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Abstract
We study the problem of Network Embedding (NE)
for content-rich networks. NE models aim to learn
efficient low-dimensional dense vectors for net-
work vertices which are crucial to many network
analysis tasks. The core problem of content-rich
network embedding is to learn and integrate the se-
mantic information conveyed by network structure
and node content. In this paper, we propose a gen-
eral end-to-end model, Dual GEnerative Network
Embedding (DGENE), to leverage the complemen-
tary information of network structure and content.
In this model, each vertex is regarded as an ob-
ject with two modalities: node identity and textual
content. Then we formulate two dual generation
tasks. One is Node Identification (NI) which rec-
ognizes nodes’ identities given their contents. In-
versely, the other one is Content Generation (CG)
which generates textual contents given the nodes’
identities. We develop specific Content2Node and
Node2Content models for the two tasks. Under
the DGENE framework, the two dual models are
learned by sharing and integrating intermediate lay-
ers, with which they mutually enhance each other.
Extensive experimental results show that our model
yields a significant performance gain compared to
the state-of-the-art NE methods. Moreover, our
model has an interesting and useful byproduct, that
is, a component of our model can generate texts,
which is potentially useful for many tasks.

1 Introduction
Mining content-rich network data arises from many real-
world applications. For example, various systems on so-
cial platforms often need to cluster users into communities
based on users’ following relation and user-generated con-
tent. Learning low-dimensional compact representations for
network nodes, a.k.a. Network Embedding (NE), plays a very
important role for various network analysis problems.

Recently, extensive research efforts have been dedicated to
content-rich network embedding. Yang et al. presented text-
associated DeepWalk (TADW) to incorporate textual features
into NE through matrix factorization [Yang et al., 2015]. To

capture deeper content semantics, CANE [Tu et al., 2017] ex-
tends LINE [Tang et al., 2015b] with a mutual attention Deep
Neural Network (DNN). Other content-rich NE methods in-
clude PTE [Tang et al., 2015a] and CENE [Sun et al., 2016].

The critical research issue of content-rich NE is to pre-
serve network structure and node content in the representa-
tion learning. But most existing methods fail to capture them
adaptively. The reasons are three-fold. (1) The structure-
level similarity between vertices can be various. However,
most existing NE methods try to preserve designated structure
proximities, instead of learning suitable scope of proximity
automatically. (2) The fusion strategy for structure and con-
tent information is not well studied. Existing methods mostly
learn separated structure and content vectors which are com-
bined with naive methods. Actually, they contribute differ-
ently from task to task, and it is essential to fuse them adap-
tively and automatically. (3) Both the structure and content
information are highly nonlinear, which makes shallow mod-
els ineffective to learn semantic representations. To this end,
adaptively learning structure and content preserving deep NE
models in a data-driven manner is of great importance.

To address these issues, we propose a novel NE model,
Dual GEnerative Network Embedding (DGENE), to learn
content-rich node embeddings with two dual cross-modality
tasks. In DGENE, each vertex is regarded as an object with
two modalities: node identity and textual content. And we
formulate two dual generation tasks. One is Node Identifica-
tion (NI) which recognizes nodes’ identities given their con-
tents. Inversely, the other is Content Generation (CG) which
generates textual contents given the nodes’ identities.

To learn flexible order proximity adaptively, we develop
novel end-to-end sequence generation models, Content2Node
and Node2Content, for the two tasks based on the sequences
obtained via random walks. Specifically, Content2Node cou-
ples a sequence-to-sequence (seq2seq) model with a CNN for
the NI task to read the raw text of each node and predict the
corresponding node identity. While in the CG task, we devise
a novel hierarchical seq2seq model, Node2Content, which
can generate multiple text sequences for the nodes in the in-
put sequence. In addition, enjoying the deep cross-modal
encoder-decoder between the content and structure, DGENE
is able to integrate the content semantics seamlessly. Un-
der the DGENE framework, the two dual models are learned
jointly by sharing and integrating the hidden layers and mutu-
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ally regularize each other. As the input and output of one task
are exactly the output and input of the other task respectively,
NI is naturally the dual task of CG. Such duality reflects the
intrinsic complementary relation between Content2Node and
Node2Content. Intuitively, learning the dual tasks together
will boost the NE performance, as both of them require simi-
lar abilities: effective node representations. In the dual learn-
ing framework of two cross-modal tasks, the structure and
content information can be captured and fused seamlessly.

To summarize, we make the following contributions:

• We propose a dual generative network embedding model
that captures both textual contents and network struc-
ture. This work is the first attempt to formalize the NE
problem as a dual learning task, in which NI and CG are
formulated into a unified framework and learned jointly
to achieve better performances.

• For each task, we specifically develop novel end-to-end
generation models, i.e., a seq2seq model with a CNN for
NI task and a stacked seq2seq model for content gener-
ation.

• This is the first NE model with the ability of content
generation, which makes our DGENE model potentially
useful in a wider range of applications.

• Experiments on the tasks of node classification using
two real-world datasets demonstrate the superiority of
DGENE over various state-of-the-art approaches.

2 Related Work
Early NE works mainly focus on the topology of networks,
such as DeepWalk [Perozzi et al., 2014], LINE [Tang et
al., 2015b], node2vec [Grover and Leskovec, 2016], GraRep
[Cao et al., 2015], and M-NMF [Wang et al., 2017b]. Essen-
tially, these previous approaches mainly focus on the pairwise
relation or local structures.

For further improvements, new approaches have been pro-
posed to consider various auxiliary information, like label in-
formation [Tu et al., 2016], group information [Chen et al.,
2016], network attribute [Wang et al., 2017a], heterogeneous
information [Shi et al., 2018], dynamic networks [Yu et al.,
2018], and text content [Yang et al., 2015][Sun et al., 2016]
[Tang et al., 2015a][Tu et al., 2017]. But these methods usu-
ally fail to model the high-order proximities and the nonlin-
earity of text content. Liu et al. proposed STNE [Liu et al.,
2018] to fix these problems, but it considers only the content-
to-node translation and biases the embeddings.

Another line of related work is sequence modeling which
we exploit to build our model. The adoption of DNN in nat-
ural language processing (NLP) has given rise to the use of
the recurrent neural network (RNN) [Elman, 1990]. Long
short-term memory (LSTM) [Hochreiter and Schmidhuber,
1997], a variant of RNN, has been applied to various tasks
like speech recognition [Graves, 2013], sequence tagging
[Ma and Hovy, 2016], and classification [Yang et al., 2016].
Moreover, in machine translation [Sutskever et al., 2014],
LSTMs are used to both encode and decode sequences, which
is called seq2seq. Seq2seq also receives research attention in

other NLP tasks like parsing [Vinyals et al., 2015] , summa-
rization [Tan et al., 2017], text generation [Li et al., 2015],
and multi-task learning [Luong et al., 2015].

Besides, dual learning has been proved to be effective in
different tasks. In machine translation, the dual translation
processes can benefit from each other through reinforcement
learning [He et al., 2016]. Tang et al. built the dual rela-
tion between question answering (QA) and question genera-
tion (QG) to improve training [Tang et al., 2017]. Xia et al.
proposed a general penalty term to strengthen the probabilis-
tic connection between dual supervised learning tasks [Xia et
al., 2017]. However, no existing work has utilized dual learn-
ing in NE. Hence, we are the first to learn NE via dual tasks
and leverage the complementary relations between them.

3 Approach
In a content-rich network G = (V,E), where V and E are
the sets of vertices and edges respectively, each vertex v has
two modalities, i.e., the node identity vi and the textual con-
tent vc. Generally, the node identity indicates which node it
is, while the node content describes what information it con-
veys. Given a length-T node sequence S = {v1, v2, · · · , vT }
sampled by the random walk algorithm, the identity sequence
Si = {vi1, vi2, · · · , viT } and the corresponding content se-
quence Sc = {vc1, vc2, · · · , vcT } are a pair of parallel se-
quences, as defined in [Liu et al., 2018].

To capture long-range proximities and fuse the content and
structure information, Liu et al. proposed STNE for the NI
task to learn the conditional probability of Si given Sc, i.e.,
p(Si|Sc). While in this paper, to better preserve and integrate
different modalities, we further define the CG task.
Definition 1: Content Generation. Given a content-rich net-
work, CG is to learn the conditional probability of Sc given
Si for each pair of parallel sequences, i.e., p(Sc|Si).

The NI and CG tasks have a probabilistic correlation as
both tasks relate to the joint probability between Si and Sc.
Given Si and Sc, the joint probability p(Si, Sc) can be com-
puted in two equivalent ways:

p(Sc)p(Si|Sc) = p(Si)p(Sc|Si) (1)

The conditional distribution p(Si|Sc) is exactly the NI model,
and p(Sc|Si) is the CG model. Therefore, we propose a dual
generative model to capture the probabilistic correlation be-
tween the two tasks and solve them simultaneously.

Figure 1 illustrates the overview of our proposed method.
Interestingly, as shown in Figure 1, our DGENE can be re-
garded as a novel context-aware cross-modal auto-encoder
model, since the overall framework of DGENE tries to gen-
erate outputs that reconstruct the inputs.

3.1 Content2Node Model for Node Identification
The Content2Node model learns the cross-modal mapping
from the content representation space to the identification
space, i.e., p(Si|Sc; θNI). In other words, it solves the prob-
lem of how to identify specific node from its content and
structure. Liu et al. proposed a baseline Content2Node
model, STNE, which consists of three major components:
content embedding, content sequence encoding, and node se-
quence generation [Liu et al., 2018]. For end-to-end learning
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Figure 1: The framework of DGENE. Given a content-rich network, parallel sequences are sampled by the random walk algorithm. Then two
dual seq2seq models are jointly learned on them. Finally the intermediate latent representations are adopted as node embeddings.

purpose, we further imporve STNE with a content CNN layer,
as shown in the left-hand side of Figure 2.

Given a pair of parallel sequences Si and Sc, content em-
bedding is the first step to map from Sc to Si. For the t-
th node in Sc, it aims to encode the raw content vct into
a continuous vector vct . In this paper, we adopt a Convo-
lutional Neural Network (CNN) layer on text [Kim, 2014]
to learn vct . Suppose the vocabulary of node texts is U =
{u1, u2, . . . , u|U |}, the length of textual content isM , textual
content vct = {ut,1, ut,2, . . . , ut,M} is first transformed into
a matrix of concatenated word embeddings:

U(vt) = LookUpw(vct ,U) = ut,1 ⊕ ut,2 ⊕ . . .⊕ ut,M , (2)

where U ∈ R|U |×ku is the word embedding matrix of the
entire vocabulary, ku is the dimension of word embeddings,
and ⊕ is the vector concatenation operator. Through the
LookUpw(·, ·) function, U(vt) ∈ RM×ku concatenates the
embeddings of words in vct . After that, a CNN layer and max-
pooling operation are utilized to preserve the local syntax and
semantic information of vct into vct , where the width of filters
are fixed as ku.

vct = max(CNN(U(vt))). (3)

Through the content embedding component, the raw con-
tent sequence Sc = {vc1, vc2, · · · , vcT } can be encoded into a
semantic representation sequence Sc = {vc1, vc2, · · · , vcT }. As
there also exist semantic relations among the content of dif-
ferent nodes in Sc, a bidirectional LSTM (Bi-LSTM) layer is
adopted to capture such global semantics:

cNI = Bi-LSTM(Sc). (4)

After that, an LSTM decoder layer is devised to decode the
context vector cNI into the predicted node identity sequence
Ŝi, and a cross-entropy layer measures the NI loss LNI(θNI)
between all Ŝi and Si. For conciseness, we omit the technical
details and readers can refer to STNE [Liu et al., 2018].

3.2 Node2Content Model for Content Generation
Inversely, the Node2Content model learns the cross-modal
mapping from the node identity space to the content rep-
resentation space, i.e., p(Sc|Si; θCG). In another word, it
solves the problem of how to generate text descriptions for
nodes according to the structure information. We propose a
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Figure 2: DGENE for network embedding

seq2seq Node2Content model that flexibly integrates the suit-
able scope of proximities into the cross-modal learning. As
illustrated in the right-hand side of Figure 2, Node2Content
translates Si into Sc through node sequence encoding, se-
mantic decoding, and content generation.

Node Sequence Encoding
Similar to the content sequence encoding in Content2Node,
the node identity sequences Sis are also encoded with a Bi-
LSTM. Prior to that, the embeddings of node identities are
obtained by the LookUpn(·, ·) function:

Si = LookUpn(Si,V) = {vi1, vi2, . . . , viT }, (5)

where V ∈ R|V |×kn is the embedding matrix for all |V |
nodes, kn is the embedding dimension. And the lookup layer
finds out the embedding vector vit for each vit from V.

After the identity embedding sequence Si is obtained, the
Bi-LSTM sequence encoder further encodes it into a context
vector cCG according to their structure relation:

cCG = Bi-LSTM(Si). (6)

Semantic Decoding
With the node sequence embedding cCG obtained as above,
the semantic decoding step sequentially generates the high-
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level semantic representations dCGt s. Each dCGt has inte-
grated both the identity information of vt and its structural
relation to other nodes in S. Here we devise an LSTM layer
as the decoder function D(·, ·):

dCGt = D(cCG, dCGt−1) =
{
Hdec(0, cCG) t = 1
Hdec(0, dCGt−1) t > 1

. (7)

Content Generation
Finally, with the decoded semantic representations dCGt s, a
text generator is deployed to transform each dCGt into word
sequences, i.e., the textual content of each node. As a conven-
tional practice, an LSTM generator G(·, ·) with teacher forc-
ing [Williams and Zipser, 1989] is adopted. Representation
of the l-th word is generated as:

gt,l = G(dCGt , gt,l−1) =
{
Hgen(0, dCGt ) l = 1
Hgen(ût,l−1, gt,l−1) l > 1

.

(8)
where ût,l−1 has different settings in training and generating
processes. During training, ût,l−1 = ut,l−1 is the embedding
of the (l − 1)-th ground-truth word in vct . While in genera-
tion process, it is the embedding of the word ût,l−1 predicted
at the previous step. The generation process stops when l
reaches a predefined maximum length γ.

With the decoded representation gt,l for the l-th word in vct ,
a fully-connected layer and a softmax layer are utilized to ob-
tain the probabilistic distribution over the whole vocabulary.

p̂t,l = softmax(FC(gt,l)) (9)
Finally, a cross-entropy layer measures the CG loss:

LCG(θCG) = −
∑
Sn

∑
vt∈Sn

γ∑
l=1

|U |∑
j=1

δ(ut,l, j)p̂t,l(j), (10)

where j is the l-th ground-truth word in vct .

3.3 Learning of the Dual Tasks
In both models, the intermediate layers play the role of con-
necting the encoder and decoder layers, i.e., cNI in Con-
tent2Node and cCG in Node2Content, which are the pivot
points in cross-modal information integration. Moreover, if
the dual models can share their intermediate layers in an ap-
propriate manner, they can be tightly coupled effectively and
efficiently. Linear combination layers are adopted:

c̃NI = FCdual,1(cNI + cCG; θDual),

c̃CG = FCdual,2(cNI + cCG; θDual).
(11)

After the sharing and integration process, c̃NI and c̃CG are
fed into the decoder of Content2Node and Node2Content re-
spectively so that they can be coupled and learn from each
other.

By coupling Content2Node and Node2Content together
through parameter sharing in Equation (11), the two models
are unified as one loss function:

L(θ) = L̂NI(θNI , θDual) + L̂CG(θCG, θDual). (12)

where L̂NI(θNI , θDual) and L̂CG(θCG, θDual) are updated
by Content2Node and Node2Content models that the inputs
to the decoders have been replaced with Equation (11), and
θ = {θNI , θCG, θDual} is the parameter set.

3.4 Node Embedding
Representations in intermediate layers can be taken as node
embeddings. In DGENE, hidden representations in the en-
coders and decoders of Content2Node and Node2Content
can be taken as node embeddings, i.e., xNI(vt) =

[dNIt ;
−→
h NI
t ;
←−
h NI
t ] and xCG(vt) = [dCGt ;

−→
h CG
t ;
←−
h CG
t ]. To

fuse information, we concatenate these two embeddings dur-
ing experiments. It is also worth noting that the node embed-
dings are context-aware as in CANE [Tu et al., 2017].

The complexity of DGENE is O(Z × T × (M × ku ×
kk + γ × kh × ku + γ × kh × ki)), where Z, kk, kh and ki
are the number of node sequences, the kernel size of CNN,
the dimension of hidden layers and input features of LSTM
in content gerneration. Compared with other deep learning
models, the complexity of DGENE is acceptable.

4 Experiments
To investigate the effectiveness of DGENE in modeling
both content and structure information in content-rich net-
works, we compare it with seven NE baselines on two public
datasets. Node embeddings are evaluated on classification
task. Moreover, model parameters and generated textual con-
tents are also demonstrated to analyze DGENE deeply.

4.1 Datasets
Our DGENE model is evaluated on two real-world scientific
paper citation networks. For end-to-end learning purpose, the
raw texts of nodes are required.
• Cora contains 2211 papers from 7 categories, and there

are 5214 citation links between them. Each paper is de-
scribed by its abstract with an average length of 162.
And the vocabulary size is 15,188.
• Citeseer contains 4610 papers which are divided into

10 categories. There are 5923 links between these pa-
pers. Each paper is described by its title with an average
length of 11. And its vocabulary contains 6302 words.

4.2 Comparison Models
To validate the performance of our approach, we compare it
against several NE methods:
• DeepWalk [Perozzi et al., 2014] uses local information

obtained from truncated random walks to learn latent
representations by treating them as sentences.
• LINE [Tang et al., 2015b] learns large-scale information

network embedding using first-order and second-order
proximities. We utilize both proximities.
• GraRep [Cao et al., 2015] integrates global structure in-

formation into node embeddings by matrix factorization.
• Node2vec [Grover and Leskovec, 2016] utilizes a biased

random walk algorithm to more efficiently explore the
neighborhood architecture on the basis of DeepWalk.
• TADW [Yang et al., 2015] incorporates text features

into network representation by matrix factorization.
• CANE [Tu et al., 2017] learns context-aware node em-

beddings with the mutual attention mechanism, thus can
model the semantic relationship between node pairs.
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Ratio DeepWalk LINE node2vec GraRep TADW CANE STNE DGENE

10% 0.740 0.699 0.751 0.727 0.789 0.794 0.799 0.812
30% 0.815 0.762 0.820 0.804 0.831 0.851 0.833 0.864
50% 0.816 0.780 0.828 0.817 0.844 0.864 0.852 0.882
70% 0.827 0.789 0.831 0.822 0.854 0.872 0.855 0.897
90% 0.829 0.770 0.838 0.811 0.842 0.878 0.856 0.901

Table 1: Micro F1-scores on Cora dataset

Ratio DeepWalk LINE node2vec GraRep TADW CANE STNE DGENE

10% 0.674 0.579 0.683 0.678 0.832 0.781 0.790 0.833
30% 0.714 0.645 0.724 0.717 0.872 0.804 0.849 0.890
50% 0.732 0.649 0.737 0.735 0.886 0.820 0.877 0.932
70% 0.735 0.659 0.756 0.740 0.895 0.823 0.893 0.950
90% 0.748 0.670 0.772 0.770 0.911 0.857 0.922 0.980

Table 2: Micro F1-scores on Citeseer dataset

• STNE [Liu et al., 2018] obtains node embeddings by
learning the mapping from content sequences to node
sequences with a seq2seq model.

4.3 Experimental Setting
For both datasets, we generate N = 10 random walks started
at each node, and the length of walks is set to T = 10. For
both encoder and both decoder layers in dual models, we ap-
ply dropout with probability p = 0.2. For both datasets, we
set the matrixs U and V randomly initializated, the hidden
dimension of encoders k = 300, the hidden dimension of de-
coders hd = 600, ku = 400, kn = 300, kh = 600, ki = 400,
kk = [2, 3, 4, 5]. Besides, we setM = γ = 100, Z = 22, 110
on Cora dataset and M = γ = 48, Z = 46, 100 on Citeseer
dataset. The dimension of node embeddings is 2400 on both
datasets. With a NVIDIA GeForce GTX 1080Ti GPU, the ac-
tual running time of an epoch is about 4 minutes on Citeseer
dataset and 7 minutes on Cora dataset.

For all compared algorithms, hyper-parameters are set ac-
cording to the original papers. To eliminate the classifier’s
impact on performances, we apply the simple logistic regres-
sion classifier. Classification results are evaluated with the
micro F1-score. And the percentages of labeled nodes in clas-
sification are set to 10%, 30%, 50%, 70%, and 90%.

4.4 Node Classification Results
Table 1 and Table 2 demonstrate the classification results on
Cora and Citeseer datasets respectively, where the best results
among compared models are boldfaced. From these results,
we have the following observations and analyses:
• Among the four structure-only methods, DeepWalk,

node2vec, and GraRep perform better than LINE on
both datasets. The reason is that DeepWalk, node2vec,
and GraRep utilize higher order proximities than LINE.
• Baselines that consider both structure and content in-

formation (TADW, CANE, and STNE) perform bet-
ter than the structure-only baselines (DeepWalk, LINE,
node2vec and GraRep) on both datasets. It demonstrates

Ratio 10% 30% 50% 70% 90%

Content2Node 0.804 0.863 0.873 0.890 0.896
Node2Content 0.716 0.789 0.825 0.828 0.851
DGENE 0.812 0.864 0.882 0.897 0.901

Table 3: Ablation analysis results on Cora dataset

Ratio 10% 30% 50% 70% 90%

Content2Node 0.792 0.861 0.905 0.936 0.971
Node2Content 0.698 0.795 0.849 0.905 0.920
DGENE 0.833 0.890 0.932 0.950 0.980

Table 4: Ablation analysis results on Citeseer dataset

the necessity and superiority of integrating the structure
and content information into node embeddings.

• On both datasets, DGENE outperforms all compared
baselines, which proves the superiority and effective-
ness of our proposed model. By combining the Con-
tent2Node and Node2Content models under a dual
learning framework, DGENE fuses the structure and
content information from two different aspects. Thus a
significant improvement over baselines can be obtained.

4.5 Ablation Analysis
To verify the performance of each component of the model,
we conduct the ablation analysis. In both Content2Node and
Node2Content, hidden representations in the decoders are
taken as node embeddings. Table 3 and Table 4 demonstrate
the ablation analysis results on Cora and Citeseer datasets.

It is evident that DGENE performs better than Con-
tent2Node and Node2Content. The reason is that the dual
learning framework integrates the two opposite translation
processes between different modalities. Content2Node per-
forms better than Node2Content on both datasets because the
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Figure 3: Analysis about walk length, T , and number of walks, N
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Figure 4: Analysis about hidden dimension of LSTMs, k

node content sequences also contain some structure informa-
tion. Thus Content2Node can be better learned. However,
Content2Node can still benefit from Node2Content as their
combination, DGENE, further improves over Content2Node.
Besides, Content2Node in Table 3, 4 is an extension of STNE
with CNN, which performs better than STNE. It illustrates the
effectiveness of adopting CNN in Content2Node.

4.6 Parameter Analysis
We evaluate how different values of walk length T , walk
number N and hidden dimension k affect the performances,
while other parameters are fixed. Figure 3 illustrates the anal-
ysis about T and N . Generally speaking, the F1-scores first
rise with the increase of T andN values, and then fall on both
datasets. The combination of T = 10 and N = 10 performs
best, which agrees with the above parameter settings.

Figure 4 demonstrates the analysis of the hidden dimension
k. Regardless of how k changes, the F1-scores rise rapidly
in the early stages of training, and gradually reach the sta-
ble state, which demonstrates the robustness and stability of
DGENE. Among all k values, k = 300 achieves the best per-
formances, which conforms to our parameter settings.

4.7 Case Study
As aforementioned, our DGENE is able to generate new node
content owing to the Node2Content model. Here we present
two examples of generated texts using the DGENE model
learned on Cora dataset. With the trained model, a sequence
of nodes with contents are fed into it, and we let the decoder
of the Node2Content part continue to generate new node con-
tent after the content generation for the input nodes.

Figure 5 exhibits two examples of generated new con-
tents (in red boxes) given input content sequences (in blue
boxes) about “Markov Chains Monte Carlo” and “genetic al-
gorithm”, respectively. Obviously, the generated texts are se-
mantically coherent with the contextual node contents. It can

Input Content Sequence:

Generation:

Example1 

Various notions of geometric ergodicity for Markov chains on general state spaces 

exist. In this paper, we review certain relations and implications among them. We 

then apply these results to a collection of chains commonly used in Markov chain 

Monte Carlo simulation algorithms, the so-called hybrid chains.…

This paper gives precise, easy to compute bounds on the convergence time of the 

Gibbs sampler used in Bayesian image reconstruction… Some key words: …

Gibbs sampler; Markov chain Monte Carlo.

We present a general method for proving rigorous, a priori bounds on the number 

of iterations required to achieve convergence of Markov chain Monte Carlo…

a critical issue for users of markov chain monte carlo ( mcmc ) methods in 

applications is how to determine when it is safe to stop sampling and use the 

samples to estimate characteristics of the distribution of interest…

Input Content Sequence:

Generation:

Example2 

In this paper we explore the use of an adaptive search technique (genetic 

algorithms) to construct a system GABIL …

In this paper, we use a genetic algorithm to evolve a set of classification rules with 

real-valued attributes.…

Over the years there has been several packages developed that provide a work-

bench for genetic algorithm (GA) research…

a strategy for using genetic algorithms ( gas ) to solve np-complete problems is 

presented . the key aspect of the approach taken is to exploit the observation that , 

although all np-complete problems are equally difficult in a general computational 

sense …

In this paper we investigate genetic algorithms where more than two parents are 

involved in the recombination operation. ….

Handling NP complete problems with GAs is a great challenge. In particular the 

presence of constraints makes finding solutions hard for a GA. …

Figure 5: Generated text content given input sequences

be concluded that DGENE model can generate text content
according to the network context, which implies that mean-
ingful node embeddings are learned in the model. Moreover,
this generation ability is potentially useful in many applica-
tions, such as automatic web page generation and micro-blog
generation, etc.

5 Conclusion
In this paper, we presented DGENE, the first dual learning
framework for content-rich network embedding. Specifically,
we defined two generation tasks: Node Identification and
Content Generation. With the duality, our proposed DGENE
leverages the complementary information from the dual tasks,
which effectively models the flexible proximity and content
semantics in complex networks. Through a joint learning
framework, the representations learned by the Node2Content
model and the Content2Node model can be mutually en-
hanced. Moreover, our model is the first NE method that
can be applied to generation tasks. Extensive experiments
conducted on two real-world datasets demonstrated the effec-
tiveness and superiority of DGENE.
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