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Abstract

Code-switching, the interleaving of two or more
languages within a sentence or discourse is perva-
sive in multilingual societies. Accurate language
models for code-switched text are critical for NLP
tasks. State-of-the-art data-intensive neural lan-
guage models are difficult to train well from scarce
language-labeled code-switched text. A potential
solution is to use deep generative models to syn-
thesize large volumes of realistic code-switched
text. Although generative adversarial networks
and variational autoencoders can synthesize plausi-
ble monolingual text from continuous latent space,
they cannot adequately address code-switched text,
owing to their informal style and complex interplay
between the constituent languages. We introduce
VACS, a novel variational autoencoder architecture
specifically tailored to code-switching phenomena.
VACS encodes to and decodes from a two-level
hierarchical representation, which models syntac-
tic contextual signals in the lower level, and lan-
guage switching signals in the upper layer. Decod-
ing representations sampled from prior produced
well-formed, diverse code-switched sentences. Ex-
tensive experiments show that using synthetic code-
switched text with natural monolingual data results
in significant (33.06%) drop in perplexity.

1 Introduction

Multilingual text is very common on social media platforms
like Twitter and Facebook. A prominent expression of multi-
lingualism in informal text and speech is code-switching: al-
ternating between two languages, often with one rendered in
the other’s character set. Many NLP tasks benefit from accu-
rate statistical language models. Therefore, extending mono-
lingual language models to code-switched text is important.
Many state-of-the-art monolingual models are based on
recurrent neural networks (RNNs) [Chandu et al., 2018;
Winata et al., 2018]. We call them RNN language models
or RNNIms. RNNIm decoders, conditioned on task-specific
features, are heavily used in machine translation [Sutskever et
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al., 2014; Bahdanau et al., 2014], image captioning [Vinyals
et al., 2015] textual entailment [Bowman et al., 2015a] and
speech recognition [Chorowski et al., 2015].

Training RNNIms is data-intensive.  The paucity of
language-tagged code-switched text has been a major im-
pediment to training RNNIms well. This strongly motivates
the automatic generation of plausible synthetic code-switched
text to train state-of-the-art neural language models.

Synthetic but realistic monolingual text generation is it-
self a challenging problem, on which recent deep genera-
tive techniques have made considerable progress. Two gen-
erative architectures are predominantly used: (a) Generative
Adversarial Networks (GAN) [Goodfellow et al., 2014] and
(b) Variational AutoEncoders (VAE) [Kingma and Welling,
2013]. Several recent works have successfully extended
GANSs [Zhang er al., 2017; Kannan and Vinyals, 2017] and
VAEs [Bowman ef al., 2015b] to generate diverse and plausi-
ble synthetic monolingual texts.

Generating plausible code-switched text is an even more
delicate task than generating monolingual text. Linguistic
studies show that bilingual speakers switch languages by fol-
lowing various complex constraints [Myers-Scotton, 1997;
Muysken et al., 2000] which may even include the intensity
of sentiment expressed in various segments of text [Rudra et
al., 2016]. [Pratapa et al., 2018] synthesized code-mixed
sentences by leveraging linguistic constraints arising from
Equivalence Constraint Theory. While this works well for
language pairs with good structural correspondence (like
English-Spanish), we observe performance degrades with
weaker correspondence (like English-Hindi).  [Bidisha et
al., 2019] proposes a method to generate code-switched text
given a source and target sentence pair, with a restrictive set
of switching patterns. Therefore, a code-switched text syn-
thesizer needs to learn overall syntax distributions of code-
switched sentences, as well as model complex switching pat-
terns conditioned on it.

Owing to its great syntactic and switching diversity, large
volumes of language-labeled code-switched text is needed
to train monolingual deep generative models, which are not
available. The only alternative is to train monolingual mod-
els with parallel corpora of the two constituent languages
which may be relatively easily obtainable. However, train-
ing a GAN with aligned parallel corpora may not help, be-
cause it is designed to generate a sentence from a noise dis-
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tribution instead of any learned latent embedding space. Us-
ing a VAE RNNIm [Bowman er al., 2015b] is more promis-
ing. Aligned parallel corpora are expected to yield similar
representations for a source-target sentence pair. Therefore,
a VAE decoder conditioned on this embedding may gener-
ate some code-switch text without applying explicit external
force. However, it is unlikely to learn subtle connections
between context and switching decisions as well as a cus-
tomized VAE solution, which is our goal.

Here we present VACS, a new deep generator of code-
switched text, based on a hierarchical VAE augmented with
language- and syntax-informed switching components.

e Observed language-labeled code-switched text is encoded
to a two-layer compressed representation. The lower layer
encodes sequential word context. Conditioned on this
lower layer, the encoder models the switching behavior in
the higher layer. This contrasts with existing dual-RNNIm
architectures [Garg et al., 2018] that do not have any ex-
plicit gadget to model the switching behavior. Our encoder
learns the two-layer representation via variational infer-
ence so that the resulting encoded representations enable
our decoder to readily generate new code-mixed sentences.

e Our decoder is designed to sample a context sequence,
given a switching pattern. Unlike previous RNNIms
[Chandu er al., 2018] which consider context and tag gen-
eration as independent processes, the decoder of VACS first
decodes a switching pattern from the switching embedding
and then uses this switching pattern memory as well as the
lower-layer compressed encoding, to generate a sequence
of words in a restrictive fashion. context sequence. The

e During the decoding process, VACS (trivially) generates
the language labels for each word in the sentence. Thus,
VACS lets us synthesize unlimited amounts of labeled
code-switched text, starting with modest-sized samples.

Owing to the asymmetry between word and label sequences,
our encoder and decoder layers show some asymmetries tai-
lored to code-switching, which distinguishes VACS from a
regular RNN-based VAE.

Through extensive experiments reported here, we estab-
lish that augmenting scarce natural labeled code-switched
text with plentiful synthetic code-switched text generated by
VACS significantly improves the perplexity of state-of-the-art
language models. The perplexity of the models on held-out
natural Hindi-English text drops by 33.32% compared to us-
ing only natural training data. Manual inspection also shows
that VACS generates sentences with diverse mixing patterns.'

2 Background on VAEs

VAEs [Kingma and Welling, 2013] are among the most pop-
ular deep generative models. They define a decoding prob-
ability distribution py(x|z) to generate observation z, given
latent variables z, which are sampled from a simple prior
distribution p,(z). The objective of the VAE is to learn an
approximate probabilistic inference model ¢, (z|z) that en-

"https://github.com/bidishasamantakgp/VACS

5176

codes latent factors or features z of the variation in the ob-
served data x.

Distributions p and ¢ are often parameterized using deep
neural networks. We use the maximum likelihood principle
to train a VAE, i.e., maximize the expected lower bound of
the likelihood on observed data © ~ D:

mj}x meaX]ED Eq, (z)2) log po(z]2) — KL(q¢(z|a:)||p7r(z))}

To represent more complex features in the latent space, mul-
tiple VAEs are stacked hierarchically [Rezende er al., 2014;
Sgnderby er al., 2016]. The stack of latent variables Z are de-
signed to learn a “feature hierarchy”. For a hierarchical VAE
with A layers, the prior, encoding and decoding probability
distributions are modeled as below:

Encoder:  ¢4(Z|x) = gg(21]2) HQ:Q gs(2al2r-1)
Prior: pr(Z) = p(za) Hﬁ\\;ll po(zalzat1) (D)
Decoder:  pg(x|Z) = po(x|21)

The performance of the above scheme is sensitive to the de-
sign of the layers. Layers A > 1 may fail to capture extra
information. Excessively deep hierarchies with large A may
lead to training difficulties [Sgnderby et al., 2016].

3 VACS: A VAE for Code-switched Text

This section gives a high-level overview of VACS, followed
by details of the building blocks, highlighting key advances
beyond prior art. Our focus will be on components that im-
plement a context-based switching distribution. Later, we de-
scribe the training process and other implementation details.

3.1 Overview

We aim to design a VAE for code-switched text, which, once
trained on a collection of tagged code-mixed text should be
able to generate new code-mixed text from the same vocabu-
lary. We represent a code-switched sentence S as {(w;, y;) :
i=1,...,|5]}, where (w;,y;) is a pair comprised of a word
w; at position ¢ and the corresponding language label y; to
which it belongs. Here we consider the simple case of switch-
ing between two languages, a source language s and a target
language ¢t. Let SOS, EOS denote start and end of sentence
markers. Generation of output stops when label EOS is gen-
erated. We let y; take values from {s, ¢, EOS}. When discrete
values like w;, y; are input to networks, they are one-hot en-
coded. VACS is characterized by these components:

Prior: p.(Z)
Inference model (encoder): ¢4(Z|W,Y)
Generative model (decoder): pg(W,Y|Z)

In our formulation, Z will consist of two latent encoded
representations z; and z.. Here z; is the representation of
language-switching behavior, which is generated conditioned
on the context representation z., which captures syntactic
and structural properties of a sentence. W is the observed
sequence of words and Y is the corresponding label se-
quence. Given our objective, a hierarchical VAE architecture
is adapted for the basic formulation with suitable departures
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Figure 1: The encoder and decoder in VACS. (a) Graphical model and the recurrent architecture of the encoder. (b) Graphical model and

recurrent architecture of the decoder.

whenever required. The next subsections will cover in details
the inference model, generative model and prior.

3.2 Encoder

Given observed labeled sentence (W,Y), our inference
model g4 defines a hierarchical probabilistic encoding Z =
(ze, 21) by first learning the content, structural embedding z.
of the entire sentence. Using this embedding z. along with
sequentially learned language label information the inference
model g4 encodes the latent switching pattern embedding z;.
Figure 1 (a) illustrates the encoder. We use two distinct RNN
(LSTM) cells in the encoder, 74 . and 74 ;. Their correspond-
ing recurrent states are denoted A(9¢) and h(¢). Input token
positions are indexed as ¢ = 0,1,...,I. The recurrence to
estimate z. goes like this.

We initialize A" =0 2)
Fori=1,...,I: ) =r, (w;h{"9) 3)
Finally, [g,c,04.] = fq,C(hgq,C)) 4

and then  z, ~ gy (2e| W) = N (g, diag(c) )  (5)
Next we estimate the encoding z;.

We initialize A" = 2, (6)

Fori=1,...,1I: hl(-q’l) = 7¢.1(Ys, hﬁ’i’?) @)

[:u’q,lao'q,l] = fq,l(hg'q’l)) (®
and then 2 ~ qy(21]2c, Y) = N (g, diag(o7,;)).  (9)
46(ZIW,Y) = qy(2:[W)gs (2|2, Y)
Here, p4,c, 04, are the mean and standard deviation for the
context encoding and ji4 1, 04,1 are the mean and standard de-
viation for the switching behavior encoding distribution. A
denotes normal distribution. diag(-) represents a diagonal co-
variance matrix. fq ., fy,; are modeled as feed forward stages,
Tq,c, Tq,1 are designed as recurrent units. We use the subscript
q (or p) to highlight if it belongs to encoder (or decoder).
Summarizing the distinction from traditional hierarchical
VAE, VACS’s inference module accepts inputs in both encod-
ing layers: word sequence at the ground layer and language
label sequence at the upper layer. Learning a sequence model
over language labels becomes difficult (even with hierarchi-
cal encoding) if we provide both the inputs only in the lowest

Finally,

Overall,

level, possibly by concatenating suitable embeddings [Winata
etal., 2018].

3.3 Decoder

Starting from Z = (z, z.), our probabilistic decoder gener-
ates synthetic code-switched text with per-token language ID
labels, using a two-level hierarchy of latent encoding. How-
ever, unlike the conventional hierarchical variational decoder,
VACS decodes a switching pattern given z; at the upper level,
then conditioned on z; and the decoded tag history it gener-
ates a content distribution z.. Here we need to design a spe-
cific decoupling mechanism of z, from z;, which is not just
the reverse of encoding technique. As z; has the switching in-
formation as well as the context information, we use both z;
and h(y) which is the history of label decoding to decode the
distribution of z.. We design the loss in such a way that tries
to minimize the difference between encoding and decoding
distribution of z..

We use two distinct RNN (LSTM) cells in the decoder,
rpy and 1, .. Their corresponding recurrent states are de-
noted A”) and h(P¢). Output token positions are indexed

o=1,...,0. The feedforward network to convert h((,p Dioa
multinomial distribution over y, is called f ;.

We initialize h(()p’l) = z; and yy = SOS (10)
Foro=1,...,0: h®"Y =r, (yo_1, b2y (1)

o—1
Yo ~ Multi(f,1(h"V)) - (12)
Decoding continues until some yo = EOS is sampled at some
O, and then stops. Effectively this amounts to sampling from
pe(Y|z). Once all labels Y = y1,...,y0 are generated,

we decode z. and start generating words w1, ..., wo. fp.c
denotes the feedforward network to decode z. as follows.

[Mp,w Up,C] = fp,C(hgla Zl) 13)
2 ~ ozl 2, hEY) = Ny e, diag(02,))  (14)

The feedforward network £, converts 2" to a multino-
mial distribution over words from the languages indicated by
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Yi,---,Yo-
We initialize A9 =z, and wy =S50S (15)
Foro=1,...,0: hgp@ = 7p.c(Wo—1, hgzcl)) (16)

Wy ~ Multi(f%w(hgp’c)’ yo)) a7

If y, = s, fp, returns a multinomial distribution over the
source vocabulary, and if y, = ¢, f,. returns a multino-
mial distribution over the target vocabulary. Effectively, we
have sampled W from the distribution pg(WY, z..). Over-
all, decoding amounts to sampling from py(Y,W|Z) =
po(Y|z1) po(WY, zc).

Figure 1 (b) illustrates the decoder architecture. VACS de-
parts from existing dual RNN architectures [Garg er al., 2018]
(two RNNs dedicated to s and ?) in the following two ways:

e Instead of using a softmax output of two decoding RNNs
corresponding to two language generators, VACS learns to
decode language labels explicitly from a latent space.

e By using tightly-coupled decoding RNNs, parameter learn-
ing in VACS becomes more effective.

This way the decoder can generate word sequence in a more

controlled fashion. The recursive word decoding unit gener-

ates a word given the predicted label from the language 1D

decoding layer.

3.4 Prior

The latent variable z; can be sampled from the standard nor-
mal distribution:

pr(21) ~ N(0,I) (18)
and then reuse pp(z.|z;) to define
p?T(Z) :pﬂ(zl)p9(30|zl) (19)

3.5 Training

Given a collection of M  code-switched text
Sm) = (W) y(m)y.m=1,...,M, we train our
model by maximizing the evidence lower bound (ELBO),
as described in Section 2. In our case, after taking into
consideration the dependence between z. and z;, the ELBO
can be simplified to:

|:]Eq¢(z(7n) [W ) |y (m) logpg(W("”), Yy (™ |Z(m))

.6 me[M]

= Eq, (oo KL (g (212, Y ™) I (22))

_E%(zchW),pe(zc|z,>KL(CI¢(Zc)|Ipa(ZCIZz))} (20

Because human-labeled code-mixed text is scarce, we first
train VACS with the parallel corpora specified in Section 4.1,
with aligned word embeddings. Then we further tune model
parameters using real code-switched data, also specified in
Section 4.1. We used Adam optimiser and KL cost annealing
technique [Bowman er al., 2015b] to train VACS.

4 Experimental Setup

Here, we describe the labeled data sets, baseline paradigms,
and evaluation criteria, followed by the description of lan-
guage models used to evaluate the utility of the synthesized

5178

4.1 Datasets to Train Generative Models

To train the generative models, we use a subset of the (real)
Hindi-English tweets collected by [Patro et al., 2017] and au-
tomatically language-tagged by [Rijhwani et al., 2017] with
reasonable accuracy. From this set we sample 6K tweets
where code-switching is present, which we collect into folds
rCS-train, rCS-valid. 5K tweets are found labeled with only
one language. These monolingual instances are converted
into parallel corpora by translating Hindi sentences to En-
glish and vise versa using Google Translation API?, gener-
ating 10K instances. The word embeddings of the two lan-
guages are aligned. We used different charset for Hindi (De-
vnagari) and English (Roman) .

4.2 Baseline Generative Models

Deep generative models. To understand the difficulties
of extending existing monolingual text generators to code-
switched text, we design four baselines from two state-of-
the-art generative models. [Bowman et al., 2015b] showed
impressive results at generating monolingual sentences from
a continuous latent space. They extended RNNIms with a
variational inference mechanism. However, their model does
not allow inclusion of hand crafted features like language 1D,
POS tag etc. Meanwhile, [Zhang et al., 2017] proposed a
GAN model to generate a diverse set of sentences. Based on
these, our baseline approaches are:

pVAE: We train the network of [Bowman et al., 2015b] with
the parallel corpora. The probability of generating a word
is designed as a softmax over the union vocabulary. As
both of the corpora are mapped to the same latent space
due to aligned embeddings, we expect the model to switch
language whenever it finds a word from the other language
more probable than a word in the same language as the cur-
rent word.

rVAE: To further make the model learn specific switching
behaviors we train the model with the real code mixed text
along with the parallel data.

PGAN: Similar to pVAE, we train the network proposed by
[Zhang er al., 2017] with the parallel text corpora.

rGAN: GAN trained with the real code-switched data along
with the parallel corpora.

RNNIm based generative models. Though language mod-
els are built primarily to estimate the likelihood of a given
sentence, they can also be used as a generative tool. Re-
cently, RNN based language models have been used to gen-
erate code-switched text as well, giving significant perplex-
ity reduction compared to generic language models that do
not consider features specific to code-switching. We compare
VACS against the following code-switched LMs:

aLM: We train the system proposed by [Winata er al., 2018]
using the real code-switched text and then use a word de-
coder and language decoder to generate synthetic texts.

Zhttps://translation.googleapis.com
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bLM: After training the system proposed by [Chandu et al.,
2018] with the real code-mixed text, we use their LSTM
decoder to generate synthetic text.

4.3 Direct/Intrinsic Evaluation

Here we analyse the features like length distribution and di-
versity of code-switching of generated synthetic texts. We
also measured one sentence level metric Code-Mixing Index
(CMI) coined by [Gambick and Das, 2016], and three cor-
pus level metrics Multilingual index (M-Index), Burstiness
and Span Entropy that were introduced in [Guzmaén er al.,
2017] to demonstrate how different the generated texts are
from the training corpus in terms of switching.

aLM
bLM
PVAE
rVAE
rGAN
VACS
real

g

Frac. of generated sentences
-
£

=5 510 10-15 15-20 2025 2
Length of generated sentences

b

Figure 2: Length distribution of the generated sentences from differ-
ent methods. VACS generates closest length distribution.

4.4 Indirect/Extrinsic Evaluation

We will use prior methods and VACS to generate large vol-
umes of code-switched text. These will be used to train a pay-
load language model (as distinct from the generative model
of VACS and baselines) — specifically, the character-level
LSTM proposed by [Kim et al., 2016]. Each training corpus
will result in a trained payload model. The various payload
models will then be used to calculate perplexity [Brown et
al., 1992] scores on a held-out natural code-switched corpus.
The assumption is that the payload model with the smallest
perplexity was trained by the ‘best’ synthetic text.

Training curricula. [Baheti er al., 2017] show that language
models perform better when trained with an interleaved cur-
riculum of monolingual text from both the participating lan-
guages, then ending with code-switched (CS) text, rather than
randomly mixing them. We build the curriculum from the fol-
lowing corpora:

Mono: 2K monolingual Hindi and 2K monolingual English
tweets were sampled from the dataset. We translated Hindi
to English and vice versa and make a set of 8K tweets.

X-gCS: This is the generated synthetic data. We sampled 5K
generated synthetic code-switched text from various genera-

tive models. Here X denotes the generative method, which is
one of {pVAE, rVAE, pGAN, rGAN, aLM, bLM, VACS}.

The specific curricula we use are:
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[ Dataset | Avg CMI [ M-index [ Burstiness | Span Entropy |
[rCStrain | 056 | 0778 | 0232 | 1498 |
PVAE-2CS 2020 | +0.108 +0.081 0527
IVAE-2CS F0.01 | 40216 | +0.058 0375
VACS-gCS +0.08 | +0.078 +0.065 0.192
aLM-gCS F0.12 | +0.201 +0.036 0299
bLM-gCS +0.14 +0.155 +0.023 -0.287
rGAN-gCS +0.17 +0.219 +0.081 -0.622

Table 1: Intrinsic evaluation of real and generated CS.

Mono, which uses no synthetic data.
gCS | Mono, first synthetic then parallel monolingual.
Mono | gCS, first parallel monolingual, then synthetic.

Here C1|C5 denotes the sequence of corpora used to train the
language model. Designing multi-task losses to guard against
catastrophic forgetting is left for future work.

Validation and Testing. We sample 7K instances from the
original real code-switched pool for validation and 7K for
testing. These are considered as scarce evaluation resources
and not used in payload training.

S5 Results and Analysis

In Section 5.1 we compare intrinsic properties of synthetic
texts generated from various models. In Section 5.2 we
compare perplexities of payload language models prepared
from text synthesized by various generators. Finally, in Sec-
tion 5.3, we present anecdotes about generated text and its
quality. pGAN fails to generate any appreciable rate of code-
switching. Therefore, we refrain from considering it further.

5.1 Intrinsic Properties of Synthesized Text

Based on 5000 synthetic sentences sampled from different
generative methods, we report the following properties.

Length. We investigate the quality of generation methods in
terms of variation in length and diversity. Other than bLM,
all baselines tend to produce sentences shorter than 15 words.
But Figure 2 shows that real sentences have average length
~16 and may be as long as 25 words. rGAN generates
very short sentences, at most 5 words long, and pVAE and
rVAE generate sentences with an average length of ~10. For
alLM and bLM average lengths are ~10 and ~12 respectively.
VACS has a mean of ~17 and follows the distribution of real
code-switched data most closely.

CMI, M-index, Burstiness, Span-Entropy. We report the
metric values of the generated corpus and the real corpus
in Table 1. VACS is closest to the real corpus in terms of
M-index and Span entropy, which indicates the ratio differ-
ent language tokens in the generated sentences and language
span distribution is closer to the real data. Though VACS
produces a larger CMI and burstiness as it can produce sen-
tences of different lengths and various switching patterns; its
CMI is still smaller than GAN, alLM, and bLM and bursti-
ness smaller than GAN and pVAE. GAN generates the high-
est CMI and burstiness indicating haphazard switching pat-
terns. On the other hand, pVAE produces lowest CMI and
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Training Curricula | Valid PPL | Test PPL

1 Mono | 3034.251 | 3123.827
2a aLM-gCS | Mono | 3094.998 | 3179.039
bLM-gCS | Mono | 3051.042 | 3123.510
rGAN-gCS | Mono | 3206.175 | 3298.085
pVAE-gCS | Mono | 2839.840 | 2899.397
rVAE-gCS | Mono | 2383.426 | 2337.617
VACS-gCS | Mono | 2243.578 | 2296.533

2b Mono | aLM-gCS | 3083.314 | 3189.905
Mono | bLM-gCS | 2829.149 | 2896.337

Mono | tGAN-gCS | 3015.820 | 3069.263
Mono | pVAE-gCS | 2807.296 | 2869.633
Mono | rVAE-gCS | 2418.342 | 2493.023
Mono | VACS-gCS | 2081.774 | 2090.781

Table 2: Perplexity of payload language model using different train-
ing curricula. VACS achieves the lowest perplexity. Green: lower
perplexity than Mono baseline; yellow and red: larger perplexity
than Mono baseline (gray).

span entropy indicating that the generated sentences are “‘al-
most monolingual” or the language spans are equal in length.
rVAE produces CMI very close to real and less diverse in
terms of both switching and length distribution. Along with
generating Burstiness with various switching patterns GAN
also has highest burstiness

5.2 Extrinsic Perplexity

Table 2 provides a comparative study on the perplexity
achieved on real validation and test CS text, after training
a payload language model with different curricula spanning
parallel monolingual (Mono) and generated CS (gCS) text.

Obviously, a payload language model that has seen only
monolingual text when training will have large perplexity on
held-out real CS text, which shows a diversity of switching
behavior, in terms of both syntax structure near switches and
the distribution of words used in switched segments. We ex-
pect that, in the absence of real CS text adequate to train the
payload model, large volumes of synthetic text will help.

Surprisingly, this does not happen for aLM-gCS, bLM-
gCS, and rGAN-gCS. Adding these texts to the monolingual
baseline makes payload perplexity generally worse and much
worse in some cases, in particular, TGAN-gCS. VAE has bet-
ter success. For the gCS|Mono curriculum, pVAE-gCS im-
proves upon the baseline, but rVAE-gCS does worse. On
further investigation we found that, pVAE generates ~80%
monolingual data, this contributes to the monolingual cor-
pus which makes the training more coherent than mixing with
code-switched data with low quality. For the Mono|gCS cur-
riculum, both pVAE and rVAE perform worse than Mono.

In sharp contrast, VACS-gCS achieves the best (smallest)
perplexity in both curricula, and much smaller than the Mono
baseline. This shows that synthetic text from VACS can be
used effectively to supplement parallel monolingual corpora.
pVAE is the second best choice.

GAN-based synthetic text performs poorly. pGAN fails
to generate any plausible code-switched text as it does not
get any real code-switch samples from the parallel corpora.
rGAN performance is also worse than other generative mod-
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Sentences

hara gaya pakistan hamen logon ke tweet rato karane
(Pakistan defeats us to stop people from tweeting)

apane logon ko batting upalabdh series ke

(Batting series available to our people)

cricket run banaake kiya SA ke haar

(Defeated SA by making runs in cricket)

ladakiyon 20 assembly pratishat se

(Girls from 20 assembly percent)

vichaar bhee bikree that is 25 guna assembly ka

(Justice is also sold, that is 25 times assembly)

assembly against asia pradesh irfaan teesree har breaking
(Assembly against asia irfaan’s third deafeat was breaking)

Table 3: Sentences synthesized by VACS. Each row corresponds to
sentences sampled from a fixed context representation. The Blue
segments are in Hindi. Green: English translation of CS text.

els. Though [Zhang et al., 2017] avoided mode collapsing
problems common in GANs, we observed that the problem
prevailed for longer sentences (>10 words) when trying to
train with small amounts of code-switched text. The problem
persists because CS text is much more syntactically diverse
than monolingual corpus, so training a GAN with a small
number of real samples produces sub-optimal results.

The performance of aLM and bLM, while better than
GANsS, is far from VACS. These LMs are designed explic-
itly for code-switched languages and require language-tagged
data. Hence the generative power of such models strongly de-
pends on the size and quality of tagged training data available.

5.3 Sample Synthetic Sentences

Table 3 shows sentences generated by VACS. All sentences
in a row block are sampled from the same context embed-
ding z., and each row corresponds to a different z;. Note that
the generated sentences seem to be able to produce a similar
context. Like row (a) corresponds to cricket and (b) to assem-
bly. It learns to produce meaningful phrases most of the cases
which seem reasonable syntactically; however, semantics and
pragmatics are not realistic, like in monolingual synthesis.

6 Conclusion

We proposed VACS, a novel variational autoencoder, to syn-
thesize unlimited volumes of language-tagged code-switched
text starting with modest real code-switched and abundant
monolingual text. We showed that VACS generates text of
various lengths and switching pattern. We also showed that
synthetic code-switched text produced by VACS can help
train a language model which then has low perplexity on real
code-switched text. We further demonstrated that we can gen-
erate reasonable syntactically valid sentences with language-
tags which can be used for various downstream applications
like language labeling, POS tagging, NER etc.
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