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Abstract

We introduce an  adversarial-critic-and-
assistant (ACA) learning framework to
improve the performance of existing supervised
learning with multiple outputs. The core
contribution of our ACA is the innovation
of two novel modules, i.e. an ‘adversarial
critic’ and a ‘collaborative assistant’, that
are jointly designed to provide augmenting
information for facilitating general learning
tasks. Our approach is not intended to be
regarded as an emerging competitor for tons
of well-established algorithms in the field.
In fact, most existing approaches, while im-
plemented with different learning objectives,
can all be adopted as building blocks seam-
lessly integrated in the ACA framework to
accomplish various real-world tasks. We show
the performance and generalization ability
of ACA on diverse learning tasks including
multi-label classification, attributes prediction
and sequence-to-sequence generation.

1 Introduction

Learning a predictor f() that could map raw input data
x as meaningful output y is a fundamental pursuit across
many domains. In the conventional setting, learning al-
gorithms mainly consider single-output scenarios, where
y is either regarded as a one-hot vector in classifica-
tion or a single value in regression. However, with the
progresses of deep learning, predicting multiple outputs
from the raw data has been becoming a highly desired re-
search topic in many practical problems(Lin et al., 2014;
Vinyals et al., 2015]. Such multi-outputs can be the
topic distribution in a document, multiple attributes of
an image or even a sentence composed of multiple words.

We introduced a new learning framework named
adversarial-critic-and-assistant (ACA) for multiple-
outputs predictions. Our ACA underscores the nature
of the studied problem by augmenting traditional “pre-
dictor” with two novel modules, i.e. a ‘critic’ and an
‘assistant’. The critic module was inspired by the break-
through adversarial learning [Goodfellow et al., 2014]

4954

that conducts adversarial gambling with the predictor
to evaluate the quality of the generated outputs. For in-
stance, in the machine translation task, the critic module
could evaluate whether the generated sentence is fluent
enough as human language. In image captioning task,
it evaluates whether two attributes are likely to coher-
ently appear in the same scenario. Unlike existing critic
modules that just adopted a single score for evaluating,
we believe there should be very rich information inher-
ently encoded in the critic. Therefore, we designed an
assistant module to extract such inherent information as
useful feedbacks to further improve the predictor. In a
nutshell, the critic evaluates “how” good the predictor
is and the assistant module further illustrates “why”the
critic reaches such a conclusion. These two parts of-
fer auxiliary supervised information to help the learn-
ing system generate better result with more reasonable
multi-output structure.

ACA does not play the role of a competitor but is more
preferable to be regarded as a complementary framework
that could potentially improve many existing algorithms’
performances. In this paper, we will show the com-
patibility of ACA on two challenging machine learning
tasks including multi-label classification and sequence-
to-sequence learning. These models are further applied
to solve a number of real-world tasks such as documents
modeling, image attributes prediction and logic form
generation for natural language understanding (NLU).
Among these three tasks, the only variation on ACA just
appears on the design of the predictor module. From
the experimental results, it will be shown that the assis-
tant module is able to improve many algorithms’ perfor-
mances on various tasks.

2 ACA Framework

The intuition of ACA learning could be conceptually
comprehended by imaging the interaction among a stu-
dent, a professor and a teaching assistant (TA) in a quiz
process. Student takes a quize, professor evaluates the
results and more importantly, the TA further summa-
rizes the professor’s comments to the student. In our
ACA framework, these three roles were respectively rep-
resented by: predictor (student), critic (professor) and
assistant (TA) as shown in Fig 1 (a). There are two types
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Figure 1: (a) An overview of Adversarial Critic and Assistant Framework. The solid lines indicate the main interactions
among these three modules. The dotted line is added to indicate that the critic also takes the original input for compatibility
scoring. (b) Unfolding the recurrent ACA framework into an iterative learning process involving multiple steps 7. T' = 2 in
this figure. The dotted link in (a) is omitted here for the sake of simple representation. (c¢) The detailed configuration of the

‘predictor’ function.

of interactions among these three roles. The first inter-
action is the collaboration between the student and the
TA. Their purposes are quite well aligned to ultimately
improve student’s learning ability so that he can get a
high quiz score. The second type of interaction is an
adversarial gambling between the student and professor
as discussed in [Deng et al., 2019)].

Unlike previous work [Deng et al., 2019], the ACA
framework mainly contributes in bringing the concepts of
the ‘Assitant’ module and its inherent feedback meach-
nism into consideration. Mathematically, we use fp(-),
fo() and fa(-) to respectively define the transforma-
tions of the ‘Predictor’, the ‘Critic’ and the ‘Assistant’
in Fig.1(a) which can all be implemented with neural
networks. The predictor gets a raw input x; and pre-
dicts a multi-output vector g;, which are fed into the
critic module for compatibility scoring altogether with
input data x; ,

Si = fC(xi; gl) = Slgmo’td(g(h(mh@l))) (1>
where s; is the score measuring the compatibility of the
input data x; and the predicted multi-output vector g;
[Gygli et al., 2017]. To better explain this scoring mech-
anism, we explicitly write out the last three transforma-
tions in the critic neural network. In (1), h(y,,g,) is ob-
tained by fusing the information from both raw data in-
put z; and the predicted multi-output §;; g(-) is a single-
value regression layer to convert the fused layer h(,, 4,
into a single value; and the sigmoid function transforms
the regressed value in the range of [0, 1) as the final score.
We call the h(,, 4,) as the compatibility fusion layer of
the critic network (i.e. the purple layer in Fig.1(a)).

The assistant function f4(:) interacts with the critic
network and forms a help vector v; = fa([si, Az, 4,)])
(the green layer in Fig.1(a)) to improve the predictor.
From the concatenate operation [-,-], we know the help
vector v; relies on both the critic score s; and the com-
patibility fusion layer h(,, g,y of the critic network. The
reason why assistant network takes the critic score is

apparent because such a score reflects the critic’s final
judgment. In addition, we also noticed the importance
of the fusion layer h(,, 3,) because it well depicts the
compatibility of the input data x; with the current pre-
diction ;. Compared with the single-value final score
si, the layer h(,, 5.y encodes much richer information of
the criticizing process. The assistant network performs
transformation f4(:) to generate the help vector v; that
could be directly fed into the predictor network. Conse-
quently, the predictor takes both the raw input x; and
help vector v; to make the prediction via §; = fp(x;, v;).
As shown in Fig. 1(a), the whole ACA framework
is encoded in a recurrent structure. We hence unfold
the recurrent ACA structure into multiple time steps in
Fig.1(b). In the first time step, we initialize the help vec-
(0)
1
tion QZ(O). This initial prediction is feed-forwardly passed

through both the critic and assistant modules to get a
1)

%

tor v, ’ as zero and get the initial multi-output predic-

new help vector v

(€]

i

. Then, we jointly feed the new help

vector v,/ and raw input x; in the predictor and get the

new multi-output prediction QEI) at time point ¢ = 1.

Such iterative learning processes are repeated and the
multi-output prediction @ET) obtained on time point T’
is regarded as the final prediction of the whole ACA. For
the simplicity of presentation, we omit the superscript T
and just use ¢; and s; to represent the final output of
the ACA model.

2.1 ACA Objectives

After understanding the recurrent nature of ACA, we
can now define its learning objectives. According to
aforementioned discussions, there exists two types of in-
teractions of these three modules: 1) collaborative learn-
ing between predictor (student) and assistant (TA) and
2) adversarial learning between the predictor (student)
and the critic (professor). We will first define the collab-
orative learning loss by the two additive terms balanced
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by a hyper-parameter \:
Lo =Lp(Y,Y) 4+ ALcg(S,1)
R N
=Lp(Y,Y)— % > silogs;

=1

where the first term Lp is the supervised loss (de-
noted by the red dot in Fig.1(a)). The predictions
Y = [f1,...,4n]7 and critic scores S = [sq, ..., sy]T are
obtained at the final-step of the recurrent ACA (See
Fig.1(b) for details). Moreover, the second term in (2)
is defined from the aspect of adversarial learning. It en-
courages the predictor to make good predictions that can
gain high scores S after the criticism of the critic. We
follow the same idea in GAN [Goodfellow et al., 2014] to
implement the adversarial objective by a cross-entropy
term Log (S, 1), where 1 is a vector with all entries equal
to one. From the critic’s point of view, s; = 1 means the
predicted multi-output vector ¢; is optimally compatible
with the raw data z;.

The above function in (2) explains the learning objec-
tive of the predictor and the assistant. We now consider
the adversarial learning objective of the critic. In de-
tail, the critic intends to assign low scores for predicted
results but high scores for ground truth labels. To this
end, a similar cross-entropy term is used to define the
adversarial loss from the critic’s perspective:

Ly= LCE({Sv G}v {Ov 1})
= 4 Tl (1 - s) log(1 = s:) — & 5L, 95 log g
(3)

where S are scores from predicted outputs as defined
in (1) and G = [¢1,...,gm] are compatibility scores for
ground truth labels. In detail, g; = fo(y;,2;),Vj €
{1...M?} is the critic score for the jth ground truth label.
As reflected in (3), the loss penalizes all predicted out-
puts’ scores S to be zero but encourages ground truth
scores G to approximate to one. In practice, G and S
are not necessarily to be calculated from the same set of
samples X. We could sample a batch of N samples for
calculating S but using another M samples to calculate
G. Such random sampling strategy allows more diverse
samples’ combinations in critic training. We show ACA
optimization details in Algorithm 1.

In Algorithm 1, the initialization strategies for predic-
tor fp and critic f¢ are task-dependent and will be clar-
ified in the next section. Algorithm 1 also indicates that
the predictor and assistant networks are updated in each
iteration but the critic network is only updated every [
steps. This strategy facilitates the stabilization of train-
ing. We implement all three network structures with
TensorFlow and adopt the ADAM optimizer [Kingma
and Ba, 2014] for optimization. In inference phase, we
directly pass the testing data x;.s; through the recurrent
structure in Fig.1 (b) to get the prediction @;cs: at the
last step T' as the final output vector. Parameters 6, in
predictor network, 6. in critic network and 6, in assis-
tant network are obtained from Algorithm 1 and can be
directly used in the inference phase.

Algorithm 1: ACA optimization

: A training dataset {X,V}; the
number of recurrent ACA unfolding
steps T'; the steps [ for critic
network updating;

Initialization: Initialize the predictor and critic

modules.

for k=1...K do

2 Sample a minibatch of N samples X and their

labels Y from training set {X, V};

3 Initialize the help vecor V(®) = 0 and

feed-forward X and V(© through a T-step
recurrent strucutre in Fig.1(b) to get the
multi-output predictions Y and critic score

S = f.(X,Y).

4 Use X,Y,Yand S to calculate the loss in Eq. (2)
and back-propogate the loss to update
parameters @p in predictor network and 64 in
assistant network;

5 if mod(k,l)==0 then

6 Sample a random batch of M samples X (9)
with their ground truth labels Y(9);

7 Get Ground Truth evaluation score

G = fc(X(g)a Y(g))7

8 Take G and S in Eq.(3) for loss calculation
and back-propogate the loss to update
parameter 6, in the critic network;

Input

g

9 end
10 end

Output : Network parameters 6p,0c and 0 4;

3 The Compatibility of ACA

ACA is a general framework that is potentially compat-
ible with many existing frameworks for multiple outputs
learning. In different pplications, the structure of the
assistant module is very simple and can be kept con-
sistent across different tasks (See Section 2 for details).
We hence mainly focus on the design of the predictor and
the critic networks. We show details about the predictor
network in Fig.1 (c) including 1) an input data encoder
(red block in Fig.1 (c)) and 2) an output decoder (yellow
block).

3.1 Multi-label Classification

Multi-label classification (MLC) requires generating a
dense output vector that well describes the properties of
the input data. For a C-class problem, the multi-label
prediction result can have 2¢ possible combinations. Ex-
isting MLC algorithms could be classified as shallow and
deep approaches. In shallow configuration, label em-
bedding projects both input data and its corresponding
multi-label vector to a latent space, e.g. conditioned
principal label space dimension reduction (CPLST) [Tai
and Lin, 2012], sparse local embedding (SLEEC) [Bhatia
et al., 2015] and low rank empirical risk minimization for
multi-label classification (LEML) [Yu et al., 2014]. Deep
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learning allows MLC training in a more favorable end-to-
end manner. Back-propagation-based multi-label learn-
ing (BPMLL) was an early attempt to use neural net-
works for MLC [Zhang and Zhou, 2006]. Deep-CPLST is
a deep extension of CPLST proposed in [Yeh et al., 2017].
Recently, the CNN-RNN [Wang et al., 2016] structure
was proposed in the image attributes learning field. The
canonical-correlated auto-encoder (C2AE) [Yeh et al.,
2017] implements a deep CCA network followed by an
auto-encoder.

In the context of ACA, we can directly use these ex-
isting algorithms to fill the ‘input data encoder’ block
in Fig.1 (¢). In detail, we directly optimize different al-
gorithms’ objective functions and get their correspond-
ing multi-label predictions as latent representations (red
layer in Fig.1 (c)). Then, the predictor fuses the en-
coder’s output with the help vector (green vector) as
the input to the output decoder. In the MLC setting,
the output decoder is just a multi-layer network with C
regressed outputs. In ACA training, we freeze all pa-
rameters in the encoder and only fine-tune parameters
in the fusion and decoder blocks. Therefore, the initial-
ization of the whole predictor can be explained in two
steps. First, the encoder part can be easily initialized by
running a base MLC algorithm on training data. This
base algorithm can be any existing algorithm reviewed in
the first paragraph of this subsection. Second, the help
vector is initialized as zero and all other parameters in
the fusion and decoder block are randomly initialized by
a normal distribution N(0,0.1).

In fact, the critic network used in ACA is exactly
the same as the deep value network (DVN) discussed in
[Gygli et al., 2017]. By feeding both raw input data and
predicted labels to a DVN, it returns the score telling
how well the input data matches its label. For the con-
sistency in presentation, we still call the DVN as a critic
network in our paper. In order to pre-train the critic net-
work, we need both compatible and incompatible pairs.
A compatible sample is easily composed by pairing a
data point with its ground truth label, i.e. (x;,v;). In-
spired by [Gygli et al., 2017], we adopt two straight-
forward ways to generate incompatible pairs. The first
approach is to match a data point with a randomly se-
lected label i.e. (x;,y;),j # 9. An alternative way is
to generate an incompatible multi-label vector y; for a
data point x; by changing some entries on its ground
truth label vector y;. In detail, we can either remove
some existing labels or add some non-existing labels to
the true multi-label vector y; and get the corresponding
incompatible multi-label vector y; for x;. After accu-
mulating both compatible and incompatible pairs, it is
quite easy to initialize the critic network by regressing
all compatible pairs to a score 1 and incompatible pairs
to score 0 with a cross entropy loss.

3.2 Sequence to Sequence

We also show the flexibility of ACA in dealing with
sequence-to-sequence (seq2seq) tasks, which have been
widely used to solve a number of natural language pro-
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cessing related tasks ranging from to machine translation
[Kalchbrenner and Blunsom, 2013] and logic form gen-
eration [Dong and Lapata, 2016]. Seq2seq models can
be easily incorporated into the encoder-decoder archi-
tecture shown in Fig.1(c). The encoder in seq2seq is
mainly used to transform the input data as latent rep-
resentations. Conventional encoder implementations in-
clude LSTM and bidirectional LSTM. The decoder in
seq2seq is also configured by a LSTM module. It se-
quentially decodes each ‘word’ z! in a way that zf =
LSTM (ht=1,2t=1), where h!~! and 2'~! are the learned
hidden state and the predicted word from the last time
step t — 1. The latent vector obtained from the encoders
is always used as the first hidden state h° to start the
whole decoding LSTM. This strategy allows the knowl-
edge learned from the encoder part seamlessly transmit-
ted to the decoder side. While there are other advanced
methods to implement the decoder part[Luong et al.,
2015], their concepts can all be well explained by this
general seq2seq framework discussed above.

We implement the “input encoder” block in Fig.1
(c) by a bi-directional LSTM to enable information ex-
tracted from both directions of a sentence. Then, the
latent representation is fused with the help vector form-
ing the “ initial hidden vector”to start the LSTM in the
output decoder (yellow block in Fig.1(c)). Many exist-
ing LSTM decoder structures can be used here including
original LSTM and its attention-based extension [Luong
et al., 2015]. We can easily initialize the encoding and
decoding blocks in Fig.1(c) by training a normal seq2seq
model with the annotated data. As before, parameters
in the encoder are fixed and will not be further adjusted
in the fine-tuning phase. Only parameters of the fusion
and decoder parts are updated along with the end-to-end
training.

In this seq2seq application, the critic takes two types
of sequence data as the input for comparability evalua-
tion. We use the English-to-Chinese machine translation
task as an instance for illustration purpose. The critic
takes the English sequence as one input and the trans-
lated Chinese as the other. In the critic, two LSTMs
are respectively built to work English and Chinese se-
quences. After LSTM encoding, each sequence will be
encoded as a hidden state vector as in [Kalchbrenner
and Blunsom, 2013]. Then, these two hidden states are
combined together forming a comparability fusion vec-
tor for critic’s evaluations. To initialize the critic, we
also need compatible and incompatible pairs as before.
In detail, for each input sequence (English sentence), we
build a compatible pair by matching it with its annotated
ground truth translation (the authentic Chinese transla-
tion). On the other hand, we can simply generate some
incompatible pairs by replacing removing or exchanging
some random words on the annotated output sentence to
get a wrong output (a wrongly translated Chinese sen-
tence). This wrong output will be paired with the input
sequence (English sentence) to compose an incompati-
ble pair. The critic is trained with these compatible and
incompatible pairs by a cross-entropy loss.
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Bibtex Bookmarks Delicious

CPLIST 375+05 305+£05 33.6+04
ACA-CPLIST 40.8 0.4 33.4 + 0.6 36.4 +0.4
SLEECE 39.1+ 0.6 31.2 4+ 0.7 359+ 0.6
ACA-SLEECE 42.24+ 0.5 33.9+ 0.6 37.5+ 0.6
DEEP-CPLIST  38.84 0.4 31.7+ 0.4 37.24+ 0.5
ACA-D-C 40.5+ 0.5 33.8+ 0.6 38.6+ 0.4
BPMIL 40.94 0.7 32.1+ 0.5 38.3+ 0.6
ACA-BPMIL 43.7+ 0.5 34.9+ 0.5 40.2+ 0.6
CA2E 41.6% 0.7 33.5+ 0.7 37.8+ 0.6
ACA-CA2E 44.3+ 0.6 35.6+ 0.7 39.3+ 0.6

Table 1: F scores evaluated on benchmark datasets (%)

4 Experiments

4.1 Documents Modeling

We evaluate the performances of ACA on multiple-label
classification (MLC) for documents modeling on ‘bibtex’
and ‘bookmark’ datasets[Loza Mencia and Fiirnkranz,
2008]. The bibtex dataset contains 7,395 samples from
159 classes; and bookmark dataset contains 87, 856 sam-
ples within 208 classes. We also include the ‘delicious’
dataset [Tsoumakas et al., 2008] in our experiment that
contains 16,105 samples in 983 classes. The label vec-
tor for each sample exhibits multi-classes association.
For instance, there are 2'%° possible label combinations
for a sample in the bibtex dataset. We will investigate
how performances of existing methods could be improved
based on the ACA framework. To this end, we select
both prevalent shallow and deep methods as building
blocks incorporated into ACA.

We randomly sample 20% of the whole data for test-
ing and the other 80% data are for training and vali-
dation. The random splitting, training and testing pro-
cesses are repeated for 10 times. Different methods’ per-
formances (original and ACA improved results) on these
three multi-label datasets have been provided in Table
?7?. The details about these MLC methods have been
discussed in section ?7. Following existing works, we use
the Macro F1 score as the accuracy indicator. In each
row-wise block of Table 77, the above line summarizes
the results from the original MLC method and the sec-
ond row reports results of the same algorithm enhanced
by ACA. In ACA, the dimensions for help vector v; and
comparability fusion layer h(,, ,.) are both fixed as 64.
The recurrent steps 7' is fixed as 5.

From experimental comparisons, we can get to the fol-
lowing conclusions. First, with either shallow or deep
MLC method as the building block, ACA could signifi-
cantly improve the original method’s accuracy. Second,
deep MLC methods greatly outperform the shallow ones.
Finally, ACA is also very effective to improve perfor-
mances on the challenging dataset with thousands of la-
bels (as observed from ‘delicious’ dataset).

4958

4.2 Image Attributes Prediction

In this image test, we only consider deep-learning-based
MLC methods on the NUS-wide [Chua et al., July 8 10
2009], ESP-game [Guillaumin et al., 2009] and CUB-bird
datasets[Wah et al., 2011] datasets. Following [Yeh et
al., 2017; Deng et al., 2019], we randomly select r data
points in each dataset for training/validation and the
rest are for testing purpose. The average Micro/Macro-
F1 score reported in Table 2 that were calculated from
10 replicates. We also consider CNN-RNN [Wang et al.,
2016] and WARP [Gong et al., 2013] for comparisons
which are two prevalent attributes prediction methods
for images.

We further consider variations of ACA implementa-
tions. The first variation is the adversarial critic model
(AC) [Deng et al., 2019] where the assistant module is
removed from the ACA. Then, we consider ACA with a
single score feedback (ACS) that we directly feed the fi-
nal critic score as the assistant feedback to the predictor.
The results of these variations are listed in the last two
columns of Table 2. We chose the BPMLL model as the
basic predictor here due to its simplicity and effective-
ness. From the results, we have observed that AC gains
improvements over the original BPMILL method. The
performance by ACS is not that different than the AC
method without feedback. However,the ACA outper-
forms all competing adversarial methods on these three
datasets.

4.3 Logic Form Generation from Utterance

Converting human language into executable logic forms
are a fundamental problem in natural language un-
derstanding (NLU). For instance, the sentence “non-
stop flight cil to ci0” can be converted to a logic
form “(lambda $0 e (and(flight $0)(nonstop $0)(from $0
cil)(to $0 ¢i0)))”. This logic form generation task is well
tackled by seq2seq leaning. Here, we consider two widely
used datasets including ATIS (5410 queries to a flight
booking system) [Hemphill et al., 1990] and GEO (880
queries about U.S. geography) [Dong and Lapata, 2016]
to conduct our experiments. In these datasets, we fol-
low the augmentation identification approach [Dong and
Lapata, 2016] to replace entities and numbers in input
with their underlying type names and unique IDs. For
instance, in the aforementioned instance, we replace city
names with symbols ‘c1’ and ‘c2’. To conduct seq2seq
learning, words of input sequence and symbols of the
output sequence are both converted as a series of one-
hot vectors. The ‘hot’ entry indicates the certain class
of a word/symbol. We follow models introduced in Sec-
tion 3.2 to implement the seq2seq model of ACA. Both
the LSTM and the attention model are considered as
the decoder. For the attention model, we use the same
structure introduced in [Dong and Lapata, 2016]. In this
work, all LSTM are implemented with 128 hidden states.

In each dataset, we randomly sample 80% sentences
for training, 10% for parameter validation and the rest
10% for testing. This random processes are repeated for
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Data CNN-RNN  Deep-CPLST WARP BPMLL CA2E Adversarial

Ori. ACA Orii ACA Ori. ACA Ori. ACA Ori. ACA | AC ACS

MicF1 33.7 36.2 354 37.5 327 378 379 482 479 494 | 41.7 423

NUS MacF1l 54.8 579 56.9 60.3 53.5 56.2 61.8 67.0 673 682 | 64.5 63.8
MicF1 11.2 13.1 5.4 9.8 6.4 10.2 139 14.8 13.6 14.9 14.4 13.9

ESPE MacF1 17.8 20.1 9.3 17.1 6.5 16.0 19.2 257 21.3 246 | 234 232
MicF1 6.3 7.3 6.2 9.5 6.1 9.2 7.8 10.5 8.8 10.5 9.5 9.4

CUB MacF1 153 164 13.9 16.8 143 165 178 21.3 158 19.1 18.6 18.9

Table 2: The performance of ACA on image datasets evaluated by micro-F1 and macro-F1 measures

Categories | ATIS GEO
Original 81.9£0.9 80.4£0.7
LSTM ACA 83.1+0.7 83.640.6
Original 82.0+1.1 81.7+0.8
Attention ACA 85.24+0.9 84.1+0.8
AC 82.9+0.8 83.1+0.7
Adversarial ACS 83.61+0.9 82.44+0.7
SeqGAN 82.7+ 09 834+038
Critic Self-Critic 83.2 4+ 0.7 819 +£0.8
Actor-Critic 83.8 £ 0.6 82.9 + 0.7

Table 3: Accuracy of the logic form generation task %

10 times with results summarized in Table 3. In the ta-
ble, ACA gains apparent improvements on both LSTM-
based and attention-based seq2seq models. The results
of ACA excluding the assistant module (AC) and ACA
with a single score feedback (ACS) are also provided
for references. We also consider using the default data
splitting in [Dong and Lapata, 2016] to verify the per-
formance of ACA. In such a case, attention-based ACA
achieves 86.7% and 86.4% on ATIS and GEO datasets
which are 2.1% and 1.8% higher than the reported at-
tention model results in [Dong and Lapata, 2016].

We further compare ACA with alternative critic net-
works for sequence generation. Here, the competitors in-
clude SeqGAN [Yu et al., 2017], self-critic [Rennie et al.,
2016] and actor-critic [Bahdanau et al., 2017]. SeqGAN
borrows the concept of reinforcement learning to sam-
ple new sentences in a Monte Carlo manner. Self-critic
method uses the prevalent REINFORCE algorithm to
perform policy gradient learning. The actor-critic frame-
work incorporates both an actor and a critic networks for
sequence prediction in a supervised manner. We report
results of these algorithms in Table 3 (see the Critic cat-
egory). It is shown that all these critic-based methods
get much better results than the original approaches in
both LSTM and Attention categories. However, none
of these complicated reinforcement-learning-based critic
could beat the performance of ACA. It hence verifies
the effectiveness of the assistant module in ACA, which
is the unique ingredient of our approach.
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F score on CUB dataset (%)

Recurrent steps T

Figure 2: ACA learning performances and computational
complexity with different recurrent steps 7'.

4.4 ACA with Different Recurrent Steps

We report the learning performance and complexity of
ACA with different steps T for both the MLC (CUB
dataset) and the seq2seq (ATIS dataset) tasks. In CUB
(resp. ATIS) dataset, ACA is equipped with the BPMIL
(resp. attention LSTM) as the base model. In Fig.2, blue
curves (with scalers on the left y-axis) summarize the
algorithm performance; and red curves (with scalers on
the right y-axis) report the computational costs. All re-
ported time is calculated by running our algorithm with
TensorFlow on 8 GPUs. T = 0 means running ACA
without assistant module involved. We have observed
that a large T' number will significantly increase the com-
putational costs but not the performances.Therefore, we
suggest choose T = 5 as the default recurrent steps in
all previous experiments.

5 Discussions

We proposed the ACA framework to improve existing
learning algorithms with multiple outputs. It is a gen-
eral framework that could be robustly applied to many
tasks across different domain. We have also tested
ACA on other single-output classification and regression
tasks. Unfortunately, no significant improvements were
observed on those tasks. This limitation may be due to
the simplicity of the output structure, where less infor-
mation could be criticized by the critic. In the future, we
will consider improvements on the current ACA frame-
work to make it also adapted to single-output tasks.
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