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Abstract

In this paper, we focus on named entity boundary
detection, which aims to detect the start and end
boundaries of an entity mention in text, without
predicting its type. A more accurate and robust de-
tection approach is desired to alleviate error prop-
agation in downstream applications, such as entity
linking and fine-grained typing systems. Here, we
first develop a novel entity boundary labeling ap-
proach with pointer networks, where the output dic-
tionary size depends on the input, which is variable.
Furthermore, we propose AT-BDRY, which incor-
porates adversarial transfer learning into an end-to-
end sequence labeling model to encourage domain-
invariant representations. More importantly, AT-
BDRY can reduce domain difference in data dis-
tributions between the source and target domains,
via an unsupervised transfer learning approach (i.e.,
no annotated target-domain data is necessary). We
conduct Formal Text — Formal Text, Formal Text
— Informal Text and ablation evaluations on five
benchmark datasets. Experimental results show
that AT-BDRY achieves state-of-the-art transferring
performance against recent baselines.

1 Introduction

Named entity recognition (NER) is a fundamental task in
natural language processing which aims to jointly resolve
the boundaries and type of a named entity in text [Li ef al.,
2018al. In this paper, we ignore the entity typing and focus
on the subtask of named entity boundary detection, which
involves detecting the start and end boundaries of an entity
mention in text.

There are several reasons for studying the subtask. First,
most fine-grained entity typing systems, such as FIGER [Ab-
hishek et al., 2017], FINET [Corro et al., 2015] and
SANE [Lal et al., 2017], either manually label entity men-
tions or assume that entity mentions have already been pre-
detected [Corro et al., 2015]. In this case, the typing task
becomes a multi-label classification task. Errors made in en-
tity boundary detection inevitably mislead and adversely af-
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fect subsequent entity-typing systems. This has created an
overwhelming demand for more accurate and robust bound-
ary detection approaches. Second, the availability of knowl-
edge bases, e.g., Wikipedia, FreeBase, ProBase, enables the
study of entity linking, which aims to determine the identity
of entities mentioned in text. Because of the overwhelming
entity types defined in knowledge bases, the types predicted
by NER systems become less necessary. Further, there could
be conflicts between the types predicted by NER systems and
the types of the entities disambiguated through the entity link-
ing process [Phan et al., 2018].

Some studies [Ren et al., 2016; Corro et al., 2015] uti-
lize off-the-shelf NER systems (e.g., StanfordNER and Spot-
light3) to detect entity boundaries for downstream applica-
tions. However, off-the-shelf systems suffer from the shift
in data distribution from the actual data encountered at test
time, resulting in poor performance. Recently, a few stud-
ies [Yang er al., 2017; von Diniken and Cieliebak, 2017;
Zhao et al., 2018; Lin and Lu, 2018] have investigated trans-
fer learning in NER, aiming to transfer knowledge from
source domain to target domain. However, these existing
methods require an amount of annotated target-domain data
to fine-tune models. In this paper, we assume no label anno-
tations in the target domain.

Essentially, entity boundary detection is a sequence la-
beling problem, where the task is to predict a sequence of
‘yes/no’ boundary tags at word level in a sentence. Exist-
ing labeling techniques can be broadly categorized into two
paradigms: recurrent neural networks with conditional ran-
dom fields (RNN-CRF) [Ma and Hovy, 2016; Lample et al.,
2016; Huang et al., 2015] and RNN as a language model to
generate the output sequence (seq2seq) [Zheng er al., 2017,
Shen et al., 2017]. However, studies [Vinyals ef al., 2015;
Li et al., 2018b] indicate that they either suffer from sparse
boundary tags (i.e., entities are rare and non-entities are com-
mon) or they cannot well handle the issue of variable size
output vocabulary (i.e., need to retrain models with respect to
different vocabularies). Here, we seek a new sequence label-
ing approach to alleviate these two issues.

In this paper, we propose AT-BDRY, an adversarial transfer
approach for named entity boundary detection with pointer
networks. First, we integrate the pointer mechanism [Vinyals
et al., 2015] into a sequence labeling framework, which can
effectively handle variable size vocabulary in the output to
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produce entity boundaries depending on the input sequence.
Second, we introduce adversarial learning with a domain
discriminator (adversary), resulting in the emergence of ex-
tracted features that are (i) discriminative for sequence la-
beling on the source domain and (ii) indistinguishable with
respect to the shift between source and target domains. It
is worth noting that the source-domain data is annotated and
target-domain data is unannotated (unsupervised transfer).
In summary, we make three contributions:

e We developed a novel boundary labeling approach based
on pointer networks, which infers entity boundaries
from a variable input sequence.

e We proposed AT-BDRY, which incorporates adversarial
learning into an end-to-end sequence labeling model to
encourage domain-invariant representations.

e We conducted Formal Text — Formal Text, Formal
Text — Informal Text and ablation evaluations on
five datasets. Experimental results show that AT-
BDRY achieves state-of-the-art transferring performance
against recent baselines.

2 Related Work

2.1 Named Entity Recognition

There are three common paradigms for NER: knowledge-
based unsupervised systems, feature-based supervised sys-
tems and neural-based systems. Nadeau and Sekine [2007]
summarized knowledge-based unsupervised and feature-
based supervised systems in detail. Here, we focus on de-
scribing neural-based systems.

Many neural architectures have been applied to NER and
achieve state-of-the-art results. Neural-based systems have
the advantage of inferring latent features and learning la-
bels in an end-to-end fashion. The use of neural model for
NER was pioneered by [Collobert et al., 2011], where an ar-
chitecture based on temporal convolutional neural networks
(CNNs) over word sequence was proposed. Recent neural
models for NER can be broadly classified into three dimen-
sions by their representation of words in sentence and archi-
tectures of tag decoders [Li et al., 2018al.

Compared with existing architectures, the main difference
in our proposed AT-BDRY is that our tag decoder is a pointer
network, not CRF. Our model effectively captures sequential
dependencies when boundary tags are sparse, while allevi-
ating variable size vocabulary in the output to produce en-
tity boundaries depending on the input sequence. In addition,
Zhai et al. [2017] proposed a model for sequence chunking
based on pointer networks, which is most related to our work.
Different from Zhai’s model, our proposed model directly in-
fers the start and end boundaries of an entity, which leads to
a simpler architecture with fewer parameters.

2.2 Transfer Learning in NER

Transfer learning aims to perform a machine learning task on
a target domain by taking advantage of knowledge learned
from a source domain [Pan et al., 2013]. In the setting of
transfer learning, different neural models commonly share
different parts of model parameters between source task and
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Figure 1: The architecture of AT-BDRY. The left part learns a tag
decoder for entity boundary detection based on the source domain
data, which is then used for the target domain at test time. The right
part makes the distributions of source (Dys) and target (Dr) domains
indistinguishable through a domain discriminator.

target task. Yang ef al. [2017] first investigated the trans-
ferability of different layers of representations. Then, they
presented three different parameter-sharing architectures for
cross-domain, cross-lingual, and cross-application scenarios.
Pius and Mark [2017] extended Yang’s approach to allow
joint training on informal corpus and incorporate sentence-
level feature representation. Zhao er al. [2018] proposed
a multi-task model with domain adaption, where the fully-
connected layers are adapted to different datasets, and the
CREF features are computed separately. Different from these
parameter-sharing architectures, Lee er al. [2017] applied
transfer learning in NER by training a model on source task
and using the trained model on target task for fine-tuning.
Recently, Lin and Lu [2018] also proposed a fine-tuning ap-
proach for NER by introducing three neural adaptation layers:
word adaptation layer, sentence adaptation layer, and output
adaptation layer. Cao et al. [2018] proposed a model for ad-
versarial multi-task learning with a cotraining manner.

Unlike these methods (require an amount of annotated data
in target domain), our approach assumes no label annotations
in the target domain. Moreover, our approach incorporates
adversarial learning into a sequence labeling model to encour-
age domain-invariant representations.

3 AT-BDRY: Adversarial Transfer for Named
Entity Boundary Detection

Our approach, termed AT-BDRY, consists of four key com-
ponents as shown in Figure 1. The input representation layer
represents each word with word-level and character-level em-
beddings. The context encoder aims to extract contextual
representations for input sentences. The tag decoder uses a
pointer mechanism to detect named entity boundaries based
on intermediate representations by the context encoder. The
domain discriminator is to judge whether a training instance
belongs to source or target domains. In particular, we incor-
porate adversarial training in the shared space to ensure that
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(a) Representation of an input word “Jordan”.

(b) The architecture of pointer networks for entity boundary detection.

Figure 2: An illustration of entity boundary detection with pointer networks. Input sentence: “Michael Jeffrey Jordan was born in Brooklyn,
New York.”. The identified entities by boundary detection are “Michael Jeffrey Jordan”, “Brooklyn” and “New York”.

the intermediate representations by the context encoder con-
tain no discriminative information about the origin of input
(source or target). That is, we hope that the intermediate rep-
resentations can mislead the domain discriminator and cor-
rectly guide the tag decoder prediction, while the domain dis-
criminator tries its best to correctly judge the domain class of
each example.

3.1 Input Representation

The input representation in our model consists of character-
level and word-level representations. Previous studies [Chiu
and Nichols, 2016; Huang et al., 2015] have shown that
character-level information (e.g., prefix and suffix of a word)
is an effective resource for NER task. Two kinds of network
structures have been used to extract character-level represen-
tation, i.e., CNN and BiLSTM. In our model, we use CNN
because of its lower computational cost. Our design is sim-
ilar to [Chiu and Nichols, 2016], and the main difference is
that we use a sliding convolution layer (i.e., variable window
size of convolution filters) to capture character n-grams in a
word, shown in Figure 2(a).

We assume that AT-BDRY works with the annotated data
Ds : S1,85,..., Sy in the source domain , and the unanno-
tated data Dr : 11,75, ..., Ty in the target domain. Given
an input sentence W = (W1, Ws,... , W) of length L,
W € {Dg,Dr}, let W; denote its I-th word. The character-
level representation and word-level embedding (e.g., pre-
trained embedding) for IV are concatenated as its final repre-
sentation, ¢; € R, where K represents the dimension of x;,
see Figure 2(a). Note that hand-crafted features can be easily
integrated into this architecture. However, we do not use any
hand-crafted features in this study.

3.2 Context Encoder

We encode the input sequence X = (21, x2,..., o) using
an RNN. RNNs capture sequential dependencies. With hid-
den cells like long short-term memory (LSTM) [Hochreiter
and Schmidhuber, 1997] and gated recurrent unit (GRU) [Cho
et al., 2014], an RNN captures long distance dependencies
without running into the problems of gradient vanishing or
explosion. In our implementation, we use the GRU which is

computationally cheaper than LSTM. Specifically, GRU acti-
vations at time step [ are computed as follows:

zi=0U,z;+ R,hi_1 +b,) (D
r,=o0(U,x; + R-hi—1 + b;) ()
n; = tanh(Uhccl + R},,(’I”l ® hl—l) + bh) 3)
hi=z0h_1+(1-2)0y 4

where o() is the sigmoid function, tanh() is the hyperbolic
tangent function, © is an element-wise multiplication, z; is
the update gate vector, 7; is the reset gate vector, n; is the
new gate vector, and h; is the hidden state at time step [. U,
R, b are the parameters of the encoder that need to be learnt.

We use a bi-directional GRU (BiGRU) network to memo-
rize past and future information in the input sequence. Each
hidden state of the BiGRU is formalized as:

h=h, & hy )

where @ indicates a concatenation operation, 71?1 and %z
are hidden states of the forward (left-to-right) and back-
ward (right-to-left) GRUs, respectively. Assuming the size
of the GRU layer is H, the encoder yields hidden states in
h € RLx2H,

3.3 Tag Decoder

At each step of decoding, AT-BDRY takes a word W from
the input sequence as input, and transforms it to its dis-
tributed representation x; by looking up the corresponding
embedding matrix from the encoding phase. It then passes x;
through a GRU-based unidirectional hidden layer. The hid-
den state at time step j is computed by:

dj = GRU(x;,7) (6)

where ~ are the parameters in the hidden layer of the GRU-
based RNN, which have the same form as defined in Equa-
tions (1) — (4). Note that not every word from the input
sentence needs pass to the RNN. As shown in Figure 2(b),
“Jordan” is the end boundary of the mention “Michael Jef-
frey Jordan”, so the two words “Jeffrey” and “Jordan” will
not be passed to the RNN. Supposing there are J time steps,
the decoder RNN produces hidden states in d € R7*2H with
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2H being the dimensions of the hidden layer of the decoder.
Again, the encoder is bidirectional (hidden size H), and the
decoder is unidirectional (hidden size 2H).

In the pointing phase, AT-BDRY detects entity boundaries
only if the current input is a start boundary. Otherwise, it
will switch the decoder status to inactive and no boundary
will be detected. In order to achieve this mechanism as de-
scribed above, we pad the hidden states of encoder with a
sentinel word representing inactive. That is, the decoder
should point to this sentinel word once the current input is
not a start boundary of an entity. We also extend pointer net-
works [Vinyals et al., 2015] with a direction-aware mecha-
nism. Recall that h € RY*2H and d € R7*H are the hidden
states in the encoder and decoder, respectively. We first pad h
with a sentinel vector by h = [h; 0], where h € R(L+TD*2H
Then, we use an attention mechanism to compute the distri-
bution of end boundary over all possible positions in the input
sequence at decoding step j:

u! = v tanh(G1h; + God,), foric (j,...,J) ()

p(y;lx;) = softmax(u’) (8)
Here, G and G are learnable parameters, ¢ € [j, J] indi-
cates a possible position in the input sequence, and softmax
normalizes v, indicating the probability that word WW; is an
end boundary, given the start boundary I¥;. When W} is not
a start boundary of any entity, the pointer is trained to point
to the padded word Wy 4, i.e., inactive. For example, AT-
BDRY points to “inactive” when given “was” as the decoder
input in Figure 2(b).

3.4 Domain Discriminator

Recall that h € RUEADX2H gee the hidden states in the con-
text encoder. We use an attention mechanism to form a con-
text vector and apply a Multi-Layer Perceptron to predict do-
main label y4 (binary, i.e., 0 and 1).

w = softmax(tanh(h- P + p)) )
c = hw (10)
p(yalc) = MLP(c) (1D

3.5 Adversarial Training

The tag prediction loss and the domain prediction loss can be
written as

J
L(07,0,) =Y —logp(y;lz;;07,0,)  (12)

Ds j=1

L£(67,6,) = Y —logp(yalc;6;,6,) (13)
Ds,Dr

where 6y are the learnable parameters of the shared layers
(input representation and context encoder), 8 are the param-
eters of the tag decoder, and 6, are the parameters of the dis-
criminator. At learning time, in order to encourage domain-
invariant features, we seek the parameters 8¢ that maximize
the loss of the domain discriminator (by making the two fea-
ture distributions as indistinguishable as possible), while si-
multaneously seeking the parameters 6,4 and 8 ¢ that minimize
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# Sentences .
Dataset Tram Dov Tost #Mentions
CoNLLO03 14,987 3,466 3,684 34,841
OntoNotes5.0 59,917 8,528 8,262 71,031
WikiGold 144,342 - 1,696 298,961
WNUTI16 2,394 1,000 3,856 5,630
WNUT17 3,394 1,009 1,287 3,890

Table 1: Statistics of datasets.

the loss of the domain discriminator. In addition, we seek
the parameters 6, that minimize the loss of the tag decoder.
Thus, the optimization problem involves a minimization with
respect to some parameters and a maximization with respect
to others. Based on this idea, we define the whole objective
E(0¢,05,0,) = L(0f,05) — AL(0f,0,). The parameter A
controls the trade-off between the two objectives. Then, we
deliver a saddle point of E(6y,0,,0,) as

(67.6) = arg min E(6y,6,.6,) (14)
.05
0, = argmaxE(0y, 65, 6,) (15)
t

Following [Ganin and Lempitsky, 2015], we add a special
gradient reversal layer below the shared layer to address the
minimax optimization problem.

4 Experiments
4.1 Experimental Setup

Datasets. We use five popular benchmark datasets to as-
certain the effectiveness of AT-BDRY. Because our task is
boundary detection, we ignore entity types in all datasets. The
statistics of the datasets are reported in Table 1. CoNLLO03,
OntoNotes5.0 and WikiGold are formal text. WNUT16 and
WNUT17 are informal text.

Baselines. We evaluate AT-BDRY against 6 baselines.
Note that INIT, TranT-B and CDMA-NER require annotated
target-domain data for fine-tuning. We randomly leave out
20% of training set, and combine it with development set as
annotated target-domain data for these three baselines. We
measure Precision (P), Recall (R), and F-score (F1) to evalu-
ate entity boundary detection accuracy.

e SourceOnly - It is trained only on source-domain data
with pointer networks (Figure 2(b)) and directly applied
to make predictions on target-domain data.

e TJE - This model projects both labels and features into
a same low-dimensional space, where classification on
the target-domain test data can be done with a simple
nearest neighbor rule [Pan et al., 2013].

e INIT - This model trains the parameters on a source
dataset and transfers all parameters to initialize the
model for training on a target dataset [Lee et al., 2017].

e TranT-B - This model is trained with hierarchical recur-
rent networks and shares partial parameters in the source
and target channels [Yang et al., 2017].
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Methods | P(%) R(%) F1(%)
RegEx 5026 67.52 57.63
Shallow-CRF | 90.75 85.84 88.23
StanfordNER | 78.01  77.65 77.83
BiLSTM-MLP | 91.12 9273  91.92
BIiLSTM-CRF | 91.61 92.82 92.21
Ours 93.22" 94.67° 93.94"

Table 2: The performance of entity boundary detection models on
OntoNotes5.0. Significant improvement over baselines is marked
with * ( p-value < 0.01).

e CDMA-NER - This approach first pre-trains a source
model and then uses three adaptation layers in the target
model [Lin and Lu, 2018].

e In-Domain - This model is both trained and tested on
target-domain data with pointer networks. Therefore,
its performance can be regarded as the upper bound of
transferring tasks.

Implementation Details. For all neural network models, we
use GloVe 300-dimensional pre-trained word embeddings re-
leased by Stanford, which are fine-tuned during training. The
dimension of character-level representation is 100 and the
CNN sliding windows of filters are [2, 3, 4, 5]. The total num-
ber of CNN filters is 100. Each bidirectional encoder GRU
has a depth of 3 and hidden size of 128. Each decoder GRU
has a depth of 3 and hidden size of 256. Note that the encoder
GRU is bidirectional and the decoder GRU is unidirectional
in our model. Thus, the decoder has twice the hidden size of
the encoder. The Adam optimizer was adopted with a learn-
ing rate of 0.001, selected from {0.01, 0.001, 0.0001}. We
use a dropout of 0.5 after the convolution or recurrent layers.
The decay rate is 0.09 and the gradient clip is 5.0. For neu-
ral baselines, we use exactly the same hyper-parameter grid
and training procedure as our proposed model above. We re-
port the results based on the best performance on the devel-
opment set. All neural network models are implemented with
PyTorch framework and evaluated on NVIDIA Tesla V100
GPU.

4.2 Results

We first present the performance of point networks for in-
domain entity boundary detection. We then present the trans-
ferring performance on Formal Text — Formal Text and For-
mal Text — Informal Text. Finally, we verify the effect of
adversarial transfer via an ablation study.

In-domain Entity Boundary Detection Performance
We train our boundary detection model (shown in Figure
2(b)) on OntoNotes5.0 and compare it with 5 methods.
RegEx is created with regular expressions, based on word
surface patterns, e.g., letter case. Shallow-CRF trains a
CRF using the commonly used token-level features [Liao
and Veeramachaneni, 2009]. BILSTM-MLP/CRF [Chiu and
Nichols, 2016] utilizes BiLSTM to encode word sequence,
and MLP/CREF to infer decoder tags. The results are summa-
rized in Table 2.

First, our boundary detection model outperforms all base-
lines in terms of P, R and F'1. More specifically, our
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Figure 3: Visualization of pointer attention weights for sentence
“One of Bout’s many assets is New Millennium Air Company of
Gambia.”. Our model successfully detects three end boundaries at
the positions: Bout, Company and Gambia.

approach outperforms RegEx, Shallow-CRF, StanfordNER,
BiLSTM-MLP, and BiLSTM-CREF by relative F1 improve-
ments of 63.01%, 6.47%, 20.07%, 2.20%, and 1.88%, respec-
tively. We attribute this to the fact that our approach resorts to
point networks, which can effectively capture the dependen-
cies of input sentence when the entity boundaries are sparse.
Our solution also provides a new perspective to model se-
quence labeling task using pointer networks instead of the
classic CRF-based approach.

Second, the performance of StanfordNER is poor. This ob-
servation coincides with our previous claim that off-the-shelf
NER systems are not specifically designed for entity bound-
ary detection. Commonly, off-the-shelf NER systems cannot
work well on cross-domain datasets because they do not take
into account domain adaptation.

For better understanding, we visualize pointer attention
weights with an example in Figure 3. The words on the y-axis
are the input of the GRU decoder. The words on the x-axis
are the input of the GRU encoder. For example, for the input
“New”, our approach detects the end boundary of this entity
at the position “Company”. For a given input “of”’, our ap-
proach determines that it is not the start of an entity mention
by the sentinel word “Inactive”. Observe that the identified
boundaries have dominant attention weights, which implies
that our approach can successfully learn sentence features for
entity boundary detection.

Formal Text — Formal Text

We consider one formal text data (e.g., CoNLLO03) as the
source domain and another formal text (e.g., Wikigold) as the
target domain. Table 3 reports the performance on standard
test sets of target domains.

From the results, we have the following observations. (1)
AT-BDRY significantly outperforms all baseline methods to
date. Compared with the second-best performance, AT-
BDRY achieves relative F1 improvements of 3.98%, 1.95%,
3.02% and 4.22%, corresponding to each transferring task.
(2) With the adversarial transfer mechanism, AT-BDRY sig-
nificantly improves the performance of training only on
source datasets. More specifically, AT-BDRY achieves rela-
tive F1 improvements of 13.69%, 3.25%, 9.52% and 12.13%,
compared with the SourceOnly method. (3) For the case of
CoNLL03—Wikigold, although AT-BDRY does not outper-
form the In-Domain method, the performance of AT-BDRY
is close to the upper bound. It is worth noting that AT-BDRY
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Source CoNLL03 CoNLL03 OntoNotes5.0 OnotNotes5.0

Methods Target OntoNotes5.0 Wikigold CoNLL03 Wikigold
P% R% F1% | P% R% Fl% | P%» R% Fi% | P% R% Fli%
SourceOnly 6696 7790 72.02 | 78.88 87.46 8295 | 81.49 7242 76.69 | 7237 7537 73.84
TJE [Pan et al., 2013] 7029 81.24 75.37 | 80.08 8834 84.01 | 8339 76.45 79.77 | 74.66 8039 77.42
INIT [Lee et al., 20171 6826 79.75 73.56 | 76.79 86.55 81.38 | 83.18 77.69 80.34 | 72.59 75.92 7422
TranT-B [Yang et al., 2017] 7371 8046 7694 | 79.07 89.01 83.75 | 84.96 7837 81.53 | 72.74 7834 75.44
CDMA-NER [Lin and Lu, 2018] | 74.40 82.67 78.32 | 78.12 88.78 83.11 | 83.80 7823 80.92 | 77.88 81.09 79.45
AT-BDRY (ours) 77.98° 85337 81.44 | 82.33° 89.25° 85.65 | 87.95 80.37° 83.997| 81.79° 83.83" 82.80"
In-Domain (upper bound) 9322 92.67 92.94 | 85.64 90.82 88.15 | 94.80 9593 9536 | 8564 90.82 88.15

Table 3: Transfer performance on Formal Text — Formal Text. Significant improvement over baselines is marked with * ( p-value < 0.05).

Source CoNLLO03 CoNLLO03 OntoNotes5.0 OnotNotes5.0
Methods Target WNUTI16 WNUT17 WNUT16 WNUT17

P% R% Fl1% P% R% Fl1% P% R% Fl1% P% R% Fl1%

SourceOnly 30.13  62.02 4056 | 36.56 59.12 45.18 | 44.05 48.77 4629 | 5044 4235 46.04

TJE [Pan et al., 2013] 3137 6423 42,15 | 37.07 60.73 46.04 | 44.11 50.83 47.23 | 53.01 46.32 49.44
INIT [Lee et al., 2017] 28.91 59.56 3893 | 3643 58.04 4476 | 42.04 4537 43.64 | 51.26 40.71 45.38
TranT-B [Yang ef al., 2017] 3280 65.22 43.65 | 3596 6134 4534 | 42.83 49.82 46.06 | 51.74 4429 47.73
CDMA-NER [Lin and Lu, 2018] | 31.98 64.73 4281 | 36.69 62.13 46.14 | 44.28 5231 4796 | 4945 46.78 48.08
AT-BDRY (ours) 3398 67.23° 45.15 | 37.48 64.58° 47.44°| 4336 58.93" 49.96¢ | 54.45 49.45 51.83"
In-Domain (upper bound) 6398 5145 57.03 | 63.36 5032 56.09 | 63.98 5145 57.03 | 63.36 5032 56.09

Table 4: Transfer performance on Formal Text — Informal Text. Significant improvement over baselines is marked with * ( p-value < 0.05).

does not use any annotated target-domain data.

Formal Text — Informal Text

NER in formal text is well studied and the performance of
many existing models drops dramatically in informal text. In
this experiment, we investigate the effectiveness of AT-BDRY
when the data distribution gap between the source domain
and the target domain increases. Therefore, we choose for-
mal text as the source domain and informal text as the target
domain. Table 4 summarizes the results. Similar findings
from Formal Text — Formal Text are observed in this exper-
iment. In addition, we also observe that a better performance
is achieved when OntoNotes5.0 (rather than CoNLLO03) is
taken as the source domain. In most cases, the recall score
is much higher than the precision score, which implies that
NER in formal text is a very challenging task because of the
noisy nature of informal text as well as emerging entities with
novel surfaces. Notably, AT-BDRY achieves an F1 of 51.83%
on OntoNote5.0—WNUT17. This FI score is much higher
than the that of SourceOnly (46.04%) and is close to the up-
per bound (56.09%). We attribute this to the fact that AT-
BDRY can learn domain-invariant representations, which can
effectively reduce the distance in data distributions between
the source and target domains.

4.3 Ablation Study

In our approach, the adversarial transfer component plays a
role in encouraging domain-invariant representations. In this
experiment, we investigate the effect of adversarial transfer
by visualization. With t-SNE [Maaten and Hinton, 2008],
Figure 4 demonstrates the effect of adversarial transfer on the
distributions of the extracted features from the BiGRU en-
coder in the CoNLLO3 — WNUTI16 experiment. We can
observe that our AT-BDRY approach possessing adversarial

© source domain
target domain

A
- O o 2
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(a) Without adversarial transfer ~ (b) With adversarial transfer

Figure 4: The effect of adversarial transfer on the distribution of the
extracted features from the BIGRU encoder. The adversarial transfer
in our approach makes the two distributions of features much closer.

transfer learning, makes the two distributions of the extracted
features much closer.

5 Conclusion

In this paper, we study the task of named entity bound-
ary detection. We propose AT-BDRY, an end-to-end neural
model to detect entity boundaries from text without any hand-
crafted features or any prior linguistic knowledge. In partic-
ular, our approach incorporates adversarial transfer learning
into a novel sequence labeling model to encourage domain-
invariant representations. AT-BDRY ensures the extracted
features are discriminative (for sequence labeling) and in-
distinguishable (for the discriminator) so that the knowl-
edge from source domain can be transferred to the target do-
main, without requiring any annotated target-domain data.
Through extensive experiments, we demonstrate the effec-
tiveness of AT-BDRY against state-of-the-art solutions on dif-
ferent datasets.
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