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Abstract

With the popularization of portable devices, nu-
merous applications continuously produce huge
streams of geo-tagged textual data, thus posing
challenges to index geo-textual streaming data ef-
ficiently, which is an important task in both da-
ta management and AI applications, e.g., real-time
data streams mining and targeted advertising. This,
however, is not possible with the state-of-the-art in-
dexing methods as they focus on search optimiza-
tions of static datasets, and have high index main-
tenance cost. In this paper, we present NQ-tree,
which combines new structure designs and self-
tuning methods to navigate between update and
search efficiency. Our contributions include: (1)
the design of multiple stores each with a different
emphasis on write-friendness and read-friendness;
(2) utilizing data compression techniques to reduce
the I/O cost; (3) exploiting both spatial and key-
word information to improve the pruning efficien-
cy; (4) proposing an analytical cost model, and us-
ing an online self-tuning method to achieve effi-
cient accesses to different workloads. Experiments
on two real-world datasets show that NQ-tree out-
performs two well designed baselines by up to 10×.

1 Introduction
With the prevalence of smartphones, massive amounts of
geo-textual data are being generated at a rapid pace. Geo-
textual data has become a critical building block for to-
day’s AI researches and applications, especially in the field
of real-time data streams analysis. For instance, many da-
ta mining tasks, e.g., geographical topic discovery [Hong et
al., 2012], local event detection [Walther and Kaisser, 2013;
Chen and Shang, 2019], POI annotation with geo-tagged
Tweets [Zhao et al., 2016; Chen et al., 2014], and location-
based recommendation [Yin et al., 2013; Liu et al., 2013],
have been conducted on the data from location based social
services.

∗Lisi Chen and Shuo Shang are corresponding authors.

Another example is targeted advertising. Advertisers reg-
ister millions of ads, and highly targeted ads are pushed to
users in real time according to their interests and position-
s. For example, if a user is interested in Chinese spicy food,
based on the user’s current location derived from his/her s-
martphone, the server would push restaurant ads within a spe-
cific range to the user. In this scenario, new restaurant ads are
registered continuously, and users can change their interest-
s (keywords) and positions, which results in different search
regions. For example, if a user is interested in Chinese spicy
food, the search region may be 5km. However, if the user is
interested in wedding photography, the search region might
be 20km. These requirements raise the question of how to
offer efficient support for both data updates and searches on
the changing workloads.

Many recent studies have addressed the problem of design-
ing search efficient indexes. Existing studies can be broadly
classified into spatial-first indexes and keyword-first index-
es [Chen et al., 2013]. At their core, these approaches employ
sophisticated data structures or data partitioning schemes to
improve the pruning efficiency.

Most of spatial-first indexes use the R-tree as the basic
index structure, and embed inverted indexes into each n-
ode [Hariharan et al., 2007; Cong et al., 2009; Li et al., 2011].
However, they are inefficient for streaming data since each
update leads to propagated updates of inverted indexes. The
keyword-first indexes usually organize objects by spatial in-
dexes for each keyword. For example, IL-Quadtree [Zhang
et al., 2016] builds a Quadtree for each keyword and uti-
lizes costly data partitions to improve the pruning efficiency.
However, some key parameters, such as the leaf size, min-
imal Quadtree depth, should be carefully chosen according
to the search logs and datasets, which makes it not practical
for streaming data. SFC-QUAD [Christoforaki et al., 2011]
combines the space filling curve and data compressions to re-
duce the scanning cost of inverted lists. Unfortunately, it only
applies to static datasets.

In this paper, we present NQ-tree (Navigable Quadtree),
which is tailored to optimize the update performance while
preserving the search efficiency. Specifically, we propose
to use the Quadtree with low maintenance cost for space
decomposition. Then we adopt the cascading update tech-
nique [Arge, 2003] for efficient updates. In an NQ-tree, each
node is attached with a log store to cache updates, and then all
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updates are propagated to leaf nodes in a cascading manner,
so that the write cost is amortized. Each leaf has a data store
to accommodate streaming data, and is dynamically merged
with the log store according to the underlying workloads. To
support efficient searches over multiple log stores, we design
space-efficient auxiliary structures that combine spatial and
keyword information to prune the log pages that do not meet
the search constraints. Further, we use Bloom filters that con-
tain summary keyword information for data store pruning. To
navigate between update and search efficiency in face of vary-
ing workloads, we analytically estimate the cost of index ad-
justments, and use an online algorithm to dynamically empty
log stores and split/merge leaf nodes adaptively. In addition,
we utilize data compression techniques to further reduce the
I/O cost. In summary, we make the following contributions:
• We develop a novel index with multiple stores, each with

different optimization purposes such as high update per-
formance or inexpensive search cost.
• We design space-efficient auxiliary structures that com-

bine spatial and keyword information to enhance the
pruning capacity.
• We propose a cost based self-tuning method to adapt the

index to workload shifts.
• We conduct experiments on two real-world datasets.

The experimental results show that NQ-tree outperforms
two baselines by up to an order of magnitude.

2 Preliminaries
2.1 Problem Definition
The geo-textual object stream O = {o1, · · · , on} is defined
as a sequence of objects oi = {IDi, ψi, li} which arrive con-
tinuously. Each object oi is identified by a unique IDi, and
is represented as a textual message ψi with geo-location li.
A geo-textual search q = 〈r, ψ〉 has two components, where
q.r represents a spatial region and q.ψ represents a set of key-
words. The answer to q is a list of geo-textual objects that are
in the search region q.r and whose descriptions contain the set
of search keywords q.ψ. We tackle the problem of process-
ing a stream of geo-textual objects continuously, and users
can issue geo-textual searches to get all answers in real time.
The number of streaming objects can be very large, and the
number of search answers may vary with data distributions.

2.2 Related Work
Geo-textual search. Hariharan et al. [Hariharan et al.,
2007], Cong et al. [Cong et al., 2009] and Li et al. [Li et al.,
2011] augment the nodes of anR-tree with keywords summa-
rization from subtrees, which is used for efficient nodes prun-
ing. Christoforaki et al. [Christoforaki et al., 2011] combines
inverted file with the space filling curve. Zhang et al. [Zhang
et al., 2016] builds a partition based Quadtree for each key-
word. Besides applying spatial and keywords constraints,
some variants focus on ranking objects based on a scoring
function that considers both textual relevance (similarity) and
spatial relevance (distance) [Cong et al., 2009; Li et al., 2011;
Zhang et al., 2013; Chen et al., 2018], discovering neigh-
borhood patterns [Han and Wen, 2013; Han et al., 2014;

...

Write Buffer InvCache Page Cache

NQ-Tree

Log 
Store 0

1 42 3

13 1614 15

Data Store

Example of the data flow: from the log store 
of root node to data stores of leaf nodes

(4.1, 4.3, ipad, discount); 
(4.5, 4.3, coffee, sandwich)

(16.4, 16.2, spicy, chicken); 
(16.8, 16.3, tennis, gym)

Root

Region
0

Region
1

Region
15

 ……1( ) :I W  ……2( ) :I W

3( ) :I W ID = 3, Node 4, Log Store, 4th Page; 
ID = 7, Node 16, Data Store

0

10

1
2 3

4 5
6 7

8 9
11
12 13
14 15

DualHash

(16.4, 16.2, spicy, 
chicken );(4.1, 4.3, 

ipad, discount)

(16.8, 16.3, tennis, 
gym);(4.5, 4.3, 

coffee, sandwich )

Log-Meta

Figure 1: Overview of the NQ-tree

2016], or processing location-based multimodal data joins
(e.g., [Shang et al., 2019; 2018; 2017]).
Data compression. Many techniques have been proposed
for index compressions, e.g. [Anh and Moffat, 2005; 2006;
Yan et al., 2009; Pibiri et al., 2019]. Due to space constraints,
we outline the techniques used in our work, which have low
preprocessing and running cost. S16 [Anh and Moffat, 2006]
tries to pack as many values as possible into a 32-bit word
with 16 ways of data organizations. NewPFD [Yan et al.,
2009] compresses a sequence of integers in a compact array
by finding the smallest common bit-width b that can represent
most of integers (say, 90%). Integers that cannot be represent-
ed in b bits will be stored as exceptions. Thereafter it stores
the lower b bits of exceptions in the compact array, and uses
S16 to encode the higher overflow bits separately.

3 The NQ-Tree Framework
3.1 Design Principles
We consider the following two principles in our design.
• P1 . Efficient keyword and spatial pruning. Combining

both keyword and spatial information is more efficient
for pruning than using each separately.
• P2 . Navigating between update and search efficiency.

The index should be self-adjustable to the change of data
distributions and access patterns, and thereby offering
efficient support for both updates and searches.

3.2 Overview of NQ-Tree
An overview of the NQ-tree is shown in Fig. 1. After an initial
coarse-grained geographic space partition, NQ-tree uses the
Quadtree with low maintenance cost for deeper space decom-
position [Kothuri et al., 2002]. The difference is that NQ-tree
uses a multi-store approach, each with different optimization
purposes. Each node is attached with a write-friendly log s-
tore that buffers updates to the node and its descendants. Up-
dates are first inserted into the write buffer, and over their life
time flow into the compact data stores in leaf nodes in a cas-
cading manner through log stores in all layers.

The multi-store feature faces two challenges. First, search-
es over the multiple stores should keep the read amplification
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(i.e., disk reads per search) as low as possible. Following the
design principle P1 , a log-meta page is added to each log s-
tore, which uses space-efficient, high performance dual hash
tables (Section 3.3) to store the summary spatial and keyword
information. Moreover, the invCache caches the storing in-
formation of least frequent keywords, and is used to directly
locate the candidate stores if a search contains keywords in it.
Second, all stores must be carefully designed, composed well,
and the transformation between them should be coordinated
effectively. Following the design principle P2 , NQ-tree uses
a self-tuning method that refines the index structure and leaf
sizes adaptively to fit the workloads. It utilizes an cost model
based online algorithm to address the following two issues.

• I1 .What is the best time of emptying a node’s log store?
For example, if a node goes through write-intensive
workloads, we prefer emptying the log store as late as
possible so that the empty cost can be amortized by more
entries. While for read-intensive workloads, emptying
the log store eagerly is more beneficial since the cost of
checking the log store is saved for subsequent searches.

• I2 .What is the optimal leaf size? For instance, searches
with large spatial regions expect big leaf nodes. Howev-
er, an increased leaf size leads to higher write cost.

3.3 NQ-Tree Design
Log Store
For each object in the log store, we generate a 15-bit signature
S for each of its keywords. The signature includes a 10-bit
hashTag of the keyword, a 2-bit locTag indicating which
child cell the object locates in, and a 3-bit posTag showing
which log page the object resides in.

A space efficient index is needed to accommodate signa-
tures in the log-meta page. Cuckoo hashing [Pagh and Rodler,
2004] is a space efficient hash table which resolves collisions
by kick-out evictions. However, it has two problems for sig-
natures storing. One is that some keywords reside in multiple
child cells and log pages, which means that there are 25 dupli-
cate hashTags in worst cases. This might lead to an infinite
loop of kick-out evictions even when the load factor is low.
The other one is that the insert performance deteriorates with
the increasing load factor due to lots of kick-out evictions.

DualHash. We propose the DualHash that considers both
space efficiency and performance. As Fig. 2 shows, it has
two separate hash tables. The layout of main table is the
same as the space efficient cuckoo hashing. The alternative
table is a chained hash, in which buckets have to reserve s-
pace to maintain hash chains. The insert procedure first lo-
cates two positions in the main table, but find an empty slot
in a linear probing manner without kick-out evictions. We
restrict the probing length to 4 since a 4-way set associative
cuckoo hashing has high space efficiency [Fountoulakis et al.,
2016]. Load balancing is considered when inserting in the
main table. If a insertion fails in the main table, then it tries
the alternative table. The false positive rate of a signature is
f ∈ [ 8

215 ,
8+Caltern

215 ], where Caltern is the capacity of alter-
native table. The reason is that there are 8 possible positions
in the main table for the signature, and Caltern possible posi-
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Figure 2: Structure of the DualHash

tions in the alternative table in the worst case, i.e., the length
of hash chain is Caltern.
Maximize the capacity of log-meta page. The insert pro-
cedure can be simulated as throwing balls uniformly and in-
dependently into the main table’s Cmain

8 buckets, and each
bucket can accommodate 8 balls at most. Once a bucket is
full, balls arrived later are put in the alternative table. We use
the Poisson distribution to model the number of balls in each
bucket. Assume that the desired number of balls in each main
table’s bucket is µ, then the expected number of balls in the
alternative table is:

Ealtern=(

8+Caltern∑
i=9

µi

i
·e−µ·(i−8))·Cmain

8
≤ Caltern (1)

where Cmain and Caltern are the capacity of main table and
alternative table. In addition, the size of the main table and
alternative table should satisfy the page size (P ) constraint:

Cmain · Smain + Caltern · Saltern ≤ P (2)

where Smain and Saltern are the size of index entries. Now,
the problem is to maximize the expected capacity:

EDualHash =
Cmain

8
· µ+ Caltern (3)

Given Smain, Saltern, P , and Equations(1-3), we can enu-
merate all the combinations of Cmain and Caltern exhaus-
tively, and find the optimal value.
Further improve the capacity of log store. We further
improve the capacity of log store by eliminating signatures
based on two types of keywords (denoted as sig-skipping-
keywords):(1) Least frequent keywords in invCache. The sum-
mary information of these keywords based signatures can be
found in the invCache. (2) Keywords with a high probability
of residing in the log page. Given a keyword k, the proba-
bility of a log page containing it is P (fk) = 1 − (1 − fk)B ,
where fk ∈ [0, 1] is the frequency distribution of the keyword
and B is the average capacity of a log page. When generat-
ing signatures, we skip the most frequent keywords with poor
pruning efficiency.

Data Store
Each leaf has a compact and static data store. As Fig. 3
shows, it combines data compression techniques and a space-
efficient key-existence index to lower the write cost of merge
operations and read amplification of searches.
Key-existence index. The data store takes advantage of the
Bloom filter [Bloom, 1970], a space-efficient probabilistic da-
ta structure, to avoid accessing the inverted lists if it doesn’t
contain all the search keywords.
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Data compression. As Fig. 3 shows, for sorted data, such
as the keywords/positions/content of inverted lists, the d-gap
based NewPFD scheme is used. It decreases the values that
needs to be compressed by encoding the gaps (called d-gaps)
between successive elements, which result in high compres-
sion ratio. For the data with high variances and relative small
values, the S16 scheme with high performance is used, e.g.,
the length of inverted lists. We combine Bitmaps with object
IDs reassignment to further improve the compression ratio.
The reassignment procedure maps IDs of Ndata objects into
a new range [1 : Ndata], which aims to reduce the d-gaps of
inverted lists. Previous work [Blanco and Barreiro, 2005] has
shown that minimizing the average d-gaps is NP-complete,
and considering it as the traveling salesman problem (TSP)
produces good results. Thus we use the greedy algorithm for
TSP to generate new IDs. Thereafter, all the spatial informa-
tion of objects are stored in an array by the pair 〈o.ID, o.l〉,
where ID is the original object ID, and the position of the pair
in the array indicates the new ID. We propose to use a hy-
brid method for inverted lists compression, in which a Bitmap
with Ndata bits or the NewPFD is used depending on their s-
pace efficiency. The value of jth bit in the Bitmap indicates
whether the inverted list contains the new ID j. Given a d-
gap based inverted list with length Li, min value mini, max
value maxi, and mean value µi, according to Hoeffding’s In-
equality, we have the estimated bit-number b of NewPFD:

2b ≥ µi +

√
(maxi −mini)2

2Li
log(

2

1− 0.9
)

Next, for the exceptions of NewPFD, we assume their posi-
tions and values follow a uniform distribution, and use their
expectations to estimate the space required by S16.

3.4 Operations on NQ-Tree

Update. Updates are initially inserted into the write buffer
as logs. If the write buffer is full, the batchInsertNode routine
(see Algorithm 1) is invoked to push updates to root nodes.

Search. If a search contains keywords in the invCache, it
directly locates the candidate stores through list intersections.
Then it invokes specific subroutines (see Algorithms 2 and 3)
to collect matched objects. Otherwise, it searches the NQ-tree
in a top-down manner, and checks all the encountered stores.

4 Self-Tuning Method
We first propose a cost model to evaluate the index refine-
ments. With the cost model, the self-tuning method uses an
online algorithm to adapt the index to workload shifts.

Algorithm 1 BatchInsertNode
Input: O: inserted objects; N : node accessed currently.

1 foreach object o ∈ O do
2 Append o to N ’s log store;
3 if o.ψ contains keywords in the invCache then
4 Update the storing information of o in the

invCache;
5 end
6 Generate o’s signatures and update the log-meta

page;
7 end
8 if Empty N ’s log store is required then
9 if N is an inner node then

10 if all N ’s children are leaf nodes and merging
N ’s children is required then

11 Merge all N ’s children and set N as a leaf
node;

12 return;
13 end
14 Push down N ’s objects recursively;
15 else /* N is a leaf node */
16 Integrate N ’s log store into the data store;
17 if a split of N is required then
18 Split N ;
19 end
20 end
21 end

4.1 Cost Model
Assume that the cost of disk seek is Ir, and the cost of trans-
ferring one page is Is. Then we have the cost of accessing n
random pages and n sequential pages as:

Dr(n) = (Ir + Is) · n; Ds(n) = Ir + Is · n

Next, we compute the expected cost of emptying the log
store. For inner nodes, we denote NCi

log as the number of
objects pushed into its ith child. Assume that the log store
has PNlog pages and the average capacity of a log page is B,
then we have the expected I/O cost as:

CIempty = Dr(P
N
log) +

3∑
i=0

sgn|NCi
log| · (Dr(2) +Ds(d

NCi
log

B
e))

For leaf nodes, the number of objects in the log store and
data store is denoted as Nlog and Ndata, P is the page size,
and SNdata is the size of the data store. Then we have:

CLempty = Dr(P
N
log)+

Ds(d
SNdata
P
e) +Ds(d

(Nlog +Ndata) · SNdata
Ndata · P

e)

Finally, we compute the expected cost of nodes split-
ting/merging. We denoteNCi

data as the number of objects split
into ith child. The cost of nodes splitting is the following:
Csplit = Dr(P

N
log)+

Ds(d
SNdata
P
e) +

3∑
i=0

Ds(d
(NCi

log +NCi
data) · S

N
data

Ndata · P
e)
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Algorithm 2 SearchLogStore
Input: q: geo-textual search; N : node accessed

currently; Pinv: Primary candidate log pages
filtered by the invCache.

Output: R: matched objects in N ’s log store
1 if all q.ψ are sig-skipping-keywords then
2 if q.ψ contains keywords in the invCache then
3 Pvef ← Pinv;
4 else
5 Pvef ← all N ’s log pages;
6 end
7 else
8 H ← generate hashTags for q.ψ except the

sig-skipping-keywords;
9 foreach hashTag ht ∈ H do

10 Shash ← signatures in log-meta page that
contain ht;

11 Sloc ← signatures in Shash with the child cell
indicated by locTag overlaps with q.r;

12 Add Sloc to the list L[ht];
13 end
14 Intersect lists in L by signatures’ posTag;
15 Add intersection results to Psig as candidate log

pages;
16 if q.ψ contains keywords in invCache then
17 Pvef ← Psig ∩ Pinv;
18 else
19 Pvef ← Psig;
20 end
21 end
22 Search log pages in Pvef and add matched objects toR;

The procedure of merging child nodes can be simulated as
first empty the log store of each child Ci, and then write them
as one compact data store. Thus we have:

Cmerge =
3∑
i=0

CCi
empty − 3 · Ir

.

4.2 Online Algorithm
We abstract the problem of online index refinements to a s-
tate transition problem. Depending on the existence of log
stores, we associate each node with two states, i.e., slog and
snoLog . Moreover, leaf nodes can stay in a third state sinner.
When a leaf node is transformed into the sinner state, it is s-
plit into smaller leaf nodes. Analogously, for each inner node
with leaf nodes as its children, we associate it with a third
state sleaf . When a specific inner node is set to the sleaf s-
tate, it is transformed into a bigger leaf node by consolidating
all its children. Now, the problem is how to schedule the s-
tates of each node that minimizes the overall cost incurred. A
problem with similar flavor is the Metrical Task System prob-
lem [Borodin and El-Yaniv, 2005], and there exists an optimal
deterministic online solution called Work Function.
Work function. Given a node N , we refer to the cost of
serving request σt at state si as cN (si, σt), the cost of chang-

Algorithm 3 SearchDataStore
Input: q: geo-textual search; N : node accessed

currently.
Output: R: matched objects in N ’s data store

1 if q.ψ matches N ’s Bloom filter then
2 L ← Inverted lists for keywords in q.ψ;
3 Rvef ← Intersect the inverted lists;
4 foreach object o ∈ Rvef do
5 Add o toR if o.l ∈ q.r;
6 end
7 end

ing from state si to sj as dN (si, sj). Let wNt (si) be the min-
imum cost to process a sequence of t=σ1 · · ·σt requests on
N with an ending state si. Assume that N has served the
requests sequence and that it is currently in state st. To pro-
cess the next request σt+1, move to the state st+1 = s that
minimizes wNt+1(s)+d

N (st, s).

Implementation. We use dynamic programming to main-
tain a set of state variables wNt (si) for each node. When a
new request σt arrives, wNt (si) is updated as follows:

wNt (si) = min{wNt−1(sj) + dN (sj , si) +min{cN (si, σt),

cN (sj , σt)}|sj ∈ {all of N ′s states}}

where dN (sj , si) is estimated by the cost model, and
cN (si, σt) is estimated by the characteristic of the request.

5 Experiment
5.1 Baselines
As described in Section 1, most of existing methods are based
on the R-tree. However, the R-tree is inherently not suitable
for update-intensive workloads [Biveinis et al., 2007] because
an update might modify multiple nodes due to the adjustmen-
t of overlapped MBRs. What’s worse, methods based on it
also require propagated updates on the embed inverted index-
es. Together, it makes them impractical for stream process-
ing. Others either rely on search logs and dataset analysis or
global data compressions that make updates computationally
prohibitive. Thus, we modify some existing indexes as base-
lines.

Spatial-first index (SPF). A number of previous approach-
es [Zhang et al., 2013; 2016; Wang et al., 2015] have used
the Quadtree due to its low maintenance cost, thus we use it
as the spatial-first index. We set the page size as the maxi-
mum size of leaf nodes. The Quadtree only needs one page
write for each update if there is no split operation. However,
each geo-textual search has to check all the cells overlapped
with the search region, which might need a large number of
random reads, especially in dense data areas.

Keyword-first index (KWF). We build inverted lists for all
keywords to facilitate the keyword-first pruning. Each invert-
ed list records the IDs of objects that contain the associat-
ed keyword, and is kept on the disk by one dimensional in-
dex (e.g., B+-Tree). For frequent keywords, the inverted lists
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Figure 4: Evaluation of proposed methods.

are partitioned by coarse grained spatial regions. In addition,
geo-locations of objects are indexed by IDs. The keyword-
first search first identifies results by intersecting the inverted
lists of search keywords in increasing order of frequencies,
which allows skips on inverted lists. Then it conducts geo-
location verifications on the returned results. The major ad-
vantage of KWF is that it consumes fast sequential disk ac-
cesses to scan inverted lists. However, each update consumes
multiple expensive random writes on the corresponding in-
verted lists.

5.2 Experimental Setup

Environment. The experiments were ran on a workstation
powered by Intel Xeon Gold-6148 CPU on Linux (Ubuntu
16.04), having a 15K RPM disk. All the experiments were
conducted using the direct I/O mode to eliminate influences
caused by the data caching of file systems.

Dataset. We experimented on two real-world datasets: 4SQ
and TWEETS. The dataset 4SQ contains 4 million world-
wide check-ins with both location and text information from
Foursquare. The dataset TWEETS consists of 20 million geo-
tagged tweets from users in the USA. We sampled 10% of the
data as insertions/deletions, which can reflect the real-world
data distributions, and the rest as basic data. We referred to
the method in [Zhang et al., 2016] that considers location
skewness (dense areas are searched more often) and keyword
likelihood to generate searches. The number of search key-
words |q.ψ| ranges from 1 to 5, and the search region q.r
ranges from 1km to 10km. By default, |q.ψ| and q.r are 3
and 5km, and the ratio of searches (denoted as search ratio)
is 0.5. For updates, the ratio of insertions and deletions is
50%/50%.

Index settings. We set the page size to 4 KB, and set the
buffer size to 64MB and 256MB for 4SQ and TWEETS. An
LRU buffer manager was implemented. In our design, we
devoted part of the buffer as the write buffer and invCache.
Specifically, 4MB memory was allocated for the write buffer
so that the geo-space was initially divided into 1024 grid cell-
s. The invCache cached the storing information of 40% least
frequent keywords, accounting for no more than 5% of the to-
tal data. When generating signatures, we skipped the frequent
keywords that have more than 50% probability of residing in
a log page.
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Figure 5: Performance comparison varying data cardinality.

5.3 Evaluating Proposed Techniques
In this section, we evaluate the efficiency of our proposed
methods. We implement the following methods. (1) Frame-
work performs basic cascading updates with the log store and
invCache designs. The capacity of data store is set to the
estimated capacity of log store; (2) FrameworkST improves
Framework with self-tuning methods; (3) NQ-tree integrates
the hybrid compression method into FrameworkST.

We varied the data cardinality and reported the average e-
lapsed time per operation. The results are shown in Fig. 4. We
observed that FrameworkST outperformed Framework by up
to 2.9× when the data cardinality was large (≥ 75%). This is
because FrameworkST continuously monitors the workload
shifts, and dynamically refines its structure to reduce the over-
all access cost. For example, in FrameworkST, we observed
that there were few log stores in nodes near the root node s-
ince these nodes saw lots more searches than batch updates,
thus FrameworkST chosen to recursively push down updates
to lower levels. Moreover, FrameworkST adapts the leaf size
with the increase of data cardinality, which result in better
scalability. We also observed that the hybrid compression
method helped improve the performance. This is because it
reduces the I/O cost of updates and searches on leaf nodes.

5.4 Comparing with Baselines
Scalability. Figure 5 depicts the result for scalability ex-
periments. We can see that our approach showed good scal-
ability. Note that the performance of SPF decreased faster
than others with the increase of data cardinality, this is be-
cause the fixed leaf size is not adaptive to the datasets. For
example, given a fixed search range, with the increase of da-
ta cardinality, the number of leaf nodes checked by search-
es might increase faster than linear since real-world dataset-
s have skewed distributions. KWF scaled better than SPF,
because it partitions the inverted lists of frequent keywords
by spatial regions, which alleviate the side-effect caused by
skewed datasets.
Effect of search ratio. Figure 6 shows the performance
comparison on various search ratios. We can see that NQ-
tree always achieved the best performance and improved the
baselines up to 40×, especially in update intensive workload-
s. For example, on TWEETS dataset, when the search ratio
was 0, the average elapsed time per update for SPF, KWF and
NQ-tree were 1.095ms, 4.466ms, and 0.096ms, respectively.
This is because NQ-tree takes advantage of the cascading up-
date technique, which can amortize write cost over multiple
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Figure 6: Performance comparison varying search ratio.
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Figure 7: Performance comparison varying search range.

updates. We also found that NQ-tree scaled well when the
search ratio was increased. The main reason is that NQ-tree
can dynamically empty the log stores and adjust its leaf size to
match the access patterns and data distributions, and it makes
use of both location and keyword information for efficient
pruning.

Effect of the search range. We also investigated the ef-
fect of scaling search regions. Figure 7 displays the elapsed
time and I/O cost per search when scaling search region-
s. We observed that the performance of NQ-tree was rather
steady. For example, on 4SQ dataset, when search region
scaled from 1km to 10km, the average elapsed time for NQ-
tree were 4.96/11.78/22.48 ms, while for the SPF the results
were 19.67/71.70/184.12 ms. The main reason is that NQ-
tree enlarges the size of leaf nodes when the search region is
scaled, which benefits from fast sequential disk reads when
searching these leaf nodes. Furthermore, enlarging the leaf
nodes might also reduce the disk seek cost of loading Bloom
filters that are used for pruning. Note that KWF also benefits
from fast sequential accesses though it has a large number of
disk reads.

Effect of the number of search keywords. Figure 8 dis-
plays the effect of the search keyword number. We observed
that NQ-tree had the best performance in nearly all cases.
This is because the well composed signatures, Bloom filter-
s, invCache and Quadtree can utilize both keyword and spa-
tial information to improve the pruning efficiency. The more
search keywords, the better pruning efficiency. As expect-
ed, the performance of KWF degraded when the number of
search keywords increased because it had to scan more invert-
ed lists.
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Figure 8: Performance comparison varying search keywords.

Effect of the insertion/deletion ratio. Generally, the index
will shrink/grow if there’re more deletions/insertions. The
performance improved slightly when we increased the por-
tion of deletions, which was consistent with the scalability
results in Fig. 5. We didn’t include the result due to space
limit.

6 Conclusion
In this paper, we presented a novel index named NQ-tree for
efficient geo-textual streaming data processing. In contrast
to previous studies, which focused on search optimizations
of static datasets, NQ-tree aims to offer efficient support for
both updates and searches. We extended the Quadtree with
multiple stores, which utilizes cascading updates to improve
the update performance. For efficient searches, we designed
space-efficient auxiliary structures to enhance the pruning ca-
pacity. Further, we proposed a self-tuning method to refine
the index structure adaptively to fit the workload shifts. The
experimental results demonstrate the efficiency of our pro-
posal.
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