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Abstract

Representing words as low dimensional vectors is
very useful in many natural language processing
tasks. This idea has been extended to medical do-
main where medical codes listed in medical claims
are represented as vectors to facilitate exploratory
analysis and predictive modeling. However, de-
pending on a type of a medical provider, medical
claims can use medical codes from different ontolo-
gies or from a combination of ontologies, which
complicates learning of the representations. To be
able to properly utilize such multi-source medical
claim data, we propose an approach that represents
medical codes from different ontologies in the same
vector space. We first modify the Pointwise Mutual
Information (PMI) measure of similarity between
the codes. We then develop a new negative sam-
pling method for word2vec model that implicitly
factorizes the modified PMI matrix. The new ap-
proach was evaluated on the code cross-reference
problem, which aims at identifying similar codes
across different ontologies. In our experiments,
we evaluated cross-referencing between ICD-9 and
CPT medical code ontologies. Our results indi-
cate that vector representations of codes learned
by the proposed approach provide superior cross-
referencing when compared to several existing ap-
proaches.

1 Introduction
Medical claims are files created by medical providers for
billing purposes to summarize the services provided to pa-
tients. A medical claim includes a list of medical codes,
which describe patient diagnosis and treatment. For exam-
ple, the International Classification of Diseases (ICD) and
Current Procedural Terminologies (CPT) medical code on-
tologies contain tens of thousands of codes for diseases and
medical procedures. While ICD ontology contains alpha-
numeric codes for both diagnoses and procedures associated
with patient treatment, CPT ontology is used to solely de-
scribe treatment. Beyond their primary purpose in billing,
medical claims have been widely used in healthcare research

Figure 1: Different providers use different ontologies to record pa-
tient diagnosis and treatment. Those multi-source medical claims
are stored in a medical claim database.

for exploratory analysis and predictive analytics [Bai and
Vucetic, 2019; Bai et al., 2018b].

To improve analysis of medical claim data, recent medical
informatics research has focused on finding vector represen-
tations of medical codes, in which each code is represented as
a vector and where related codes are neighbors in the vector
space. Based on the distributional hypothesis, the neighbor-
ing codes in the vector space are those that occur in the simi-
lar contexts. As a representative of this line of work, [Choi et
al., 2016b] used word2vec algorithm [Mikolov et al., 2013]
to learn the vector representations of medical codes using
longitudinal medical records data and show that the related
codes indeed obtain similar vector representations. Other ex-
amples also illustrated the benefits of vector representations:
[Choi et al., 2016a] used a multi-layer perceptron to learn
representations for predicting future medical codes and clin-
ical risk groups. [Choi et al., 2017] incorporated ontological
knowledge of medical codes into an attention model in or-
der to learn improved code representations. [Bai et al., 2017;
Bai et al., 2018a] modified word2vec algorithm in order to
learn joint embeddings of clinical words and medical codes.
[Cai et al., 2018] incorporated a time-aware attention mecha-
nism into CBOW word2vec model, which takes progression
patterns of different diseases into consideration.

However, the direct application of word2vec and related al-
gorithms might not be appropriate when dealing with medical
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claims obtained from multiple types of providers, in which
every provider may decide to use different coding ontologies.
To understand the underlying issue, let us consider medical
claims from Medicare, the U.S. federal insurance system for
senior citizens, which is a popular source of data for health-
care research. As shown in Figure 1, the format of medical
claims varies with the type of service [Warren et al., 2002]. In
particular, the 3 main types of medical claims used by Medi-
care recognize 3 types of patient interactions with the med-
ical system: (1) Inpatient, summarizing services requiring a
patient to be admitted to a hospital, (2) Outpatient, summa-
rizing services which do not require a hospital stay, and (3)
Carrier, which refer to services by non-institutional providers
such as physicians or registered nurses. Each inpatient claim
is one summarized record per hospital admission and includes
up to 25 ICD diagnosis codes and 25 ICD procedure codes.
Carrier claims, on the other hand, use CPT codes to record
procedures and ICD diagnosis codes to justify the reason for
the service. Until 2004, outpatient claims contained both ICD
diagnosis and procedure codes, while after 2004 the ICD pro-
cedure codes were dropped. This information is summarized
in Figure 1.

Let us explain why the direct use of word2vec on a set
of medical claims coming from different types of providers,
such as in Medicare, is problematic. As shown in [Levy
and Goldberg, 2014], word2vec’s Skip-gram with negative
sampling algorithm is implicitly performing a factorization
of a Pointwise Mutual Information (PMI) matrix [Turney and
Pantel, 2010]. The (i, j)-th element of the PMI matrix reflects
how much presence of code j in a claim increases the prob-
ability of seeing code i in the claim. If the codes i and j are
from different ontologies, a straightforward calculation of the
probabilities could lead to misleading results. In particular,
the PMI values for pairs of codes from different ontologies
could be severely underestimated, which could result in sub-
optimal vector representation of codes.

In this work we propose a modification that correctly es-
timates the PMI scores between medical codes from differ-
ent ontologies. Following this modification, we also pro-
pose an improved version of negative sampling method in-
side the word2vec algorithm. It is worth noting that re-
cent papers [Wang et al., 2018; Grbovic and Cheng, 2018;
Cai and Wang, 2018] also observed that traditional negative
sampling has drawbacks in some applications. For exam-
ple, [Wang et al., 2018] incorporated Generative Adversarial
Networks (GAN) into negative sampling mechanism in or-
der to generate high-quality negative samples. [Grbovic and
Cheng, 2018] replaced negative sampling probability with a
set of probabilities suited for different subsets of embedding
objects. However, previous papers lack theoretical justifi-
cation for the proposed approaches. One of the main con-
tributions of our paper is in explaining that deficiency of
negative sampling on multi-source data could be traced to
the PMI formula. We propose how to modify the PMI for-
mula and develop the corresponding negative sampling mech-
anism. To demonstrate the effectiveness of the proposed al-
gorithm, we jointly learn vector representations of ICD and
CPT codes using a large Medicare medical claim dataset re-
lated to breast cancer. Since ICD procedure codes and CPT

codes are both encoding medical procedures, we were able
to observe how close in the vector space are the codes from
the two ontologies that represent highly similar procedures.
We note that this particular evaluation is closely related to the
long-standing problem of cross-referencing [Brouch, 2004;
Topaz and Shafran-Topaz, 2013; Schulz et al., 1998; Butler,
2007], that deals with creation of mappings between differ-
ent coding ontologies, such as ICD-9 and CPT, ICD-9 and
ICD-10, or ICD-9 and SNOMED.

In the next section we provide background information
about PMI metric and word2vec algorithm, and describe the
proposed modifications. Then we present the experimental
results.

2 Method
2.1 Problem Setup
Let us assume we are given a dataset of patient visits S ={
s1, s2, ..., s|S|

}
, where |S| is the number of visits. Each visit

st consists of a set of codes summarizing the visit. Let us de-
note the set of all codes C =

{
c1, c2, ..., c|C|

}
, where |C| is

the number of codes. The objective is to find vector represen-
tation of codes, such that each code ci is represented as a K-
dimensional vector Vi. A good vector representation would
place related codes in the vicinity in the K-dimensional vec-
tor space. In the following subsection we will overview two
popular methods from the NLP community that have already
been used with success in medical informatics.

2.2 PMI and Skip-gram
Pointwise mutual information (PMI) [Turney and Pantel,
2010] measures how much co-occurrence of two codes in
claims deviates from the predicted co-occurrence if they were
independent. The PMI between codes ci and cj is defined as

PMIij = PMI(ci, cj) = log
P (ci|cj)
P (ci)

, (1)

where P (ci|cj) is the conditional probability of seeing code
ci in a claim if cj is already in the claim and P (ci) is the
marginal probability of seeing ci co-occurring with any code.
The standard way to calculate those probabilities is to count
code co-occurrence in the following way. Let us denote the
count of times code ci and cj co-occur in the claims as nij .
Then, denote with ni the number of times code ci co-occurs
with any code: ni =

∑
cj∈C nij . Finally, denote with n the

number of times two codes co-occur: n =
∑

ci∈C ni. Given
those values, we can estimate the probabilities as P (ci|cj) =
nij

nj
and P (ci) = ni

n and the PMI becomes

PMIij = log
nij · n
ni · nj

. (2)

Using PMI scores, we can create a positive PMI (PPMI)
matrix M of dimension |C| × |C|, whose element Mij =
max(PMIij , 0). [Levy and Goldberg, 2014] propose to mea-
sure similarity between codes ci and cj by calculating the co-
sine similarity between i-th and j-th row of M . Since the
PPMI matrix is often sparse, noisy, and large, it is often a
good idea to apply Singular Value Decomposition (SVD) to
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factorize this matrix as M = UΣV and use the first K left
eigenvectors (truncated version of U which retains the first
K columns) for code representation. In particular, the i-th
row of the truncated matrix U becomes the low-dimensional
vector representation of code ci.

Instead of using SVD on the PPMI matrix, which can be
very costly when the code vocabulary is large, the recently
proposed Skip-gram method is a space-efficient alternative to
learn low dimensional representations of medical codes [Choi
et al., 2016b]. Skip-gram relies on scanning the visits se-
quentially. For every code c in t-th visit st, all other codes
in the same visit c′ ∈ st are chosen as its context. The out-
put of Skip-gram are two matrices: code matrix V ∈ R|C|×K
and context code matrix W ∈ R|C|×K . Code ci ∈ C is
then associated with the i-th row of V and the i-th row of
W . [Mikolov et al., 2013] propose Skip-gram with negative
sampling (SGSN)1 to maximize the objective function

l =

|S|∑
t=1

∑
c∈st

∑
c′∈st

(log p(S = 1|c, c′)

+kEcN∼P [log(1− p(S = 1|c, cN ))])

=
∑
ci∈C

∑
cj∈C

nij(log σ(Vi ·Wj)

+kEcN∼P [log σ(−Vi ·WN )]),

(3)

in which p(S = 1|ci, cj) denotes the probability that ci and
cj are observed co-occurring in the dataset S and is defined
as a sigmoid function σ(ViWj),

p(S = 1|ci, cj) = σ(Vi ·Wj) =
1

1 + e−Vi·Wj
, (4)

P (cN ) = nN

n is a frequency distribution over the vocabulary
from which cN is drawn, and k is the number of randomly
generated negative codes for each scanned and context code
pair (c, c′). The first term of l represents the probability that
the scanned code c and its context code c′ are observed co-
occurring in the dataset S and the second term of l repre-
sents the probability that the scanned code c and randomly
drawn “negative” code cN are not observed co-occurring in
the dataset S. Code matrices V andW are learned by stochas-
tic gradient algorithm. Rows of V are used as vector repre-
sentations of codes. Interestingly, [Levy and Goldberg, 2014]
shows that SGSN is implicitly factorizing a shifted PMI ma-
trix, making a connection between the PMI and Skip-gram
approaches.

2.3 PMI Learned from Multi-source Data
As we discussed in the Introduction, different types of
providers might use different types of codes in their claims.
On such data, PMI defined in (1) is likely to produce mis-
leading results. To see why, let us consider PMI between an
ICD-9 procedure code and a CPT code. Even if the 2 codes

1The original objective function of Skip-gram is the sum of log-
arithmic softmax function which is computationally expensive to
optimize. In this paper we focus on its practical implementation
through negative sampling.

are highly related, they can only co-occur in outpatient claims
prior to 2004 (see Figure 1) and their nij count will be low
compared to the ni and n counts, which would lead to a neg-
ative PMI value. The opposite effect would occur with PMI
score between two ICD-9 procedure codes. If both ci and cj
are ICD-9 procedure codes, since the presence of an ICD-9
procedure code cj in the claim implies the type of the claim
is not carrier or outpatient after 2004, P (ci|cj) is likely to be
larger than P (ci). Then PMI would be large even if the 2
codes are unrelated.

To reduce the negative impact of varying code coverage
among different types of claims, we propose a modified PMI
definition as described next. Let us first denote the set of
all code types (i.e., ICD-9 diagnosis codes, ICD-9 procedure
codes, CPT codes) as T =

{
t1, ..., t|T |

}
, where |T | is the

number of code types. We define function f : C 7→ T which
maps every code ci ∈ C to its type f(ci) ∈ T . We then
calculate the number of times code ci co-occurs with another
code of type tj as ntji =

∑
ck∈C,f(ck)=tj

nik, and the number
of times a code of type ti co-occurs with a code of type tj as
ntitj =

∑
ck∈C,f(ck)=ti

n
tj
k . The modified PMI, called the

typePMI , is then defined as

typePMIij = log
nij · nf(ci)f(cj)

n
f(cj)
i · nf(ci)j

. (5)

To illustrate the benefit of typePMI, let us consider ICD-
9 diagnosis code “83942” (dislocation of sacrum) and ICD-
9 procedure code “8839” (X-ray). In practice, X-ray is
used to diagnose dislocation and the 2 codes are related. In
our dataset, the standard PMI between these two codes is -
0.65, implying they are slightly mutually exclusive, while
the typePMI is 4.34, correctly reflecting that the codes are
strongly co-occuring.

The typePMI can be be used to construct the typePPMI ma-
trix with elements Mij = max(typePMIij , 0). We propose
typeSVD, which applies SVD to typePPMI matrix to obtain
a low-dimensional representation of codes.

2.4 Skip-gram Model from Multi-source Data
In this section we propose typeSkip-gram algorithm and
prove that it is implicitly factorizing a shifted typePMI ma-
trix. The key change is to replace the negative sampling prob-
ability distribution P (cN ) with a new one which takes the
code type into consideration:

P f(ci),f(cj)(cN ) =

{
0 if f(cN ) 6= f(cj)

n
f(ci)

N

nf(ci)f(cj)
if f(cN ) = f(cj)

(6)

Unlike Skip-gram objective of (3), the negative sampling
probability of (6) is formed by counting code pairs whose
first code has the same type as the scanned code ci and the
second code has the same type as context code cj .

Like Skip-gram, typeSkip-gram model is trained in an on-
line fashion: it sequentially scans through codes in all visits
S =

{
s1, s2, ..., s|S|

}
. For each code c ∈ st , code c′ ∈ st

in the same visit is chosen as its context code. For a specific
code c and its context code c′, typeSkip-gram uses stochastic
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gradient descent algorithm to maximize
log p(S = 1|c, c′)
+ kEcN∼P f(c),f(c′) [log(1− p(S = 1|c, cN ))] .

(7)

Given the new objective function (7), using the negative
sampling probability distribution P (cN ) defined in (6), we
have the following theorem:
Theorem 1 Given the sample distribution defined in (6), the
dot product of Vi and Wj , M ′ij = Vi · Wj , is the shifted
typePMI between code ci and cj when objective function (7)
is maximized:

M ′ij = Vi ·Wj =typePMIij − log k, (8)

in which k is a constant.
Proof: Similar to (3), the objective function of typeSkip-

gram is

l =
∑
ci∈C

∑
cj∈C

nij(log σ(Vi ·Wj))

+
∑
ci∈C

∑
cj∈C

nij(kEcN∼P f(ci),f(cj) [log σ(−Vi ·WN )]).

(9)

Since ntki =
∑

cj∈C,f(cj)=tk
nij , the second term of (9) can

be written as∑
ci∈C

∑
tk∈T

ntki (kEcN∼P f(ci),tk [log σ(−Vi ·WN )]). (10)

Since
EcN∼P f(ci),tk [log σ(−Vi ·WN )]

=
∑

cN∈C,f(cN )=tk

n
f(ci)
N

nf(ci)f(cN )
log σ(−Vi ·WN ),

we can explicitly express the expectation term in (10) as∑
ci∈C

∑
tk∈T

ntki (k
∑

cN∈C
f(cN )=tk

n
f(ci)
N

nf(ci)f(cN )
log σ(−Vi ·WN ))

=
∑
ci∈C

∑
tk∈T

∑
cN∈C

f(cN )=tk

ntki k
n
f(ci)
N

nf(ci)f(cN )
log σ(−Vi ·WN ).

(11)
As each code cN maps to code type f(cN ), (11) can be writ-
ten as∑

ci∈C

∑
cN∈C

n
f(cN )
i k

n
f(ci)
N

nf(ci)f(cN )
log σ(−Vi ·WN )

=
∑
ci∈C

∑
cj∈C

k
n
f(cj)
i n

f(ci)
j

nf(ci)f(cj)
log σ(−Vi ·Wj).

(12)

Combining (9) and (12), the objective of typeSkip-gram is

l =
∑
ci∈C

∑
cj∈C

nij log σ(Vi ·Wj)

+
∑
ci∈C

∑
cj∈C

k
n
f(cj)
i n

f(ci)
j

nf(ci)f(cj)
log σ(−Vi ·Wj).

(13)

Let us denote the objective for the code pair ci and cj

l(ci, cj) =nij log σ(Vi ·Wj)

+ k
n
f(cj)
i n

f(ci)
j

nf(ci)f(cj)
log σ(−Vi ·Wj).

(14)

To optimize this, we define x = Vi · Wj and calculate the
partial derivative with respect to x as

∂l

∂x
=nijσ(−x)− k

n
f(cj)
i n

f(ci)
j

nf(ci)f(cj)
σ(x). (15)

The partial derivative equals 0 when the local objective
reaches its optimum,

e2x −

 nij

k
n
f(cj)

i n
f(ci)

j

nf(ci)f(cj)

− 1

 ex − nij

k
n
f(cj)

i n
f(ci)

j

nf(ci)f(cj)

= 0. (16)

The solution is ex =
nij

k
n
f(cj)

i
n
f(ci)
j

n
f(ci)f(cj)

, and

x = Vi ·Wj = log
nij

k
n
f(cj)

i n
f(ci)

j

nf(ci)f(cj)

= log
nijn

f(ci)f(cj)

n
f(cj)
i n

f(ci)
j

− log k

=typePMIij − log k,
(17)

which is typePMI between ci and cj minus constant log k.
�

Since typePMI is better at characterizing co-occurrence
between codes, the resulting code vectors of typeSkip-gram
model should be better than Skip-gram of (3) at capturing re-
lationships between the codes.

3 Experiments
3.1 Dataset
Medical claims used in our experiments come from SEER-
Medicare Linked Database [Warren et al., 2002]. In particu-
lar, our data contains over 9 million inpatient, outpatient and
carrier claims from 161,366 Medicare members diagnosed
with breast cancer from 2000 to 2010. From each claim we
extracted its set of ICD-9 and CPT codes and disregarded any
other information. Our dataset contains 13,977 unique medi-
cal codes, including 7,291 ICD-9 diagnosis, 962 ICD-9 pro-
cedure and 5,624 CPT codes.

3.2 Experimental Design
Given our dataset of over 9 million medical claims, we treated
each claim as a document and for any code occurring in the
claim we assumed that all other codes in the claim represent
its context. We used several methods to learn vector repre-
sentations of ICD-9 and CPT codes. As the baselines, we
used:

• SVD: We applied SVD on standard PPMI matrix which
ignores types of medical codes.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4900



Figure 2: A medical treatment can be encoded with medical codes
from different ontologies.

• Skip-gram: Using each record as a document, we used
the Skip-gram algorithm with negative sampling, which
samples negatives using probabilities that are insensitive
to the type of medical codes.

• CBOW: We also used the continuous bag of words al-
gorithm [Mikolov et al., 2013] which is closely related
to Skip-gram.

• Glove: Word representations algorithm from [Pen-
nington et al., 2014] is trained on a logarithmic co-
occurrence matrix.

We compared the above four baselines with our two pro-
posed approaches, typeSVD and typeSkip-gram.

The word2vec models (typeSkip-gram, Skip-gram,
CBOW) rely on the gradient descent algorithm. In all
the experiments we used 60 iterations, as we empirically
observed that it is sufficient for the vector representation to
stabilize. The number of negative samples was set to 5.

As shown in Figure 2, ICD-9 procedure and CPT codes
both describe medical procedures performed by healthcare
providers, while CPT has higher granularity. Clinical re-
searchers rely heavily on both ICD-9 procedure and CPT
codes to identify treatment and define cohorts from massive
clinical data [Bleicher et al., 2016; Bleicher et al., 2012].
However, it is time-consuming and burdensome to identify
the same concepts in different ontologies. For example,
physicians are more familiar with CPT codes and can eas-
ily find that medical procedure “mastectomy” is encoded as
CPT code “19180,” while they might have difficulty finding
ICD-9 procedure codes corresponding to the same concept.
Therefore, there is a need to create translations between dif-
ferent ontologies. Currently, there is a lack of a reliable offi-
cial mapping between different ontologies.

To evaluate whether our proposed multi-source code rep-
resentation algorithms could be helpful in finding correspon-
dence between ICD-9 procedure codes and CPT codes, in
this paper we used the gold standard mappings for proce-
dures related to breast cancer manually derived by clinical
researchers [Bleicher et al., 2012]. This mapping recognizes
18 procedures commonly used to treat breast cancer such as
excisional biopsy, mastectomy, and breast MRI. Clinical re-
searchers rely on these codes to identify patients diagnosed
with breast cancer. For each procedure, a list of the corre-
sponding CPT and ICD-9 procedure codes is provided. A

total of 149 CPT codes and 58 ICD-9 procedure codes are
listed (the details are provided in the Appendix2). For ex-
ample, concept group 17 “brain MRI” contains CPT codes
“70551”-“70553” and ICD-9 procedure code “8891”. Good
vector representation should place closely related ICD-9 pro-
cedure codes and CPT codes in the vicinity. Therefore, given
ICD-9 code “8891”, users should be able to easily find the
CPT counterparts by nearest neighbor search in the embed-
ding space.

Since retrieving related codes among different ontologies
is an information retrieval task, we used Normalized Dis-
counted Cumulative Gain (NDCG) [Järvelin and Kekäläinen,
2002], a measure of ranking quality commonly used in infor-
mation retrieval, to evaluate the quality of the resulting vec-
tor representations. For each of the 18 concept groups from
our gold standard we calculated two NDCG scores in the fol-
lowing way. Let us assume that k-th concept group includes
n ICD-9 procedure codes {icd1, icd2, ..., icdn} and m CPT
codes {cpt1, cpt2, ..., cptm}.

Task 1 (CPT → ICD-9 procedure): For each CPT code
cpti in concept group k, find its p nearest ICD-9 procedure
codes based on the cosine similarity. ICD-9 code ranked at
position q is assigned label rq = 1 if it is from the same
concept group k and rq = 0 otherwise. The NDCGp score
of the CPT code cpti is calculated as

DCGp =

p∑
i=1

ri
log(i+ 1)

IDCGp =
n∑

i=1

1

log(i+ 1)

NDCGp =
DCGp

IDCGp
.

(18)

Assuming p > n, ICDG represents the upper bound on the
value ofDCG. NDCG score ranges from 0 to 1. The higher
the score, the better the ranking quality. For each concept
group, we report the average NDCGp of all m CPT codes in
that group.

Task 2 (ICD-9 procedure→ CPT): Similarly to Task 1, for
each ICD-9 procedure code icdi in concept group k, find its
p nearest CPT codes. We report the average NDCGp of all
ICD-9 procedure codes for each of the 18 concept groups.

3.3 Results
In Table 1 and Table 2, we show the summary results for
Tasks 1 and 2. Each entry in the tables is an average NDCG
over all 18 concept groups for a given algorithm and a given
choice of p. We reportNDCG20, NDCG50 andNDCG100

values. The detailed results for each of the 18 groups are pro-
vided in the Appendix. The main observation is that the pro-
posed multi-source algorithms typeSVD and typeSkip-gram
are superior to the baselines on both tasks. This is a strong in-
dicator that paying attention to the types of codes can result in
improved code representations for cross-referencing of med-
ical codes. While the observed difference between typeSVD

2https://github.com/AU19/IJCAI19/blob/master/Appendix.pdf
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p=20 p=50 p=100
SVD 0.54 0.55 0.55
Skip-gram 0.619 0.621 0.622
CBOW 0.541 0.555 0.56
Glove 0.622 0.612 0.608
typeSVD 0.64 0.638 0.637
typeSkip-gram 0.642 0.641 0.644

Table 1: Average NDCGp of all concept groups on Task 1

p=20 p=50 p=100
SVD 0.391 0.442 0.459
Skip-gram 0.504 0.51 0.536
CBOW 0.365 0.398 0.416
Glove 0.443 0.456 0.454
typeSVD 0.582 0.569 0.588
typeSkip-gram 0.557 0.585 0.576

Table 2: Average NDCGp of all concept groups on Task 2

and typeSkip-gram is rather small, it is interesting that Skip-
gram is much more accurate than SVD. The large improve-
ment between SVD and typeSVD is an indicator that SVD
is much more vulnerable to the inaccurate PMI values than
is the Skip-gram to the choice of negative sampling proba-
bilities. There is a relatively small difference in the relative
performance of the algorithms as a function of p.

To gain a further insight into the performance of our algo-
rithms on the cross-referencing of medical codes, in table 3
we list the nearest 20 ICD-9 procedure codes of CPT code
“19120” described as “removal of breast lesion” and which
is assigned to the “excisional biopsy” concept group in the
gold standard. The ranking is based on vector representations
obtained from typeSkip-gram algorithm.

It could be observed that five ICD-9 procedure codes from
the same concept group “excisional biopsy” are among the 20
nearest ICD-9 procedure codes of CPT code “19120”. The
only missing ICD-9 code “85.25” was ranked as 65th. The
NDCG20 score calculated using (18) for CPT code “19120”
is 0.77. It is interesting to observe that among the 20 nearest
neighbors, 12 belong to other concept groups from the gold
standard and only 3 are not part of the gold standard. Those
12 related codes are also related to breast cancer and their
presence in the list indicates that they occur in the similar
context as CPT code “19120”. This result hints that a good
approach for cross-referencing of codes would be to produce
a list of neighbors and have human experts focus on those
codes rather than having to make guesses or sift through a
much larger set of candidate codes.

Of the 3 ICD-9 codes not listed in the gold standard, two
of them, “38.52” and “86.3”, are also closely related to breast
cancer related surgeries. However, code “19.12” “Stapedec-
tomy” is related to a surgical procedure of the middle ear in
order to improve hearing. It clearly looks like an outlier. In-
terestingly, after a follow-up study of claims that contain both
this code and codes describing excisional biopsy, it became
apparent that this is a consequence of coding entry errors. In
particular, it seems that the coders are occasionally trying to
enter CPT code “19120” into the ICD-9 procedure field which

ICD-9
Codes

Concept
Group

Description

85.21 1 Local excision of lesion of breast
85.19 6 Other diagnostic procedures on breast
85.22 1 Resection of quadrant of breast
40.11 5 Biopsy of lymphatic structure
40.23 5 Excision of axillary lymph node
85.23 2 Subtotal mastectomy

40.19 6
Other diagnostic procedures
on lymphatic structures

40.3 5 Regional lymph node excision
40.51 5 Radical excision of axillary lymph nodes
85.41 3 Unilateral simple mastectomy
85.43 4 Unilateral extended simple mastectomy
38.52 NA Ligation and stripping of varicose veins
85.12 1 Open biopsy of breast

85.20 1
Excision or destruction of breast tissue
not otherwise specified

92.16 6 Scan of lymphatic system

86.3 NA
Other local excision or destruction of lesion
or tissue of skin and subcutaneous tissue

85.24 1 Excision of ectopic breast tissue
40.29 5 Simple excision of other lymphatic structure
40.22 5 Excision of internal mammary lymph node
19.12 NA stapedectomy

Table 3: Nearest 20 ICD-9 procedure codes of CPT code “19120”
(Removal of breast lesion), ranked by cosine similarity.

allows only 4 numbers. Thus, they would enter only the first
4 numbers (i.e., 1912) and this would end up being recorded
as a middle ear surgery. This interesting insight is another
proof that vector representations by the typeSkip-gram algo-
rithm are of high quality and it also hints at another possible
application for discovery of coding errors.

4 Conclusion
In this paper, we have proposed a new approach to learn
vector representations of medical codes from medical claims
coming from different types of providers. Our first contri-
bution was to propose a modification to the Pointwise Mu-
tual Information (PMI) measure between the codes and our
second contribution was to propose a new negative sampling
method for word2vec model that is implicitly factorizing the
modified PMI matrix. The new approach is evaluated on the
cross-referencing between ICD-9 and CPT coding ontologies
using a gold standard expert mapping related to breast can-
cer. Our results indicate that vector representations of codes
learned by the proposed approach outperform the baselines.
Future work can use the proposed method on the problem of
cross-referencing of ICD-9 and ICD-10 codes. More gener-
ally, the proposed method is applicable to embedding of items
contained in heterogeneous types of data sets, where the dis-
tribution of items being embedded differs among the sources.
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