracy experi-
ments five times on each dataset. The root mean square er-
ror (RMSE) is adopted as the accuracy metric, RMSE =√∑

(u,i)∈D(r̂ui−rui)2

|D| .

4.1 Accuracy Evaluation
With respect to the accurate-mode algorithm CryptoRec-a,
we observed that the first several iterations contribute the
most to the accuracy increase. Particularly, the accuracy is
asymptotically close to the best performance within 3 to 5 it-
erations. This means that we can adopt an early-stop strat-
egy to halt the fine-tuning, when applying privacy protec-
tion mechanism (i.e., HE) in which case the outputs cannot
be monitored by the server to determine convergence. In the
following discussions, CryptoRec-a(1) means fine-tuning
in one iteration and CryptoRec-a(n) represents fine-tuning
until convergence. Figure 2 shows the accuracy loss (i.e.,
RMSE increase), where I-AutoRec serves as the benchmark.
Compared to the best accuracy (i.e., I-AutoRec), CryptoRec
loses accuracy at most 4.6% and 1.8% on the fast-mode and
accurate-mode, respectively. All baseline models are trained
with all the user data from scratch, while CryptoRec-f is
only based on a pre-trained model (the client’s data is ex-
cluded from the training process), and CryptoRec-a is fine-
tuned with only the client’s data.

4.2 Sparse-Quantization-Reuse Evaluation
We first prune the parameters (i.e., A,Q) of which the weights
are in the range of (−5.0×10−4, 5.0×10−4), without affect-

Figure 2: Accuracy loss (%). Benchmark: I-AutoRec

ing the accuracy. Then, we use k-means clustering (k=512, in
this paper) to identify the shared values of each feature, so
that all the parameters that fall into the same cluster share the
same value. To reduce the latency, the server should perform
the two steps offline. Lastly, we reuse the shared multiplica-
tion results when computing pu ← ruA and r̂u ← puQT in
prediction computation.

netflix ml1m yahoo
pruning ratio 7.1% 9.2% 29.4%
reuse ratio 90.7% 90.5% 91.5%

Table 2: Pruning ratio and reuse ratio of CryptoRec

As shown in Table 2, the server can remove more than 90%
of computations, resulting in a 10× better efficiency. The
pruning ratio is defined as # of pruned parameter

# of all the parameter . The reuse

ratio is defined as 1−
∑

i sharedi∑
i alli

, where sharedi (resp. alli)
indicates the number of shared values (resp. all the non-zero
values) at i-th row of a feature matrix.

4.3 Transferability Evaluation
To evaluate the transferability of CryptoRec, we constructed
two datasets pairs (ml1 (from ml1m) and yah (from yahoo);
ml2 (from ml1m) and net (from netflix)), and each pair share
the same item entries. Details are summarized in Table 3.

item intersection data set user# item# density

ml1m
⋂

yahoo ml1 6040 2715 5.6%
yah 5507 2715 0.5%

ml1m
⋂

netflix ml2 6040 2718 5.1%
net 10000 2718 9.2%

Table 3: New datasets resulting from the intersections other datasets

For knowledge transferring, we use the model trained on
the source (src) dataset to initialize the training on the target
(tgt) dataset. As shown in Table 4, the transferred knowl-
edge improves both the accuracy and efficiency (reducing
training iterations (iter#)). Especially, when transferring the
knowledge learned from a relatively dense dataset to a sparse
dataset, the improvement is more significant.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4812



src : tgt
no transfer transfer

RMSE iter# RMSE iter#
ml1 : yah 0.867±0.024 122 0.831±0.016 22
yah : ml1 0.846±0.008 120 0.841±0.011 31
net : ml2 0.853±0.003 118 0.842±0.004 15
ml2 : net 0.801±0.004 95 0.791±0.005 18

Table 4: No transfer (resp. transfer): the accuracy on tgt w/o (resp.
w/) knowledge transferred from src. iter#: training iteration#

5 Privacy-preserving CryptoRec Protocols
In this section, for convenience, we simplify the definition of
CryptoRec (Eq. (6)) as r̂ui = µ + bu + bi + (ruA)qT

i , and
denote the client as v. In all protocols, the client generates
a public/private homomorphic encryption (HE) key pair and
shares the public key with the server.

5.1 Fast-Mode Prediction Protocol
As shown in Figure 3, the protocol runs in three stages. First,
the client v sends her encrypted rating vector JrvK and Jr̄vK
to the server; Then, the server executes the prediction process
P (Algorithm 2 which converts Eq. (6) into an HE domain)
and returns the encrypted results r̂v . Lastly, the client post-
processes the predictions after decryption, such as clamping
the predictions into a proper range or selecting favorite items.

User (Input: rv, r̄v) Server ( Input: Θ)
JχK← {JrvK, Jr̄vK}

JχK−−→
Jr̂vK← P(JχK,Θ)

ĴrvK←−−
r̂v ← HE.Dec(Jr̂vK, sk)

Figure 3: Privacy-preserving Fast-Mode Protocol

Algorithm 2 CryptoRec prediction procedure P

Input: ratings JrvK, Jr̄vK ; Θ = {A,Q, µ, r̄i}
Output: predictions Jr̂vK

1: procedure P({JrvK, Jr̄vK},Θ)
2: JpvK← JrvKA . HE dot-product using � and ⊕
3: for i← [1, 2, · · · ,m] do
4: Jr̂viK← bi ⊕ Jr̄vK⊕ JpvKqTi . bi = r̄i − µ
5: Jr̂vK[i]← Jr̂viK
6: return Jr̂vK

For the sake of succinctness, we do not explicitly describe
the sparse-quantization-reuse in Algorithm 2 (at line 2, 4).

5.2 Accurate-Mode Prediction Protocol (full)
In this protocol, shown in Figure 4, the server needs to fine-
tune the pre-learned model (using the client’s encrypted data)
before computing predictions. The fine-tuning process is
identical to the regular training process (T , Algorithm 1).
Since the training process only contains additions and mul-
tiplications, we can also convert it into an HE space easily.

Different from the fast-mode protocol, the client v also has to
send an encrypted indication vector JφvK to the server, com-
pleting the objective function computation. In contrast to the
fast-mode protocol in Algorithm 2, after the fine-tuning pro-
cess, the model Θ becomes encrypted. So the related oper-
ations in P (Algorithm 2) should be updated to their corre-
sponding homomorphic operations.

User (Input: rv,φv, r̄v) Server ( Input: Θ)
JχK← {JrvK, JφvK, Jr̄vK}

JχK−−→
JΘK← T (JχK,Θ)
Jχ1K← {JrvK, Jr̄vK}
Jr̂vK← P(Jχ1K, JΘK)

ĴrvK←−−
r̂v ←$ HE.Dec(Jr̂vK, sk)

Figure 4: Privacy-preserving Accurate-Mode Protocol

5.3 Accurate-Mode Prediction Protocol (simp)
Performing the fine-tuning process on encrypted data is chal-
lenging, due to the prohibitive cost in ciphertext-only compu-
tation and corresponding storage, see the Section 5.4. Though
it is not infeasible for a commercial server, it is too expensive
to respond to a single query while the accuracy improvement
is limited. Fortunately, as shown in Figure 2, the first fine-
tuning iteration moves a big step towards the convergence.
Combining together this fact and software engineering, we
can achieve better accuracy with a modest increase of com-
putation cost. Briefly, in the forward pass of the first iteration,
we can apply the sparse-quantization-reuse method from Sec-
tion 3.2 to accelerate the computation. In the backward pass,
we immediately release the model parameters which will not
be used in the future. Algorithm 3 details the first-iteration
fine-tuning and prediction computation process.

Algorithm 3 CryptoRec-a(1): one-iteration fine-tuning

1: procedure FINE-TUNING(JruK, JφuK,A(0),Q(0), λ, η)
2: JyuK← JruKA(0)

3: JeuK← JyuKQ(0) 	 JruK . 	 = −⊕
4: JxuK← (JeuK⊗ JφuK)Q(0)

5: for j ← {1, 2, · · · , d} do
6: J∆A:jK← (JxuK[j]⊗ JrTu K)⊕ λ ·A(0)

:j . gradient

7: JA:jK← A(0)
:j 	 (η � J∆A:jK) . updates A:j

8: JpuK[j]← JruKJA:jK . computes user features
9: release JA:jK, JxuK[j]

10: for i← {1, 2, · · · ,m} do
11: J∆qiK← JφuK[i]⊗ ((JeuK[i]⊗ JyuK)⊕ λ · q(0)

i )

12: JqiK← q(0)
i 	 (η � J∆qiK) . updates qi

13: Jr̂uK[i]← JpuKJqiK . prediction r̂ui
14: release JqiK, JeuK[i], JφuK[i]
15: return Jr̂uK
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⊕ ⊗ � div Sigmoid sqrt
I-NBM O(nm2) O(nm2) O(nm2) O(nm2) ∅ O(nm)
U-AutoRec O(Kmd) O(Kmd) O(Kzd+md) ∅ O(Kmd) ∅
I-AutoRec O(K(mn+N)d) O(K(m+N)d) O(Kmzd) ∅ O(Knd) ∅
BiasedMF O(Kmnd) O(K(m+N)d) O(md) ∅ ∅ ∅
CryptoRec-f O(md) ∅ O(md) ∅ ∅ ∅
CryptoRec-a O(Kmd) O(Kmd) O(Kzd+md) ∅ ∅ ∅

Table 5: Fine-tuning complexity. K: Training iterations. N : # of observed ratings. z: Rating scale

5.4 Asymptotic Performance Analysis
The complexity of each HE operation type is different. Gen-
erally, ⊗ is higher than �, which in turn higher than ⊕. Non-
linear operations are not compatible with HE schemes, and
incur much higher complexity. I-NBM, I-AutoRec and U-
AutoRec contain non-linear operations. BiasedMF has to be
trained on the whole dataset. In contrast, CryptoRec-f
needs only �,⊕ and CryptoRec-a only relies on the
client’s data, resulting in a significant advantage in efficiency.
Detailed complexity information appear in Table 5.

5.5 Experimental Performance Analysis
We implement the fast-mode prediction protocol (which
needs ⊕,�) with an efficient additive HE scheme, Paillier
cryptosystem [Paillier, 1999] supported by the library python-
paillier [CSIRO, 2018]. The secret key size is 2048. In this
setting, the size of each encrypted message is 0.5KB.

For accurate-mode prediction protocol (which needs
⊕,�,⊗), we adopt a ring-based somewhat (fully) HE
scheme, the Fan-Vercauteren scheme [Fan and Vercauteren,
2012] supported by the SEAL library [Chen et al., 2017].
We let the polynomial degree be 4096, the plaintext module
be 65537. To encode real numbers, we reserve 1024 coeffi-
cients of the polynomial for the integral part and expand the
fractional part to 16 digits of precision. For more detail on
this configuration, we refer interested readers to [Chen et al.,
2017]. In this setting, the size of a ciphertext is 96 KB. How-
ever, the item features often contain millions of parameters.
Take the CryptoRec-a(n > 1) on dataset ml1m as an ex-
ample, the features JA3952×500K and JQ3952×500K has around
4 million parameters, which requires 360GB RAM. In the ex-
periment, we implemented the one-iteration fine-tuning (Al-
gorithm 3), which only needs less than 2GB RAM.

Table 6 describes the running time and communication cost
on each dataset. Compared to the fast-mode implementation,
though the time cost of the accurate-mode implementation
is significantly increased, the server can amortize the cost by
packing multiple user data into one message similar to [Gilad-
Bachrach et al., 2016].

Protocol netflix ml1m yahoo

Fast
Message size (MB) 4.8 3.86 3.72
Server time cost (s) 14.2 10.9 7.3
Client time cost (s) 7.1 5.8 5.6

Accurate
Message size (GB) 1.31 1.08 1.04
Server time cost (h) 9.4 7.8 7.5
Client time cost (s) 14.3 11.8 11.4

Table 6: CryptoRec: Efficiency Evaluation

As far as we know, CryptoRec is the first solution al-
lowing online recommendation services in real-time, while
preserving the privacy. Using existing recommenders (e.g.,
MF), before computing recommendations, the server often
has to train the model with the client’s encrypted data and its
database. Recent advances in devising secure frameworks to
execute existing recommenders come from GraphSC [Nayak
et al., 2015], in which a single training iteration of MF took
13 hours to run on 128 processors. On the ml1m dataset,
about 20 iterations are necessary for convergence.

6 Related Work
Canny et al. [Canny, 2002] introduced a distributed solutions
to factor the Singular Value Decomposition securely, based
on HE schemes. To further improve the efficiency, Nayak et
al. [Nayak et al., 2015] brought parallelism to the execution
of the oblivious version of graph-based algorithms (e.g., MF).
Shmueli and Tassa [Shmueli and Tassa, 2017] presented a so-
lution for securely learning neighborhood-based models, by
assuming a semi-honest mediator which computes and dis-
tributes intermediate values to each party. Technically, these
solutions can be adjusted for providing online recommenda-
tion services. But the computation latency would prevent the
use of the services in the real world.

Recent solutions for privacy-preserving Machine Learning
as a Service often assume the server has a pre-learned ma-
chine learning model [Gilad-Bachrach et al., 2016; Liu et
al., 2017; Zhang et al., 2018], separating the training process
from machine learning services. Most efforts have been fo-
cused on efficiently computing non-linear operations. Gilad-
Bachrach et al. [Gilad-Bachrach et al., 2016] substituted non-
linear activation functions with a square function. However,
this approach often leads to a significant accuracy loss [Liu
et al., 2017; Rouhani et al., 2017; Zhang et al., 2018]. To
preserve accuracy, Liu et al. [Liu et al., 2017] and Rouhani
et al. [Rouhani et al., 2017] proposed to evaluate neural net-
works using secure multiparty computation schemes, but re-
quiring the server and client to be online constantly.

7 Conclusions
In this paper, we proposed an encryption-aware recom-
mender, CryptoRec, which can provide privacy-preserving
recommendation services with high throughput, while being
competitive with state-of-the-art accuracy performance.
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