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Abstract

Recurrent Neural Networks (RNNs) have shown
great promise in sequence modeling tasks. Gated
Recurrent Unit (GRU) is one of the most used re-
current structures, which makes a good trade-off
between performance and time spent. However, its
practical implementation based on soft gates only
partially achieves the goal to control information
flow. We can hardly explain what the network has
learnt internally. Inspired by human reading, we in-
troduce binary input gated recurrent unit (BIGRU),
a GRU based model using a binary input gate in-
stead of the reset gate in GRU. By doing so, our
model can read selectively during interference. In
our experiments, we show that BIGRU mainly ig-
nores the conjunctions, adverbs and articles that do
not make a big difference to the document under-
standing, which is meaningful for us to further un-
derstand how the network works. In addition, due
to reduced interference from redundant informa-
tion, our model achieves better performances than
baseline GRU in all the testing tasks.

1 Introduction

Recurrent Neural Networks (RNNs) have become the most
popular approach to address machine learning tasks involv-
ing sequential data, such as machine translation [Bahdanau et
al., 2015], document classification [Le and Mikolov, 2014],
sentiment analysis [Socher et al., 2011], language recogni-
tion [Graves et al., 2013], and image generation [Villegas et
al., 2017].

However, the vanilla RNN suffers from the gradient ex-
ploding/vanishing problem during training. To address this
problem, long short-term memory (LSTM) [Hochreiter and
Schmidhuber, 1997b] was proposed by introducing gate func-
tions to control the information flow within a unit. LSTM
has shown impressive results in several applications, but it
has much higher computational complexity, which means
longer inference time and more power consumption [Cheng
et al., 2018a; Cheng et al., 2018b; Wang and Cheng, 2016;
He and Cheng, 2018]. Therefore, K. Cho et al. proposed

*Contact Author

5074

Gated Recurrent Unit (GRU) [Cho ef al., 2014]. Compared
with LSTM that has three gate functions, GRU has only two
gates: a reset gate function to determine how much previous
information can be ignored, and an update gate function to se-
lect whether the hidden state is to be updated with the current
information. Thus GRU can better balance the relationship
between performance and computational complexity, which
makes it very widely used. For ease of optimization, GRU
uses sigmoid as the gate function, whose outputs are soft val-
ues between 0 and 1. However, the sigmoid gate function is
easy to overfit [Zaremba er al., 2014], and the information
flow behind this gate function is not graspable to human. No
matter LSTM or GRU, the model reads all the text available
to them. But inspired by the human reading, we know that not
all inputs are equally important. Therefore, the fact that texts
are usually written with redundancy makes us think about the
possibility of reading selectively. If the network can distin-
guish the important words from the decorated or connection
words in a document, we can better understand how the net-
work works internally.

In this paper, we want to explore a new GRU based RNN
structure that can read only the important information and ig-
nore the redundancies. The reset gate function in GRU is
replaced by our proposed binary input gate function. With
the hard binary gate, the model learns which word should be
skimmed. One benefit of our model is that the binary input
gate can clearly show the flow of information. As shown in
our experiments, only significant information flows into the
network. Another advantage is that while a model lies in a flat
region of loss surface, it is likely to generalize well [Hochre-
iter and Schmidhuber, 1997al, because any small perturbation
to the model makes little fluctuation to the loss. As training
a binary gate means pushing the value to 0 and 1 residing in
the flat region of the sigmoid function, small disturbances of
the output value of sigmoid functions are less likely to change
the binary gate output. The model ought to be more robust.

However, training binary gate function is also very chal-
lenging. The binary gate is obviously not differentiable,
a common method for optimizing functions involving dis-
crete variables is REINFORCE algorithm [Williams, 1992],
but it uses the reward signal, increasing floating point op-
erations [Bengio et al., 2013]. Another way is to use the
estimator [Bengio et al., 2013; Courbariaux et al., 2016;
Hu et al., 2018] which has been successfully applied in differ-
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ent works. By using the estimator, all the model parameters
can be trained to minimize the target loss function with stan-
dard backpropagation and without defining any additional su-
pervision or reward signal. We conduct document classifica-
tion task and language modeling task on 6 different datasets to
verify our model and our model achieves better performance.
In summary, this paper makes the following contributions:

e We propose a novel interpretable RNN structure based
on GRU: We replace the reset gate functions of GRU
by the binary input gate functions, and retain the update
gate functions.

e Our model can read the input sequences selectively: In
our model, we can find more clearly whether the current
information is passed into the network or not. In the
experimental analysis, we show the gates in our learned
model are meaningful and intuitively interpretable.

e The proposed method achieves better results compared
to the baseline model: In the experiments, with the same
amount of parameters and computational complexity,
our model outperforms the baseline algorithms on all
tasks.

The reminder of the paper is organized as follows. Section
2 introduces other works related to our research. Section 3
describes the model of binary input gated recurrent unit and
how to train it. The experiments and analysis are shown in
section 4. Finally, we conclude our model and discuss the
future work in the last section.

2 Related Work

As all texts have emphasis and redundancy, making neural
networks identify the importance of words has drown much
attention recently. LSTM-Jump [Yu et al., 2017] augments
an LSTM cell with a classification layer that decides how
many words to jump after reading a fixed number of words.
Moreover, the maximum jump distance and the number of
jumps allowed all need to be chosen in advance. The model is
trained with the REINFORCE algorithm, where the reward is
defined based on whether the model predicts correctly or not.
These hyperparameters define a reduced set of subsequences
that the model can sample, instead of allowing the network to
learn any arbitrary sampling scheme. Skim-RNN [Seo et al.,
2018] contains two RNNSs, a “small” RNN and a ”big” RNN.
Atevery time step the model determines to use the small RNN
or the big RNN, which is based on the current input and the
previous states. When the word is considered unimportant,
the small model will be chosen. Then only a few dimen-
sions in word vector will be updated and the other parts are
retained. Instead of the REINFORCE algorithm, this network
uses Gumble softmax to handle the non-differentiable prob-
lem. Skip RNN [Campos Camunez et al., 2018] is a RNN
with a binary state update gate, selecting whether the state
of RNN will be updated or copied from the previous time
step. This can be considered as completely skipping a word.
This network use the straight-through estimator to solve the
discrete problem, which guarantees that the amount of calcu-
lation does not increase. Structural-Jump-LSTM [Hansen et
al., 2018] introduces a new RNN structure with a skip agent
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and a jump agent. In every time step, the skip agent deter-
mines whether to skip the current word, and the jump agent
selects a jump to the next word, or the next sub-sentence sep-
arator sympol (;;), or the next end of sentence sympol (.!?), or
to the end of the text (which is also an instance of end of sen-
tence). G2-LSTM [Li et al., 2018] proposes a new way for
LSTM training. It uses the developed Gumbel-Softmax trick
to push the output of sigmoid function towards 0 and 1, and
the gate functions are still continuous. Although this network
reads all the text, the word is considered less important if the
value of its input gate function is closer to 0.

Overall, all the above state-of-art models can identify the
importance of words and read the text selectively. However,
except G2-LSTM which reads all the text, other networks that
read selectively have shown promising results only on spe-
cific temporal tasks: they targeted merely on the document
classification task or the question answering task on small
datasets. These tasks are easier than language modeling task
and require less understanding of every word. And so far,
there are no such reading selectively models that can match
the performance of vanilla RNN on the word-level language
modeling task. In this paper, we present the gated recurrent
unit with binary input gate functions which has superior per-
formances to the baseline algorithm on the documents clas-
sification task and the word-level language modeling task as
well.

3 Model Description

In this section, we present a new structure of GRU, which we
call it Binary Input Gated Recurrent Unit (BIGRU), contain-
ing binary input gate functions and update gate functions. The
binary input gate functions are in charge of controlling the in-
formation input and the update gate functions are responsible
for the prediction. Therefore, BIGRU has the ability to read
selectively on both documents classification task and word-
level language modeling task.

3.1 Gated Recurrent Unit

Recurrent Neural Network (RNN) takes an input sequence
{x1,29, -+ ,x7} and generates a hidden state sequence
{h1,ha,--- ,hr}. In recurrent neural networks, the hidden
states in layer k are used as inputs to layer k£ + 1. The hidden
states in last layer are used for prediction and making deci-
sion. The hidden state sequence is generated by iteratively ap-
plying a parametric state transition model S from time ¢ = 1
to 1"

hy = S(hi—1,2¢) = f(Wrhs—1 + W, + b)

where W},, W, are weights, b is bias and f is the activation
function. In general, we use hyperbolic tangent (tanh) as the
activation function.

Despite the remarkable success of RNNs in processing
variable-length sequences, traditional RNNs suffer from the
exploding and vanishing gradient problem that occurs when
learning long-term dependencies, which limits the wide ap-
plication of RNN. To alleviate this issue, Gated Recurrent
Unit (GRU) [Cho et al., 2014] and Long Short-Term Mem-
ory (LSTM) [Hochreiter and Schmidhuber, 1997b] were in-
troduced. In general, LSTM has the state-of-art performance,
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Figure 1: Model architecture of GRU and BIGRU. (a) Complete architecture of a GRU cell, where r; and z; are reset gate and update gate,
respectively. (b) Complete architecture of a BIGRU cell, where ¢ is the binary input gate and z; is the update gate.

but it needs longer inference time and more energy consump-
tion. While GRU is a carefully designed recurrent struc-
ture which makes a good trade-off between performance and
speed. Therefore, GRU has been prevalently used in both
academia and industry. The recurrent transition of GRU is
obtained by:

zp = 0(W[ht—1,24]) (D
re = 0(Wrlhi—1, 7)) (2
hy = tanh(W[ry  hy—1,24)) 3)
he=(1—2) O hi1+20h 4

where {W,, W,., W} denote the recurrent weights and h;, h;
are hidden states. The logistic sigmoid function and
Hadamard product are denoted as o and ®, respectively. The
update gate z; selects whether the hidden state h; is to be up-
dated with a new hidden state h;. Small value of the update
gates causes the cell to remember most of its previous values
and use little current information. The reset gate r; decides
whether the former hidden state can be ignored. The smaller
the value of r;, the more previous information is forgotten.

3.2 Reading Selectively by Binary Input Gated
Recurrent Unit

In Figure 1(a) we can see the structure of GRU, the reset
gate is responsible for the current information input and the
memory of previous information. However, the update gate
also decides how much previous information to ignore, which
means the two gates have duplicate functions. If we could
separate the function of these two gates, the cell may have
a better performance. Therefore, we design the binary input
gate function which only decides whether the current infor-
mation should flow into the network or not. It is similar to
the input gate functions of LSTM. Thus, h; can be consid-
ered as the current input. As a result, the binary input gate
function and update gate function in our model are respon-
sible for current information input and previous information
forgetting, respectively.

Our model can be seen in Figure 1(b), the binary input gate
only decides whether the current information flows into the
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network or not and we retain the update gate to obtain hid-
den states. Thus the division of labor between two gates is
more clear, and the task can be better accomplished with-
out increasing the computational complexity. The proposed
model, Binary Input Gated Recurrent Unit (BIGRU), works
as follows during training:

zp = o(We[ht—1,24]) ®)
1y = fbinary(U(Wr[htflvxt])) (6)
hy = iy © tanh(W [hy_1, 2]) (7)
hi=(1—=2)Ohi—1+ 20 hy )]

where Eqn.(5) is the update gate whose function is similar to
the one of GRU, Eqn.(6) is the binary input gate whose output
value is 0 or 1. If the current information is not important
to the task, the value of i; will be 0 and the current input
information will not be passed into the network. As the input
value of the binary function is between 0 and 1, we use the
stochastic binary method. The probability of getting O or 1
for the binary function can be computed by:

P(fbinary(x) = 1) =T (9)
P(fbinary(x) = O) =1~ P(fbinary<x) = 1) (10)

Afterwards, we stochastically sample from the Bernoulli dis-
tribution to obtain the binary value. However, the binary input
gate functions create a tricky problem. Obviously, the whole
model is differentiable except for fyinary and the discrete
value cannot directly calculate the derivative. To solve this
problem, we generally have two solutions. The first method
for optimizing the discrete output value functions is REIN-
FORCE algorithms [Williams, 1992], but it has some disad-
vantages. The reward is difficult to design and it will increase
the computational complexity. In recent years, several es-
timators have been proposed for the particular case of neu-
rons with binary outputs [Bengio et al., 20131, and they have
been successfully applied in different works [Courbariaux er
al., 2016]. Since we want to keep the same inference time
as GRU, we choose to use the second method. We use the
straight-through estimator, which consists of approximating
the step function by the identity when computing gradients
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Dataset answer type answer type Number of examples Avg. Len vocab size
SST Sentiment Analysis Pos/Neg 6,920/ 872/ 1821 19 13,750
IMDb Sentiment Analysis Pos/Neg 21,143/ 3,857 / 25,000 282 61,046
AGNews News Classification 4 categories 101,851 /18,149 /7,600 43 60,088
DBPedia Topic Classification 14 categories 475,999 / 84,000 / 69,999 47 840,843

Table 1: Statistics of the classification datasets that BIGRU is evaluated on, where SST refers to Stanford Sentiment Treebank.

during the backward pass:

afbinary (.13)
Or

By using the straight-through estimator as the backward pass
for fyinary, all the model parameters can be trained to min-
imize the target loss function with standard backpropagation
and without defining any additional supervision or reward
signal. So we can ensure that the computational complexity
does not increase.

There are several advantages in using the binary input gate
functions. First, compared with vanilla GRU, BIGRU can de-
cide to pay how much attention to different words like hu-
man reading. The binary input gate functions only select
the important information to read and the redundant informa-
tion will be discarded, leading to faster convergence in some
tasks involving long sequences. Second, unlike some other
reading selectively models [Campos Camunez et al., 2018;
Hansen et al., 2018; Yu et al., 20171, whose update gate func-
tions do not work when the word is skipped, the update gate
functions of BIGRU still work even if the output value of the
input gate functions is 0. Therefore, the hidden state is up-
dated at every time step, which is significant in the language
modeling tasks. Besides, BIGRU can decide how much in-
formation can be forgotten at every time step. As a result,
our model performs better than baseline GRU in all our test
tasks. In the next section, we will present in detail the model
performance in the document classification task and language
modeling task.

=1

4 Experiments

We evaluate the effectiveness of BIGRU in both document
classification task and word-level language modeling task on
six different datasets. We compare our model with the base-
line GRU.

4.1 Document Classification

In the language classification task, the input is a sequence of
words and the output is the vector of categorical probabilities.
The evaluation criteria are generally the accuracy (Acc). We
choose four different datasets, including Stanford Sentiment
Treebank (SST), IMDb, AGNews and DBPedia. The detail
of the datasets can be seen in Table 1.

For both GRU and BIGRU, we use a stacked three-layer
RNN. Each word is embedded into a 100-dimensional vector.
We make a linear transformation on the last hidden state of the
network and then apply softmax function to obtain the classi-
fication probabilities. All models are trained with Adam, with
the initial learning rate of 0.0001. We set gradient clip to 2.0.

We use batch size of 32 for SST and 128 for the remaining.
For both models, we set an early stop if the validation accu-
racy does not increase for 1000 global steps.

4.2 Language Modeling

For further evaluating the impact of our model, we perform
word-level language modeling over a preprocessed version
of the Penn Treebank (PTB) and WikiText-2 dataset. The
Penn Treebank dataset has long been a central dataset for ex-
perimenting with language modeling. The dataset is heav-
ily preprocessed and does not contain capital letters, num-
bers, or punctuation. The vocabulary is also capped at 10,000
unique words. Compared to the preprocessed version of PTB,
WikiText-2 is over 2 times larger. The WikiText-2 dataset
also features a far larger vocabulary and retains the original
case, punctuation and numbers. As it is composed of full
articles, the dataset is well suited for models that can take ad-
vantage of long term dependencies. The word-level language
modeling task is to predict every next word in condition on
the previous words. A model is evaluated by the prediction
perplexity: smaller the perplexity, better the performance.

We follow the experimental settings in [Merity et al., 2017]
for GRU and our model. For each dataset we use a small
model (one-layer network) and a big model (a stacked three-
layer network with drop-connect on recurrent weights) for
testing. For training the model, we choose averaged stochas-
tic gradient descent (ASGD) [Polyak and Juditsky, 1992] for
optimization. We use an initial learning rate of 10 for all
experiments and carry out gradient clipping with maximum
norm 0.25. We use a batch size of 80 for WikiText-2 and
40 for PTB. We train 1000 epochs for the small model and
2000 epochs for the large model. For all the models, all other
experimental settings, including random BPTT length, the
word embedding size and dropout probability, are the same
as [Merity et al., 2017].

4.3 Experimental Results and Analysis

Document Classification

Table 2 shows the accuracy of our model compared with the
baseline GRU. The models are evaluated by accuracy (Acc)
and reading rate (Rer). The reading rate is computed as fol-
lows. First, we get the output vectors of binary input gate
functions in the first layer of the model. The output vector
are called word input vector. We calculate the proportion of
1 in all word input vectors as the reading rate. The reading
rate is considered as the ratio of reading information to all
information. Absolutely, standard GRU uses the reset gate
and reads the whole input sequence, so its reading rate can be
seen as 1. In all four datasets, our model has a better perfor-
mance than the baseline, about two percentage points higher,
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Model \ SST IMDb AGNews DBPedia

\ Acc Rer Acc Rer Acc Rer Acc Rer
GRU 0771 1.00 0.803 1.00 0.815 1.00 0.876 1.00
BIGRU | 0.793 0.35 0.823 0.37 0.834 043 0.897 041
GRU ! 0.768 0.89 0.781 0.86 0.809 0.89 0.863 0.88

Table 2: Document Classification results on SST, IMDb, AGNews and DBPedia. Evaluation metrics are accuracy (Acc) and reading rate

(Rer) compared to standard GRU.

Positive

For all that has been said about the subject matter, and the controversy that

surrounded it, please do not overlook what I feel to be the most important
part of the film: the salient struggles of everyone to keep their pride through
their trials. Whether dealing with self-imposed male braggadocio, a sexual
reawakening, or even life itself, everybody is human.

Negative

An obscure horror show filmed in the Everglades. Two couples stay overnight

in a cabin after being made a little uneasy by the unfriendliness of the locals.
Who, or what, are the Blood Stalkers? After awhile they find out. Watch
for the character of the village idiot who clucks like a chicken, he certainly is

weird.

Table 3: Examples of reading selectively on IMDb. Positive and Negative are two categories in IMDb. The skimmed words are shown in

bold.

although it reads significantly less information. In these four
datasets, our model reads no more than 43% information of
all input sequence, but it has at least 1.9% promotion in terms
of accuracy. For further comparison, we remove the stop-
words (a, the, that, this, which, what, why, when, where,
while, who, whom) in the datasets, and use the pre-processed
dataset to train GRU. Compared with the dataset without be-
ing pre-processed, the experimental performance has a cer-
tain decline. This is because redundant words are difficult to
know from the priori, and pre-defined stopwords are not al-
ways redundant. The same word has different meanings in
different contexts, e.g. “that” is meaningless in some cases
but in some other cases “that” refers to the subject and we
cannot ignore it. Our model can learn which words are re-
dundant based on context information, so BIGRU has a better
performance. In order to find out whether this is the case, we
make further analysis.

For each word, we specify that the word is skimmed if no
less than 90% dimensions of its word input vector are 0. As
the embedding size is 100, the skimmed word input vector
has no more than 10 nonzero dimensions, which is a fairly
strict criterion. Then we choose two comments in the IMDb
test set, calculating the word input vector of every word. Ta-
ble 3 shows the result: the skimmed words are shown in bold.
Almost all the skimmed words are conjunctions, adverbs and
articles, which have no special effect on the understanding
of the whole sentence. These words have no contribution to
our judgment of the category of this comment. This also il-
lustrates that our model is more interpretable than GRU. We
know what is input into the network, and our model has a
better performance.

"'Use the pre-processed dataset.
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Model | Validation — Test
GRU (small) 85.97 82.96
BIGRU (small) 80.65 77.79
GRU (large) 7450  72.13
BIGRU (large) 70.28 68.04

Table 4: Language Modeling results on PTB.

Model | Validation  Test
GRU (small) 10209  97.08
BIGRU (small) 95.93 91.18
GRU (large) 87.82 83.30
BIGRU (large) 80.78 77.92

Table 5: Language Modeling results on WikiText-2.

Language Modeling

The results of two models on PTB and WikiText-2 are shown
in Table 4 and Table 5, respectively. On PTB dataset, the
small and large BIGRU outperform the baseline algorithm by
5.17 and 4.09 points in terms of test perplexity, respectively.
On the more difficult dataset WikiText-2, the perplexity up-
grade can even reach 5.90/5.38 points in the test set. It is easy
to find that the improvement is more significant in language
modeling tasks than in text classification tasks, so we want to
explore why the task is more difficult, the more obvious the
promotion, and we do further analysis.

Language modeling task is more sensitive and difficult than
classification task. We can judge the category of the article by
a few words, but when we want to predict every next word, we
need the context information. This is why the former reading



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

GRU
reset gate

BIGRU
input gate

150

GRU
—BIGRU

140

130

120

110

Perplexity

100

90

80

10 60 110 160 210 260 310 360 410 460 550

epoch
(a) PTB

the programswe wanted to do

0.7 0.8 0.9 1

GRU
190 —BIGRU

Perplexcity

10 60 110 160 210 260 310 360 410 460 550

epoch
(b) WikiText-2

Figure 3: Perplexity of GRU and BIGRU on the PTB and WikiText-2 validation set.

selectively model performed poorly on word-level language
modeling task. However, there must be important words and
meaningless words in a document, so it is also important to
distinguish them in order to avoid distractions. Similar to hu-
man intensive reading and skimming, BIGRU can focus on
the more important words, while other unimportant words in-
formation will not be input completely to the network. In
order to prove this, we do the visualization of words. We cal-
culate the average value of the word input vectors in BIGRU.
As a comparison, we also calculate the average output value
of the reset gate functions in GRU. We plot the heatmap of an
example sentence on the PTB test dataset in Figure 2.

We can see that our model pays less attention to the arti-
cles and adverbs, besides almost all of the subjects and verbs
are completely read into the network. In contrast, the output
of the reset gate functions in GRU has no obvious propen-
sity for all words. In other word, the GRU is more like a
black box to human. It’s hard to explain how it works inter-
nally. On the contrary, our model is more interpretable. BI-
GRU learns the importance of each word like a human, which
means it has a stronger learning ability, so its promotion in
hard tasks is more obvious. We then plot the perplexity of
validation dataset during training in Figure 3. We can see that
on both PTB and WikiText-2 datasets, our model converges
faster at the beginning of training. Therefore, if we want to
get a model with the same effect, our model needs less train-
ing time than standard GRU.

5 Conclusion

In this paper, we present BIGRU, a GRU based RNN model
that can read selectively. BIGRU is inspired by human read-
ing, and can distinguish the important part from redundant
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part to avoid the unnecessary interference. In BIGRU we use
binary input gate functions instead of the reset gate functions
of the standard GRU and retain the update gate functions.
Thus, the two gate functions in our model are responsible
for current information input and previous information for-
getting, respectively. As a result, our model can learn what is
the important part of the input sequence based on the task, and
ignore dynamically the redundancy. Through extensive ex-
perimental analysis, we demonstrate that our model ignores
mostly the meaningless adverbs, conjunctions and articles
and reads the main information of the text. In other word, BI-
GRU reads document like human, paying different attention
to different words. After removing the interference of un-
necessary information, BIGRU has a better performance. In
both the document classification task and the word-level lan-
guage modeling task, our model performs better than standard
GRU on six different datasets. As the previous reading selec-
tively RNN are all based on LSTM and they are not effective
on word-level language modeling task, we contribute the first
reading selectively GRU which has better results without in-
creasing the amount of calculation.

In future work, we are going to investigate similar structure
in LSTM, making LSTM read selectively and spend less time
during inference. We also want to apply our model to hard-
ware such as FPGA to further increase the inference speed
while maintaining the performance.
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