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Abstract

Cover song identification is an important problem
in the field of Music Information Retrieval. Most
existing methods rely on hand-crafted features and
sequence alignment methods, and further break-
through is hard to achieve. In this paper, Convolu-
tional Neural Networks (CNNs) are used for repre-
sentation learning toward this task. We show that
they could be naturally adapted to deal with key
transposition in cover songs. Additionally, Tempo-
ral Pyramid Pooling is utilized to extract informa-
tion on different scales and transform songs with
different lengths into fixed-dimensional representa-
tions. Furthermore, a training scheme is designed
to enhance the robustness of our model. Extensive
experiments demonstrate that combined with these
techniques, our approach is robust against musi-
cal variations existing in cover songs and outper-
forms state-of-the-art methods on several datasets
with low time complexity.

1 Introduction

With the increasing amount of music data on the Internet, the
exploitation of music data becomes an interesting topic for
researchers. Cover song identification (CSI) focuses on re-
trieving the cover versions of a given song in a dataset, which
can be applied in music license management, music cluster-
ing, retrieval and recommendation. Due to its potential appli-
cations, it has long attracted lots of researchers.

The challenge to the researchers is the variations in cover
songs such as key transposition, tempo change and structural
variation. Key transposition refers to the movements of music
notes. For structural variations, an example can be that, in a
live performance, the musicians may skip an introduction or
repeat the chorus. Tempo may change or fluctuate for expres-
siveness in a live performance. Structural and tempo change
often lead to discrepancies when one tries to align two cov-
ers. Although it is easy for people to recognize different ren-
ditions with these variations corresponding to the same song,
it is challenging for machines to make sequential matching
when these complicated musical changes are presented.
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To tackle the issue, researchers developed alignment al-
gorithms for version identification. For instance, Chroma,
representing the intensity of twelve pitch classes, was ex-
tracted to describe music [Fujishima, 1999]. Sequence
alignment algorithms like Needleman-Wunsch-Sellers algo-
rithm and Dynamic Time Warping were used to find the
optimal correspondence between two covers [Bello, 2007;
Silva et al., 2018]. These sequence alignment algorithms
are essentially developed to measure the similarity between
time series. They help reduce the impacts of structure and
tempo changes to a certain extent and thus achieve high
precision when being applied to small-scale datasets, e.g.
hundreds of songs [Serra et al., 2009; Martin et al., 2012;
Cheng et al., 2017]. However, it becomes difficult to use these
algorithms for a larger dataset.

To improve efficiency, researchers designed compact fea-
tures or modeled music with machine learning instead
of alignment algorithms [Bertin-Mahieux and Ellis, 2012;
Khadkevich and Omologo, 2013; Serra et al., 2012].
These methods either implicitly or explicitly extracted fixed-
dimensional features from music. Metrics like Euclidean dis-
tance were then used to measure the similarity given two
songs. These approaches have linear time complexity; thus
they work faster than sequence alignment methods. How-
ever, music modeling loses much temporal information and
often leads to poorer results compared to sequence alignment
methods.

Moreover, the aforementioned approaches often rely on
elaborately designed alignment algorithms and hand-crafted
features, which require extensive human effort and expertise
in music theory and signal processing. To overcome these
drawbacks, some researchers introduced deep learning into
this field. For instance, Chang et al. utilized CNNs to mea-
sure the similarity from the similarity matrix [Chang et al.,
2017]. This work trained the model on limited data and re-
ported results on home-built datasets. Attempts were also
made to use neural networks for feature learning rather than
distance measure [Xu et al., 2018]. These methods achieve
promising results but require further improvement.

In this paper, we use CNNss to learn key-invariant features
for CSI. Inspired by successful application of Pyramid Pool-
ing in computer vision [He ef al., 2015; Wang er al., 20171,
we adapt this technique into music analysis and utilize Tem-
poral Pyramid Pooling (TPP) to summarize information from
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different scales and transform music into fixed-dimensional
features. Although some of the techniques have been applied
in computer vision, few researchers have utilized them for
music retrieval, which focuses on audio feature engineering
and alignment algorithms.

The novelty and contribution of this paper are three-fold.
First, we show that CNNs could be used to learn key-invariant
representations of music, analogous to its application in com-
puter vision to extract shift-invariant features. Second, TPP
is used to extract information at different scales and trans-
form variable-length sequences into fixed-length representa-
tions. Third, multi-length training scheme is developed for
data augmentation and make the model robust against dura-
tion variations. With the specific designs and training strat-
egy, our approach outperforms state-of-the-art methods on
two public datasets. Our approach extracts compact represen-
tations and works much effectively than alignment methods.
The code, data and implemented baselines are online?, which
encourages the application of this method.

2 Related Work
2.1 Audio Feature

Although musical structure and tempo may change in cover
versions, cover versions share similar melody structure and
harmonic progression. Therefore researchers designed music
descriptors to represent melodic information. A common ap-
proach was to extract sequential descriptors from music and
then use alignment algorithms to measure the similarity be-
tween two given sequences. For instance, Tzanetakis et al.
proposed pitch histogram to represent tonality [Tzanetakis
et al., 2003]. Chroma and its variants were extensively de-
ployed to this task [Ellis and Poliner, 2007; Serra et al., 2008;
Grosche and Miiller, 2012; Silva et al., 2016; Cheng et al.,
2017].

In contrast to sequential representations, other researchers
attempted to generate fixed-length vectors for cover song
identification. For instance, [Khadkevich and Omologo,
2013] used chord profile to represent music. Bertin-Mahieux
and Ellis applied 2D Fourier Transform and median filter
to extract a global representation from Beat-chroma [Bertin-
Mahieux and Ellis, 2012]. Osmalsky et al. combined several
global features like duration and timbre for CSI [Osmalsky et
al., 2015].

2.2 Similarity Measure

For sequential representations, dynamic programming was
a routinely used approach to measure the similarity of se-
quential descriptors. Through searching the optimal corre-
spondences between two sequential representations, these al-
gorithms helped reduce the impacts of local structure vari-
ations and thus achieved high precision [Bello, 2007; Serra
et al., 2008; Martin et al., 2012; Cheng et al., 2017]. For
other approaches, though they did not use dynamic program-
ming explicitly, they computed cross-similarity between the
sequences and required comparable complexity [Grosche and
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Figure 1: Overview of retrieval process. Conv: Convolutional layer,
Pool: Max pooling layer, TPP: Temporal Pyramid Pooling layer and
FC: Fully-connected layer. The numbers in the block show the size
and number of channels of convolutional layers, and input and out-
put dimension of fully-connected layers. Output dimension of FC1
is 4611 because a dataset with 4611 songs is used for training.

Miiller, 2012; Seetharaman and Rafii, 2017]. For fixed-
dimensional features, researchers used simple metrics like
Euclidean distance and cosine distance to reduce time com-
plexity [Bertin-Mahieux and Ellis, 2012; Osmalsky ef al.,
2015; Xu et al., 2018].

3 Method

Our network consists of convolutional layers for repre-
sentation learning and TPP to convert inputs into fixed-
dimensional vectors. When training, we consider different
renditions of the same composition as samples belonging to
the same category, and consider different songs as different
classes. Gathering 100K recordings, we train the network
through classification criteria. After the training, the output
of the last but one layer is used to extract music representa-
tions as shown in Figure 1. In the retrieval process, we ex-
tract music representation of a query ¢ through the network
and used to compute the distances to music representations of
the references {71, 72 ... 7y} in the dataset. Music represen-
tations of the references are pre-computed and stored in disks
for retrieval.

3.1 Low-level Representation

CQT is a transform with logarithmic frequency scale, reflect-
ing western musical scale [Brown, 1991]. We use Librosa
for extraction [McFee et al., 2015]. The audio is resampled
to 22050 Hz. Hann window is used in preprocessing with a
hop size of 512. Finally, CQT is downsampled with an av-
eraging factor of 20. Two examples of CQTs are visualized
in Figure 2, where the x-axis and y-axis represent time and
frequency dimension respectively. The segments displayed in
the figure represent the notes and their harmonic series in mu-
sic. Compared to Chroma widely used in CSI systems [Ellis
and Poliner, 2007; Serra et al., 20081, CQT is a low-level de-
scriptor as it does not map frequency components into pitch
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Figure 2: Visualization of CQTs extracted from two versions of
Twinkle Little Star. Log operation is applied to make the visual-
ization more remarkable.

classes. It remains more information and helps neural net-
works to learn a better representation for CSI.

3.2 Convolutional Neural Network for
Key-invariance

Key transposition refers to that a piece is transposed to a dif-
ferent key. Figure 2 shows an example of key transposition.
One could learn that if moving the notes of one figure verti-
cally, we obtain another figure. However, matching the two
figures directly (without consideration of transposition) re-
sults in high discrepancy. To deal with key transposition,
some researchers tested all or some potential transpositions
[Bello, 2007; Serra et al., 2009]. Others attempted to extract
a feature invariant to key transposition [Bertin-Mahieux and
Ellis, 2012; Seetharaman and Rafii, 2017].

However, these methods involve complicated hand-crafted
features for key transposition. Alternatively, CNN is used
to learn key-invariant representation in our approach. View-
ing CQTs as images, we find that key-invariant representation
is related to shift-invariant representation in image classifica-
tion. Instead of recognizing objects in images, CNN is used to
capture chord patterns or melodic structures from music. [Xu
et al.,2018] used CNN to learn a key-invariant representation
too but their solution used Chroma and aimed at learning a
recurrent-invariant feature. Our approach is straight-forward
but effective; we learn a shift-invariant feature using CNN
and obtain higher precision (see Section 5.3).

The network structure is shown in Figure 1. We design
Conv0 with a size of 36 x 40. This design has two advan-
tages. First, its height is a multiple of 12. In other words,
it captures four harmonics and spans three octaves. Second,
to aggregate information within large contexts, its width is
set as 40, corresponding to 20 s. The design is consistent
with the ideas of existing works in CSI [Serra et al., 2008;
Bertin-Mahieux and Ellis, 2012]; they usually extracted fea-
tures or measured the similarity from a long range.

Obviously, the network structure is different from that in
image classification or image retrieval, which consists of
small square filters [Simonyan and Zisserman, 2015; He et
al., 2016]. We build networks with small filters following
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Figure 3: Temporal Pyramid Pooling layer. The input feature map
is first partitioned on different levels, and max-pooling operation is
applied to the partitions for each channel.

this style initially but get poorer results. Looking into the dif-
ference between image and music, we realize that music is
inherently temporal signals; even though Figure 2 shows the
CQTs as images, the x-axis and y-axis have different mean-
ings, representing time and frequency domain respectively.
Hence borrowing the network structure from image classifi-
cation is not appropriate. Alternatively, we utilize large ker-
nels in the initial layers, which return better results in the ex-
periments.

3.3 Temporal Pyramid Pooling

Utilizing several convolutional and pooling layers, we ac-
quire a feature map with a shape of L x 512 in Conv5 (see
Figure 1). L depends on the length of input rather than a con-
stant; we get variable-length activations related to the inputs
in this layer. Motivated by Pyramid Pooling in computer vi-
sion [He et al., 2015; Wang et al., 2017], we use TPP to learn
a fixed-dimensional feature and extract information from dif-
ferent temporal scales. In our implementation, adaptive win-
dows are used for pooling operations. For a pyramid level
with n bins, a max-pooling window moves across the feature
map through time, where ¢-th bin is related to the feature map
within [| =2 L], [£L]). As shown in Figure 3, four pyramid
levels {1,2,3,4} are used in our approach. After this oper-
ation, we concatenate the feature maps from different levels
and obtain a fixed-dimensional vector for further process.

TPP converts a variable-length feature into a fixed-length
output. Without TPP, neural networks require fixed-length
inputs, which are not cases of music. Another solution to
tackle the difficulty of variable-length inputs may be scal-
ing music signal into a constant length. However, audio is
different from images, which can be resized into any arbi-
trary sizes. Although researchers proposed time stretching to
scale audio, these algorithms introduced artificial effects to
the original signals [Z6lzer, 2011]. Instead of modifying sig-
nals, we leverage TPP to solve this conflict and learn fixed-
dimensional representations from songs with different dura-
tion.

Adopting TPP helps aggregate information from different
temporal scales. It captures chord patterns and melodic struc-
tures within different parts of music. Adaptive global pooling
is a particular case of TPP which employs only one pyramid
level. Compared to adaptive global pooling, multiple pyra-
mid pooling keeps more information, and we find that several
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pooling levels help improve precision in the experiment.

3.4 Multi-length Training

TPP is applied to transform variable-length features into
fixed-dimensional vectors, which are then fed into two
fully-connected layers. We are given a training set D =
{(z1,t1), (x2,t2) ... (zN,tn)} where x,, represents a music
version, and t,, is an one-hot encoding vector, indicating to
which song x,, belongs. Each song has various music ver-
sions. The songs are viewed as classes, and different versions
of the same song are seen as the samples from the same class.
When training, we first extract CQTs {X, X5 ... X} from
{x1,29... 2N} and feed them into the network. The net-
work is trained using cross-entropy loss to predict the label
{t1,ta...tN}. However, for retrieval or testing, the network
is not used to predict the category of input audio. Instead, as
shown in Figure 1, we use the feature map of the last but one
layer for retrieval.

Different songs have different duration. To train a model
robust against duration changes, we devise a multi-length
training strategy. In each training step, we sample a batch
of data B C D and extract CQTs. For each CQT, we ran-
domly crop three subsequences with a length of 200, 300 and
400, corresponding to 100 s, 150 s and 200 s respectively. If
the original length is smaller 200, 300 or 400, zero elements
are padded into the end of CQT sequence. Therefore, we gen-
erate three new batches Bygg, B3gg and Bygo from B, which
are fed into the network for training. The motivation behind
this scheme is that if we only provide the network with fixed-
length inputs, the network will be biased toward this spe-
cific length. Under the circumstance, even though TPP could
convert varying-length sequences into fixed-dimensional fea-
tures, TPP becomes ineffective in the training process. In
addition, multi-length training strategy increases the amount
of training data by three times, and cropping the sequences
randomly serves as a way for data augmentation. The train-
ing strategy simulates deletion changes, i.e. musicians skip
music phrases or music sections when performing, and thus
improves the robustness of model against structure variations
too.

3.5 Retrieval

The retrieval process is shown in Figure 1. Given a query
q, we extract the CQT descriptor ) and feed it into net-
work to extract music representation f((Q), where f maps
a CQT to a music representation through the network. For
the references {ry,75...7xn}, we extract the CQT descrip-
tors { Ry, Ry ... Ry} and compute the music representations
{f(R1), f(R2)... f(Rn)} in preprocessing. The distance
d,~ between a query ¢ and a reference r (the subscript is
omitted for simplicity) is defined as cosine distance of their
music representation as below:

_ J@TI(R)
[F(@IIf(R)]

For retrieval, we compute pair-wise distances between the
query and references in the dataset, and return a ranking list
for evaluation. It is worth noting that owing to computaion
capacity of modern computer and low dimension of music

dgr=1 (1)
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representation, our approach could work fast on million song
datasets without any acceleration.

4 Experimental Settings

4.1 Dataset

Second Hand Songs 100K (SHSI00K), collected by [Xu
et al., 2018], includes 8858 songs with a variety of ver-
sions and 108523 recordings totally. ~We split it into
three subsets, namely SHS100K-TRAIN, SHS100K-VAL and
SHSI100K-TEST, with a ratio of 8 : 1 : 1 for training, vali-
dation and testing respectively. Unlike the partition in [Xu et
al., 2018], we want to gather a larger testing set. SHS100K
is highly imbalanced; some songs have tens of covers while
some only have one or two covers. To make the training set
more balanced, only songs with more than five covers are
used for training. After the screening process, 4611 songs
with 84340 recordings are used for training. For testing, we
compute the similarity of all pairs of recordings in SHS100K-
TEST, which has 10547 recordings, and thus a 10547 x 10546
similarity matrix is computed for evaluation.

Youtube is collected by [Silva et al., 2016]. It consists of
50 compositions with diverse music styles and genres — each
with 7 versions and thus has 350 recordings in total. The
data is split into a training set and a testing set originally.
To allow comparison with the literature, we use the training
set as reference and testing set as query following the same
configuration to [Silva et al., 2016].

Covers80 has 80 songs and every song has 2 covers. It
is widely used as a benchmark dataset in the literature. To
compare with existing methods, we compute the similarity of
all pairs of recordings and thus a 160 x 159 similarity matrix
is computed for evaluation.

4.2 Evaluation

For evaluation, we calculate the common evaluation metrics
mean average precision (MAP), precision at 10 (P@10) and
the mean rank of the first correctly identified cover (MR1).
MAP is the mean of average precision, and P@10 is the mean
ratio of the same versions identified successfully in the top 10.
These metrics are exactly the ones used in Mirex Audio Cover
Song Identification contest®. Query time is also recorded for
efficiency comparison.

5 Experimental Results and Analysis

In the following experiments, we train models on SHS100K-
TRAIN and tune the parameters on SHS100K-VAL to select
the best model. Then we evaluate the performance on the
three datasets Youtube, Covers 80 and SHS100K-TEST. The
proposed method is denoted as CQT-TPPNet.

5.1 Effectiveness of TPP and Multi-length
Training

To compare with our model, several networks without TPP
are built. Different from CQT-TPPNet, the outputs of Conv5

3https://www.music-ir.org/mirex/wiki/2018: Audio_Cover_Song._
Identification
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MAP P@10 MR1 MAP P@10 MR1 MAP P@I10 MR1

Results on Youtube Results on Covers80 Results on SHS100K-TEST
CQT-TPPNet 0859 0.188 285 0.744 0.086 6.88 0.465 0.357 72.2
CQT-Net (200) 0.750 0.174 337 0.618 0.079 147 0375 0.305 109
CQT-Net (300) 0.777 0.176 322 0.681 0.084 11.5 0.370 0.305 104
CQT-Net (400) 0.740 0.179 3.65 0.636 0.080 948 0.327 0277 107
CQT-TPPNet {1, 2, 3} 0.846 0.185 297 0.742 0.085 8.78 0.476 0.365 77.6
CQT-TPPNet {1, 2} 0.832 0.184 321 0.723 0.082 9.63 0.472 0.361 75.5
CQT-TPPNet {1} 0.828 0.185 3.62 0.738 0.082 849 0430 0.337 84.1
Single-length Training (200) 0.812 0.180 3.83 0.722 0.084 7.14 0.450 0.348 86.8
Single-length Training (300) 0.815  0.181 341 0713 0.082 743 0422 0.333 88.9
Single-length Training (400) 0.770 0.175 4.33  0.658 0.083 103 0.348 0.291 108
+4 semitones 0.852 0.185 333 0.733 0.086 7.18 0444 0.344 773
-4 semitones 0.852 0.186 3.00 0.724 0.086 7.59 0442 0.344 78.4
+12 semitones 0.795 0.180 3.72 0.642 0.084 8.12 0.330 0.271 115
-12 semitones 0.828 0.185 3.07 0.709 0.086 8.14 0.385 0.309 91.8
0.8 x tempo 0.824 0.180 344 0.680 0.085 9.28 0.385 0.309 85.2
0.9 x tempo 0.852 0.186 3.00 0.728 0.086 8.18 0.433 0.339 79.3
1.1 x tempo 0.828 0.186 2.86 0.702 0.083 7.17 0425 0.333 79.4
1.2 x tempo 0.819 0.183 336 0.674 0.082 7.89 0.389 0.311 86.7

Table 1: Effectiveness of TPP and multi-length training, and robustness against musical changes (the bold texts denote the best results)

in these networks are connected to fully-connected layers di-
rectly. These networks require fixed-length inputs for training
and testing without the support of TPP. They are denoted as
CQT-Net (i) where ¢ represents the length of input, and we
test ¢ through {200, 300,400}. Table 1 shows that TPP re-
sults in improvement. As different songs have different dura-
tion, fixing the length of input causes information loss. On the
contrary, TPP is adaptive to the input and has better perfor-
mance. Additionally, we explore how many pyramid levels
are needed to achieve better precision. Several combinations
are experimented in Table 1. Experimental results show that
using several pyramid levels achieve consitently better per-
formance than one level (or adaptive global pooling) since
several levels could exploit more information from different
scales. We also explore more levels than the ones shown in
Table 1 but do not find notable gains. Therefore we use CQT-
TPPNet with four levels {1, 2,3, 4} for the following experi-
ments.

Several experiments are conducted to explore whether
multi-length training strategy helps improve accuracy. Com-
pared to the original setting, we train the models fixing the
length of input j to {200, 300,400} respectively, denoted as
Single-length Training (j). As shown in Table 1, multi-length
training achieves better performance consistently on all three
datasets compared with single-length training. Multi-length
training reduces the model’s bias toward specific input length.
Even though the models allow variable-length songs for test-
ing, its performance degrades without using this training
strategy. Another explanation of the improvement is that
multi-length training provides more data for training. It is im-
portant to mention that our training set SHS/00K-TRAIN has
about 15 versions per song on average. Cropping segmenta-
tions randomly and feeding the networks with variable-length
sequences serve as a way for data augmentation, highly boost-
ing the performance.

5.2 Robustness against Musical Variations

Experiments have been conducted to explore the robustness
of our approach against musical variations, such as key trans-
position and tempo change. Considering the datasets do not
provide any annotation about these variations, we simulate
the changes and modify the queries using Librosa [McFee
et al., 20151, and then retrieve covers from the datasets and
assess the performance. Since in real life musicians would
not make significant changes, such as playing several oc-
taves higher or changing tempo drastically when performing
a composition, we test transpositions within one octave (or
twelve semitones) and several tempo changes.

Some results are shown in Table 1, revealing that the
changes result in a bit poorer performances on the datasets.
Our proposed model is still able to deal with key transposi-
tion and tempo change. For instance, if the key is transposed
within four semitones or tempo is changed by a factor within
[0.9, 1.1], the degradation is relatively small. For key trans-
position, it is found that raising an octave (412 semitones)
leads to worse precision than lowering an octave (—12 semi-
tones). Comparing the modified query with an octave either
higher or lower, we find that moving up an octave by Librosa
brings more artificial effects like jarring sounds than lowering
an octave. These impacts make it more difficult to recognize
the covers.

5.3 Comparison

We carefully reimplement two methods 2DFM [Bertin-
Mahieux and Ellis, 2012] and In-Net [Xu et al., 2018] for
comparison. 2DFM is a hand-crafted feature, and In-Net uti-
lizes neural networks for feature learning similar to our ap-
proach. The two methods and our approach are implemented
on a Linux server with an Intel Xeon E5-2640v3 and two TI-
TAN X (Pascal) GPUs. In addition, we compare with state-
of-the-art methods, which report their results on Covers80 or
Youtube.

4850
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MAP P@10 MRI1 Time
Results on Youtube
DPLA [Serra et al., 2008] 0.525 0.132 9.43 2420s
SiMPle [Silva et al., 2016] 0.591 0.140 791 18.7s
Fingerprinting [Seetharaman and Rafii, 2017] 0.648 0.145 8.27 -
SuCo-DTW [Silva et al., 2018] 0.800 0.180 342 4.59s
2DFM [Bertin-Mahieux and Ellis, 2012] 0.448 0.117 12.2 0.08ms
In-Net [Xu et al., 2018] 0.656 0.155 6.26 0.05ms
CQT-TPPNet 0.859 0.188 2.85 0.04ms
Results on CoversS0
NCP-WIDI [Cheng et al., 2017] 0.645
CRP [Serra et al., 2009] 0.544 0.061
Fusing [Chen er al., 2018] 0.625 0.071 -
2DFM [Bertin-Mahieux and Ellis, 2012] 0.381 0.053 33.6 0.13ms
In-Net [Xu er al., 2018] 0.506 0.068 16.4 0.07ms
CQT-TPPNet 0.744 0.086 6.88 0.06ms
Results on SHS100K-TEST
2DFM [Bertin-Mahieux and Ellis, 2012] 0.104 0.113 415 12.6ms
In-Net [Xu er al., 2018] 0.219 0.204 174 4.53ms
CQT-TPPNet 0.465 0.357 72.2 3.68ms

Table 2: Performances on different datasets (- denotes that the re-
sults are not shown in original works). Given that the references
have one and two covers for each query on Covers80 and Youtube
respectively, the maximum of P@10 should be 0.1 and 0.2 for the
two datasets respectively.

The comparison results are shown in Table 2. It can be
seen that our approach performs better than those methods
on Covers80 and Youtube with respect to precision and effi-
ciency. For example, it obtains a MAP of 0.744 and processes
a query within 0.06 ms on average on Covers80. As these
results were reported from different machines and operating
systems except our implemented methods, query time is pro-
vided as a reference only rather than a precise comparison.
Nevertheless, apart from 2DFM, In-Net and CQT-TPPNet,
the methods involve sequence alignment process, requiring
quadratic time complexity, and essentially run slower than
our approach. Compared to 2DFM and In-Net, our approach
learns a lower dimensional representation and works slightly
faster. With linear time complexity, the average query time
of our approach is proportional to the scale of dataset. Our
approach is estimated to process a query within 1 s even for a
million song dataset.

For SHS100K-TEST, our approach also obtains the highest
precision with low time complexity compared to our imple-
mented methods. Comparing the performance among differ-
ent datasets, we find accuracy degrades on a larger dataset.
It is because that a larger dataset is more likely to have
songs sharing similar melodic structure, chord pattern and ac-
companiment, making it challenging to identify covers. Re-
searchers found similar results; for example [Bertin-Mahieux
and Ellis, 2012] obtained a MAP of 0.09475 on a music col-
lection with 12960 recordings.

5.4 Error Analysis

Finally, we investigate the performance of our approach on
different types of music on Covers80. Considering Covers80
has no annotation about style, we listen to the recordings care-
fully and given a piece of music, we annotate whether it is
rock music, whether its tempo is fast and whether it has a
notable accompaniment.

Then we count the error cases within different kinds.
Table 3 shows that when the query is rock music or presents
notable accompaniments, the error rate is relatively high. In
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Number  Error cases  Error rate
Rock 47 23 0.49
Non-rock 113 44 0.39
Fast tempo 90 36 0.40
Slow tempo 70 31 0.44
Strong accompaniment 115 55 0.48
Weak accompaniment 45 12 0.27

Table 3: Performance on different kinds of music

contrast, if the accompaniment is weak and it is not rock mu-
sic, the model performs better and error rate decreases to 0.39
and 0.27 respectively. We reason that rock music has more
drums and cymbals, and strong accompaniment contains non-
harmonic contents, making it difficult to identify the covers.
How to extract representations robust against these effects is
an important topic for our future work.

Furthermore, we listen to the top 10 candidates of
some queries on the three datasets. Our model is able
to discover cover versions including non-lyrical versions,
accompaniment-only versions, versions performed in differ-
ent instruments, etc. Additionally, we find that the top 10
candidates often have similar melodic structure, chord pat-
tern and genre to the queries, though some of the candidates
are not the covers of the query. For example, when the query
song is rock music, the model might wrongly retrieve several
rock songs as the top 10 candidates but they are not the cov-
ers of the query*. We reason that using music similarity as
a training objective, the model learns to retrieve music shar-
ing similar styles, not just music covers. In some sense, our
model could be used for content-based music recommenda-
tion.

6 Conclusion

In this paper, we have proposed a CNN structure with Tem-
poral Pyramid Pooling for cover song identification. It allows
variable-length songs as framework input and extracts a ro-
bust representation for cover song retrieval. In addition, a
training scheme is designed for network training. Extensive
experiments show that our approach is robust against musical
variations in covers like key transposition and tempo changes.
It outperforms state-of-the-art methods on two public datasets
Youtube and Covers80, and achieves the highest precision on
SHS100K-TEST compared to our implemented methods with
low time complexity.
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