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Abstract
Online reviews have become a vital source of infor-
mation in purchasing a service (product). Opinion
spammers manipulate reviews, affecting the overall
perception of the service. A key challenge in detect-
ing opinion spam is obtaining ground truth. Though
there exists a large set of reviews, only a few of
them have been labeled spam or non-spam. We pro-
pose spamGAN, a generative adversarial network
which relies on limited labeled data as well as unla-
beled data for opinion spam detection. spamGAN
improves the state-of-the-art GAN based techniques
for text classification. Experiments on TripAdvisor
data show that spamGAN outperforms existing tech-
niques when labeled data is limited. spamGAN can
also generate reviews with reasonable perplexity.

1 Introduction
Opinion spam is a widespread problem in e-commerce, social
media, travel sites, movie review sites, etc. [Jindal et al., 2010].
Statistics show that more than 90% of consumers read reviews
before making a purchase 1. The likelihood of purchase is
also reported to increase with more reviews. Opinion spam-
mers exploit such financial gains by providing spam reviews
which influence readers and thereby affect sales. We consider
the problem of identifying spam reviews as a classification
problem, i.e., a review can be classified as spam or non-spam.

One of the main challenges in identifying spam reviews
is the lack of labeled data, i.e., spam and non-spam la-
bels [Rayana and Akoglu, 2015]. While there exists a corpus
of online reviews, only few of them are labeled. This is mainly
because manual labeling is often time consuming, costly and
subjective [Li et al., 2018]. Research shows that unlabeled
data, when used in conjunction with small amounts of labeled
data can produce considerable improvement in learning accu-
racy [Ott et al., 2011]. There is very limited research on using
semi-supervised learning techniques for opinion spam detec-
tion [Crawford et al., 2015]. The existing semi-supervised
learning approaches [Li et al., 2011; Hernández et al., 2013;
Li et al., 2014] for identifying opinion spam use pre-defined
set of features for training their classifier. In this paper, we will

1https://learn.g2crowd.com/customer-reviews-statistics.

use deep neural networks which will automatically discover
features needed for spam classification [LeCun et al., 2015].

Deep generative models have shown promising results for
semi-supervised learning [Kumar et al., 2017]. Specifically,
Generative Adversarial Networks (GANs) which have the abil-
ity to generate samples very close to real data have achieved
state-of-the art results. However, most research on GANs
are for images (continuous values) and not text data (discrete
values) [Fedus et al., 2018]. GANs operate by training two
neural networks which play a min-max game: discriminator
tries to discriminate real training samples from fake ones and
generator tries to generate fake training samples to fool the
discriminator. The drawbacks with GANs are: 1) when data
is discrete, the gradient from the discriminator may not be
useful for improving the generator, because the slight change
in weights brought forth by the gradients may not correspond
to a suitable discrete mapping in the dictionary [Huszár, 2015];
2) the discrimination is based on the entire sentence not parts
of it, leading to the sparse rewards problem [Yu et al., 2017].

Very few GAN-based methods (SeqGAN [Yu et al., 2017],
StepGAN [Tuan and Lee, 2018], MaskGAN [Fedus et al.,
2018]) exists for text generation (not classification). However,
they are limited by the length of the sentence that can be
generated, e.g., MaskGAN considers 40 words per sentence.
These approches are unsuitable for most online reviews which
are relatively lengthy, e.g., the TripAdvisor review dataset
used in our experiments has sentences with median length 132.
The only existing GAN-based approach for text classification,
CS-GAN [Li et al., 2018] is not optimal for spam detection
due to the length of reviews, subtlety of classification, lack of
labeled data (CS-GAN is supervised) and computation time.

In this paper, we propose spamGAN, a semi-supervised
GAN based approach for classifying opinion spam. spamGAN
uses both labeled instances and unlabeled data to correctly
learn the input distribution, resulting in better prediction ac-
curacy for comparatively longer reviews. spamGAN consists
of 3 different components: generator, discriminator, classifier
which work together to not only classify spam reviews but
also generate samples close to the train set. We conduct ex-
periments on TripAdvisor dataset and show that spamGAN
outperforms existing works when using limited labeled data.

Following are the main contributions of this paper: 1) To the
best of our knowledge, we are the first to explore the potential
of GANs for spam detection; 2) spamGAN improves the state-
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of-the-art GAN based models for text classification as it lever-
ages both labeled, unlabeled data in a semi-supervised manner
(see Sec. 2 for details); 3) most existing research (non-deep
learning methods) on opinion spam manually identify heuris-
tics/features for classifying spamming behavior, however, in
our GAN based approach, the features are learned by the neu-
ral network; 4) experiments show that spamGAN outperforms
state-of-the art methods in classifying spam when limited la-
beled data is used; 5) spamGAN can generate spam/non-spam
reviews very similar to the training set which can be used for
synthetic data generation in cases with limited ground truth.

2 Related Work
Existing opinion spam detection techniques are mostly su-
pervised methods based on pre-defined features. [Jindal and
Liu, 2008] used logistic regression with product, review and
reviewer-centric features. [Ott et al., 2011] used n-gram fea-
tures to train a Naive Bayes and SVM classifier. [Feng et al.,
2012], [Mukherjee et al., 2013], [Li et al., 2015] used part-of-
speech tags and context free grammar parse trees, behavioral
features, spatio-temporal features, respectively.

Neural network methods for spam detection consider the re-
views as input without specific feature extraction. GRNN [Ren
and Ji, 2017] used a gated recurrent neural network to
study the contexual information of review sentences. DRI-
RCNN [Zhang et al., 2018] used a recurrent network for learn-
ing the contextual information of the words in the reviews.
DRI-RCNN extends RCNN [Lai et al., 2015] by learning
embedding vectors with respect to both spam and non-spam
labels. As RCNN, DRI-RCNN use neural networks, we will
compare with these supervised methods in our experiments.

Few semi-supervised methods for opinion spam detection
exist. [Li et al., 2011] used co-training with Naive-Bayes clas-
sifier on reviewer, product and review features. [Hernández et
al., 2013; Li et al., 2014] used only positively labeled samples
along with unlabeled data. [Rayana and Akoglu, 2015] used
review features, timestamp, ratings as well as pairwise markov
random field network of reviewers and product to build a
supervised algorithm along with semi-supervised extensions.
Other un-supervised methods for spam detection [Xu et al.,
2015] exists, but, they are out of the scope of this work.

With respect to GANs for text classification, SeqGAN [Yu
et al., 2017] addresses the problem of sparse rewards by con-
sidering sequence generation as a Reinforcement Learning
problem (RL). Monte Carlo Tree Search (MCTS) is used to
overcome the issue of sparse rewards, however, it is compu-
tationally intractable. StepGAN [Tuan and Lee, 2018] and
MaskGAN [Fedus et al., 2018] use the actor-critic [Konda
and Tsitsiklis, 2000] method to learn the rewards, but, they
are limited by length of the sequence. Further, all of them
focus on sentence generation. CSGAN [Li et al., 2018] deals
with sentence classification and incorporates a classifier in
its architecture, but performance significantly degrades with
sentence length as it uses MCTS and character-level embed-
dings. spamGAN differs from CSGAN in using the actor-critic
reinforcement learning method for sequence generation and
word-level embeddings, suitable for longer sentences. The RL
architecture in spamGAN helps to mutually bootstrap the gen-

Figure 1: spamGAN Architecture

erator and classifier while the discriminator and generator are
competing. To handle longer sentences, our RL architecture
(inspired from stepGAN) has the advantage of requiring only a
single pass of the generated sentence through the discriminator
and classifier per example, reducing training time.

3 spamGAN
In this section, we will present the problem set-up, the three
components of spamGAN as well as their interactions through
a sequential decision making framework.

3.1 Problem Set-up
Let DL be the set of reviews labeled spam or non-spam. Given
the cost of labeling, we hope to improve classification perfor-
mance by also using DU, a significantly larger set of unlabeled
reviews2. Let D = DL ∪ DU be a combination of labeled
and unlabeled sentences for training3. Each training sentence
y1:T = {y1, y2, . . . yt, . . . , yT } consists of a sequence of T
word tokens, where yt ∈ Y represents the tth token in the
sentence and Y is a corpus of tokens used. For sentences be-
longing to DL, we also include a class label belonging to one
of the 2 classes c ∈ C : {spam, non-spam}.

To leverage both the labeled and unlabeled data, we include
three components in spamGAN: the generator G, the discrimi-
nator D, and the classifier C as shown in Fig. 1. The generator,
for a given class label, learns to generate new sentences (we
call them fake4 sentences) similar to the real sentences in
the train set belonging to the same class. The discriminator
learns to differentiate between real and fake sentences, and
informs the generator (via rewards) if the generated sentences
are unrealistic. This competition between the generator and
discriminator improves the quality of the generated sentence.

We know the class labels for the fake sentences produced
by the generator as they are controlled [Hu et al., 2017], i.e.,
constrained by class labels {spam, non-spam}. The classifier
is trained using real labeled sentences from DL and fake sen-
tences produced by the generator, thus improving its ability
to generalize beyond the small set of labeled sentences. The
classifier’s performance on fake sentences is also used as feed-
back to improve the generator: better classification accuracy

2DU includes both spam/non-spam reviews.
3Training (see Alg. 1) can use only DL or both DL and DU.
4Fake sentences are those produced by the generator. Spam sen-

tences are deceptive sentences with class label spam. Generator can
generate fake sentences belonging to {spam or non-spam} class.
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results in more rewards. While the discriminator and gener-
ator are competing, the classifier and generator are mutually
bootstrapping. As the 3 components of spamGAN are trained,
the generator produces sentences very similar to the training
set while the classifier learns the characteristics of spam and
non-spam sentences in order to identify them correctly.

3.2 Generator
If PR(y1:T , c) is the true joint distribution of sentences y1:T
and classes c ∈ C from the real training set, the gener-
ator aims to find a parameterized conditional distribution
G(y1:T |z, c, θg) that best approximates the true distribution.
The generated fake sentence is conditioned on the network
parameters θg, noise vector z, and class label c, which are
sampled from the priors Pz , Pc, respectively. The context
vector (consisting of z, c) is concatenated to the generated
sentence at every timestep [Tuan and Lee, 2018], so that the
actual class labels for each generated fake sentence is retained.

While sampling from G(y1:T |z, c, θg), the word tokens are
generated auto-regressively, decomposing the distribution over
token sequences into the ordered conditional sequence,

G(y1:T |z, c, θg) =
T∏
t=1

G(yt|y1:t−1, z, c, θg) (1)

During pre-training, we use batches of real sentences from
D and minimize the cross-entropy of the next token condi-
tioned on the preceding ones. Specifically, we minimize the
loss (Eqn. 2) over real sentence-class pairs (y1:T , c) from DL
as well as unlabeled real sentences from DU with randomly-
assigned class labels drawn from the class prior distribution.

LGMLE = −
T∑
t=1

log G(yt|y1:t−1, z, c, θg) (2)

During adversarial training, we treat sequence generation as
a sequential decision making problem [Yu et al., 2017]. The
generator acts as a reinforcement learning agent, trained to
maximize the expected rewards using policy gradients, where
rewards are feedback obtained from discriminator, classifier
for the generated sentences (See Sec. 3.5). For implementing
the generator, we use a unidirectional multi-layer recurrent
neural network with gated recurrent units as the base cell.

3.3 Discriminator
The discriminator D, with parameters θd predicts if a sentence
is real (sampled from PR) or fake (produced by the gener-
ator) by computing a probability score D(y1:T |θd) that the
sentence is real. Like [Tuan and Lee, 2018] instead of com-
puting the score at the end of the sentence, the discriminator
produces scores QD(y1:t−1, yt) for every timestep, which are
then averaged to produce the overall score.

D(y1:T |θd) =
1

T

T∑
t=1

QD(y1:t−1, yt) (3)

QD(y1:t−1, yt) is the intermediate score for timestep t and
is based solely on the preceding partial sentence y1:t. In a
setup reminiscent of Q-learning, we consider QD(y1:t−1, yt)
to be the estimated value for the state s = y1:t−1 and action
a = yt. Thus, the discriminator provides estimates for the

true state-action values without the additional computational
overhead of using MCTS rollouts.

We train the discriminator like traditional GANs by maxi-
mizing the scoreD(y1:T |θd) for real sentences and minimizing
it for fake ones. This is achieved by minimizing the loss L(D),

L(D)= E
y1:T∼PR

−
[
logD(y1:T |θd)

]
+ E
y1:T∼G

−
[
log (1−D(y1:T |θd))

]
(4)

We also include a discrimination critic Dcrit [Konda and
Tsitsiklis, 2000] which is trained to approximate the score
QD(y1:t−1, yt) from the discriminator network, for the next
token yt based on the preceding partial sentence y1:t−1. The
approximated score VD(y1:t−1) will be used to stabilize policy
gradient updates for the generator during adversarial training.

VD(y1:t−1) = E
yt

[
QD(y1:t−1, yt)

]
(5)

Dcrit is trained to minimize the sequence mean-squared
error between VD(y1:t−1) and the actual scoreQD(y1:t−1, yt).

L(Dcrit) = E
y1:T

T∑
t=1

∥∥QD(y1:t−1, yt)− VD(y1:t−1)∥∥2 (6)

The discriminator network is implemented as a unidirec-
tional Recurrent Neural Network (RNN) with one dense output
layer which produces the probability that a sentence is real
at each timestep, i.e., QD(y1:t−1, yt). For the discrimination
critic, we have a additional output dense layer (different from
the one that computes QD(y1:t−1, yt)) attached to the discrim-
inator RNN, which estimates VD(y1:t−1) for each timestep.

3.4 Classifier
Given a sentence y1:T , the classifier C with parameters θc
predicts if the sentence belongs to class c ∈ C. Like the
discriminator, it assigns a prediction score at each timestep
QC(y1:t−1, yt, c) for the partial sentence y1:t, which identifies
the probability the sentence belongs to class c. The interme-
diate scores are then averaged to produce the overall score:

C(y1:T , c|θc) =
1

T

T∑
t=1

QC(y1:t−1, yt, c) (7)

The classifier loss LC is based on: 1) L(CR), the cross-
entropy loss on true labeled sentences computed using the
overall classifier sentence score; 2) L(CG) the loss for the fake
sentences. Fake sentences are considered as potentially-noisy
training examples, so we not only minimize cross-entropy loss
but also include Shannon entropyH(C(c|y1:T , θC)).

LC = L(CR) + L(CG)

(8)

L(CR) = E
(y1:T ,c)∼PR(y,c)

[
− log C(c|y1:T , θc)

]
L(CG) = E

c∼Pc,y1:T∼G
[− log C(c|y1:T , θc)

− βH(C(c|y1:T , θC))]
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In L(CG), β, the balancing parameter, influences the im-
pact of Shannon entropy. Including H(C(c|y1:T , θC)), for
minimum entropy regularization [Hu et al., 2017], allows the
classifier to predict classes for generated fake sentences more
confidently. This is crucial in reinforcing the generator to pro-
duce sentences of the given class during adversarial training.

Like in discriminator, we include a classification critic Ccrit
to estimate the classifier score QC(y1:t−1, yt, c) for yt based
on the preceding partial sentence y1:t−1,

VC(y1:t−1,c) = E
yt
[QC(y1:t−1, yt, c)] (9)

The implementation of the classifier is similar to the dis-
criminator. We use a unidirectional recurrent neural network
with a dense output layer producing the predicted probability
distribution over classes c ∈ C. The classification critic is also
an alternative head off the classifier RNN with an additional
dense layer estimating VC(y1:t−1,c) for each timestep. We
train this classification critic by minimizing L(Ccrit),

L(Ccrit) = E
y1:T

T∑
t=1

∥∥QC(y1:t−1, yt, c)− VC(y1:t−1,c)∥∥2 (10)

3.5 Reinforcement Learning Component
We consider a sequential decision making framework in which
the generator acts as a reinforcement learning agent. The cur-
rent state of the agent is the generated tokens st = y1:t−1 so
far. The action yt is the next token to be generated, which is
selected based on the stochastic policy G(yt|y1:t−1, z, c, θg).
The reward the agent receives for the generated sentence y1:T
of a given class c is determined by the discriminator and
classifier. Specifically, we take the overall scores D(y1:T |θd)
(Eqn.3) and C(y1:T , c|θc) (Eqn. 7) and blend them in a manner
reminiscent of the F1 score, producing the sentence reward,

R(y1:T ) = 2 · D(y1:T |θd) · C(y1:T , c|θc)
D(y1:T |θd) + C(y1:T , c|θc)

(11)

This reward R(y1:T ) is for the entire sentence delivered
during the final timestep, with reward for every other timestep
being zero [Tuan and Lee, 2018]. Thus, the generator agent
seeks to maximize the expected reward, given by,

L(G) = E
y1:T∼G

[
R(y1:T )

]
(12)

To maximize L(G), the generator parameters θg are up-
dated via policy gradients [Sutton et al., 2000]. Specifically,
we use the advantage actor-critic method to solve for opti-
mal policy [Konda and Tsitsiklis, 2000]. The expectation in
Eqn. 12 can be re-written using rewards for intermediate time-
steps from the discriminator and classifier. The intermediate
scores from the discriminator, QD(y1:t−1, yt) and the clas-
sifier, QC(y1:t−1, yt, c), are combined as shown in Eqn. 13
and the combined values serve as estimators for Q(y1:t, c),
the expected reward for sentence y1:t. To reduce variance in
the gradient estimates, we replace Q(y1:t, c) by the advan-
tage function Q(y1:t, c)− V (y1:t−1, c), where V (y1:t−1, c) is
given by Eqn. 13. We use α = T − t in Eqn. 14 to increase

Algorithm 1: spamGAN
1 Input: Labeled dataset DL, Unlabeled dataset DU
2 Parameters: Network parameters θg θd θc θdcrit θccrit
3 Perform pre-training as described in Sec. 3.6
4 for Training-epochs do
5 for G-Adv-epochs do
6 sample batch of classes c from ∼ P (c)
7 generate batch of fake sentences y1:T ∼ G given c
8 for t ∈ 1 : T do
9 compute Q(y1:t, c), V (y1:t−1, c) using Eqn. 13

10 update θg using policy gradient∇θgL(G) in Eqn. 14

11 for G-MLE-epochs do
12 sample batch of real sentences from DL, DU
13 Update θg using MLE in Eqn. 2

14 for D-epochs do
15 sample batch of real sentences from DL, DU
16 sample batch of fake sentences from G
17 update discriminator using∇θdL

(D) from Eqn. 4
18 compute QD(y1:t−1, yt), VD(y1:t−1) for fake sents.
19 update Dcrit using∇θdcritL

(Dcrit) from Eqn. 6

20 for C-epochs do
21 sample batch of real sentences-class pairs from DL
22 sample batch of fake sentence-class pairs from G
23 update classifier using∇θcL(C) from Eqn. 8
24 computeQC(y1:t−1, yt, c),VC(y1:t−1,c) on fake sents
25 update Ccrit using∇θccritL

(Ccrit) from Eqn. 10

the importance of initially-generated tokens while updating θg .
α is a linearly-decreasing factor which corrects the relative
lack of confidence in the initial intermediate scores from the
discriminator and classifier.

Q(y1:t, c) = 2 · QD(y1:t−1, yt) ·QC(y1:t−1, yt, c)
QD(y1:t−1, yt) +QC(y1:t−1, yt, c)

V (y1:t−1, c) = 2 · VD(y1:t−1) · VC(y1:t−1,c)
VD(y1:t−1) + VC(y1:t−1,c)

(13)

During adversarial training, we perform gradient ascent to
update the generator using the gradient equation shown below,

∇θgL(G) = E
y1:T

T∑
t

α
[
Q(y1:t, c)− V (y1:t−1, c)

]
×∇θg log G(yt|y1:t−1, z, c, θg) (14)

3.6 Pre-Training
Before beginning adversarial training, we pre-train the differ-
ent components of spamGAN. The generator G is pre-trained
using maximum likelihood estimation (MLE) [Grover et al.,
2018] by updating the parameters via Eqn 2. Once the gen-
erator is pre-trained, we take batches of real sentences from
the labeled dataset DL, the unlabeled dataset DU and fake
sentences sampled from G(y1:T |z, c, θg) to pre-train the dis-
criminator minimizing the lossL(D) in Eqn. 4. The classifier C
is pre-trained solely on real sentences from the labeled dataset
DL. It is trained to minimize the cross-entropy loss L(CR) on
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Method 10% Labeled 30% 50% 70% 90% 100%

spamGAN-0% 0.700 ± 0.02 0.811 ± 0.02 0.838 ± 0.01 0.845 ± 0.01 0.852 ± 0.02 0.862 ± 0.01
spamGAN-50% 0.678 ± 0.03 0.797 ± 0.03 0.839 ± 0.02 0.845 ± 0.02 0.857 ± 0.02 0.856 ± 0.01
spamGAN-70% 0.695 ± 0.05 0.780 ± 0.03 0.828 ± 0.02 0.850 ± 0.01 0.841 ± 0.02 0.844 ± 0.02
spamGAN-100% 0.681 ± 0.02 0.783 ± 0.02 0.831 ± 0.01 0.837 ± 0.01 0.843 ± 0.02 0.845 ± 0.01
Base classifier 0.722 ± 0.03 0.786 ± 0.02 0.791 ± 0.02 0.829 ± 0.01 0.824 ± 0.02 0.827 ± 0.02
DRI-RCNN 0.647 ± 0.10 0.757 ± 0.01 0.796 ± 0.01 0.834 ± 0.18 0.835 ± 0.02 0.846 ± 0.01
RCNN 0.538 ± 0.09 0.665 ± 0.14 0.733 ± 0.09 0.811 ± 0.03 0.834 ± 0.02 0.825 ± 0.02
Co-Train (Naive Bayes) 0.655 ± 0.01 0.740 ± 0.01 0.738 ± 0.02 0.743 ± 0.01 0.754 ± 0.01 0.774 ± 0.01
PU Learn (Naive Bayes) 0.508 ± 0.02 0.713 ± 0.03 0.816 ± 0.01 0.826 ± 0.01 0.838 ± 0.02 0.843 ± 0.02

Table 1: Accuracy (Mean ± Std) for Different % Labeled Data

real sentences and their labels. The critic networks Dcrit and
Ccrit are trained by minimizing their loses L(Dcrit) (Eqn. 6) and
L(Ccrit) (Eqn. 10). Such pre-training addresses the problem of
mode collapse [Guo et al., 2018] to a satisfactory extent.

3.7 spamGAN algorithm
Alg. 1 describes spamGAN in detail. After pre-training, we
perform adversarial training for Training-epochs (Lines 4-
25). We create a batch of fake sentences using generator G
by sampling classes c from prior Pc (Lines 6-7). We com-
pute Q(y1:t, c), V (y1:t−1, c) using Eqn. 13 for every timestep
(Line 9). The generator is then updated using policy gradient in
Eqn. 14 (Line 10). This process is repeated for G-Adv-epochs.
Like [Li et al., 2017] the training robustness is greatly im-
proved when the generator is updated using MLE via Eqn 2
on sentences from D (Lines 11-13). We then train the dis-
criminator using real sentences from DL, DU as well as fake
sentences from the generator (Lines 15-16). The discriminator
is updated using Eqn. 4 (Line 17). We also train the discrimina-
tion critic, by computing QD(y1:t−1, yt), VD(y1:t−1) for the
fake sentences and updating the gradients using Eqn. 6 (Line
18-19). This process is repeated for D-epochs. We perform a
similar set of operations for the classifier (Lines 20-25).

4 Experiments
We use the TripAdvisor labeled dataset [Ott et al., 2011] 5,
consisting of 800 truthful reviews on Chicago hotels and 800
deceptive reviews obtained from Amazon Mechanical Turk.
We remove a small number of duplicate truthful reviews to
get a balanced labeled dataset of 1596 reviews. We augment
the labeled set with 32, 297 unlabeled TripAdvisor reviews
for Chicago hotels 6. All reviews are converted to lower-case
and tokenized at word level, with a vocabulary Y of 10000 7.
The maximum sequence length T = 128 words, close to the
median review length of the full dataset. Y also includes tokens:
〈start〉, 〈end〉 which are added to the beginning, end of each
sentence, respectively; 〈pad〉 for padding sentences smaller
than T (longer sentences are truncated, ensuring a consistent
sentence length); 〈unk〉 replaces out-of-vocabulary words.

In spamGAN, the generator consists of 2 GRU layers of
1024 units each and an output dense layer providing logits for

5http://myleott.com/op-spam.html
6http://times.cs.uiuc.edu/ wang296/Data/index.html
7Vocabulary includes all words from labeled data and most fre-

quently occurring words from unlabeled data.

Figure 2: Comparison of spamGAN-50 with Other Approaches

the 10, 000 tokens. The generator, discriminator and classi-
fier are trained using ADAM optimizer. All use variational
dropout=0.5 between recurrent layers and word embeddings
with dimension 50. For generator, learning rate = 0.001,
weight decay =1 × 10−7. Gradient clipping is set to a max-
imum global norm of 5. The discriminator contains 2 GRU
layers of 512 units each and a dense layer with a single scalar
output and sigmoid activation. The discrimination critic is im-
plemented as an alternative dense layer. Learning rate =0.0001
and weight decay =1× 10−4. The classifier is similar to dis-
criminator. We set balancing coefficient β = 1. The train time
of spamGAN using a Tesla P4 GPU was ∼ 1.5 hrs.

We use a 80/20 train-test split on labeled data. We compare
spamGAN with 2 supervised methods: 1) DRI-RCNN [Zhang
et al., 2018]; 2) RCNN [Lai et al., 2015] and 2 semi-supervised
methods: 3) Co-Training [Li et al., 2011] with Naive Bayes;
4) PU Learning [Hernández et al., 2013] with Naive Bayes
(SVM performed poorly) using only spam and unlabeled re-
views. We conduct experiments with 10, 30, 50, 70, 90, 100%
(proportions) of labeled data. To analyze the impact of un-
labeled data, we also adjoin differing amounts of unlabeled
data to the labeled data: spamGAN-0 (no unlabeled data),
spamGAN-50 (50% unlabeled data), spamGAN-70 (70% un-
labeled) and spamGAN-100. Co-Train, PU-Learn results are
for 50% unlabeled data. We also show the performance of our
base classifier (without generator, discriminator, trained on
real labeled data to minimize L(CR)). All experiments are re-
peated 10 times and the mean, standard deviation are reported.

Influence of Labeled Data
Table. 1 shows the classification accuracy on the test data.
SpamGAN models, in general, outperform other approaches,
especially when the % of labeled data is limited. When we
merely use 10% of labeled data, spamGAN-0, spamGAN-
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Method 10% Labeled 30% 50% 70% 90% 100%

spamGAN-0% 0.718 ± 0.02 0.812 ± 0.02 0.840 ± 0.01 0.848 ± 0.02 0.854 ± 0.02 0.868 ± 0.01
spamGAN-50% 0.674 ± 0.05 0.797 ± 0.03 0.843 ± 0.01 0.848 ± 0.02 0.860 ± 0.02 0.863 ± 0.01
spamGAN-70% 0.702 ± 0.05 0.784 ± 0.03 0.830 ± 0.02 0.856 ± 0.01 0.848 ± 0.02 0.854 ± 0.01
spamGAN-100% 0.684 ± 0.03 0.788 ± 0.03 0.839 ± 0.02 0.844 ± 0.01 0.846 ± 0.02 0.850 ± 0.01
Base classifier 0.731 ± 0.03 0.795 ± 0.03 0.803 ± 0.02 0.829 ± 0.01 0.832 ± 0.02 0.838 ± 0.02
DRI-RCNN 0.632 ± 0.07 0.754 ± 0.02 0.779 ± 0.00 0.812 ± 0.03 0.817 ± 0.03 0.833 ± 0.02
RCNN 0.638 ± 0.01 0.715 ± 0.01 0.754 ± 0.02 0.776 ± 0.05 0.820 ± 0.03 0.833 ± 0.02
Co-Train (Naive Bayes) 0.637 ± 0.02 0.698 ± 0.01 0.680 ± 0.02 0.677 ± 0.01 0.712 ± 0.01 0.726 ± 0.01
PU-Learn (Naive Bayes) 0.050 ± 0.02 0.636 ± 0.05 0.815 ± 0.02 0.837 ± 0.02 0.844 ± 0.02 0.852 ± 0.01

Table 2: F1-Score (Mean ± Std) for Different % Labeled Data

50, spamGAN-70, spamGAN-100 achieve an accuracy of
0.70, 0.678, 0.695, 0.681, respectively, higher than supervised
approaches DRI-RCNN (0.647), R-CNN (0.538) and semi-
supervised approaches Co-train (0.655), PU-learning (0.508).
Even without unlabeled data spamGAN-0 gets good results
because the mutual bootstrapping between generator and clas-
sifier allows the classifier to explore beyond the small labeled
training set using the fake sentences produced by the generator.
Our base classifier has a higher value (0.722) than spamGAN
models as GANs needs more samples to train, in general.

The accuracy of all approaches increases with % of labeled
data. We select spamGAN-50 as a representative for compar-
ison in Fig. 2. Though the difference in accuracy between
spamGAN-50 and others reduces as the % of labeled data
increases, spamGAN-50 still performs better than others with
an accuracy of 0.856 when all labeled data are considered.

Table. 2 shows the F1-score. We can again see that
spamGAN-0, spamGAN-50 and spamGAN-70 perform better
than the others, especially when the % of labeled data is small.

Influence of Unlabeled Data
While unlabeled data is used to augment the classifier’s per-
formance, Fig. 3 shows that F1-score slightly decreases when
the % unlabeled data increases, especially for spamGAN-100.
In our case, as unlabeled data is much larger than the labeled,
the generator does not entirely learn the importance of the sen-
tence classes during pre-training (when the unlabeled sentence
classes are randomly assigned), which causes problems for
the classifier during adversarial training. However, when no
unlabeled data is used, the generator easily learns to generate
sentences conditioned on classes paving way for mutual boot-
strapping between classifier and generator. We also attribute
the drop in performance to the difference in distribution of
data between the unlabeled TripAdvisor reviews and the hand-
crafted reviews from Amazon MechanicalTurk (unlabled data
can improve performance only under assumptions about data
distributions [Wasserman and Lafferty, 2008]).

Perplexity of Generated Sentence
We also compute the perplexity of the sentences produced
by the generator (the lower the value the better). Fig. 4
shows that as the % of unlabeled data increases (spamGAN-
0 to spamGAN-100), the perplexity of the sentences de-
creases. SpamGAN-100, SpamGAN-70 achieve a perplex-
ity of 76.4, 76.5, respectively. Fig. 3, Fig. 4 show that using
unlabeled data improves the generator in producing realistic
sentences but does not fully help to differentiate between the

Figure 3: Influence of Unlabeled Data on F1-Score

Figure 4: Influence of Unlabeled Data on Perplexity

classes which again, can be attributed to the difference in the
data distribution between the labeled and unlabeled data.

Following is a sample (partial) spam sentence produced by
the generator: ”Loved this hotel but i decided to the hotel
in a establishment didnt look bad ...the palmer house was
anyplace that others said in the reviews..”. We notice that spam
sentences use more conservative choice of words, focusing
on adjectives, reviewer, and attributes of the hotel, while non-
spam sentences speak more about the trip in general.

5 Conclusion and Future Work
We propose spamGAN, an approach for detecting opinion
spam with limited labeled data. spamGAN also helps to gener-
ate reviews similar to the training set. Experiments show that
spamGAN outperforms state-of-the-art supervised and semi-
supervised techniques when labeled data is limited. We further
plan to conduct experiments on YelpZip data (overcoming the
data distribution issue of MechanicalTurk reviews). As the
overall spamGAN architecture is agnostic to the implementa-
tion details of classifier, we plan to use a more sophisticated
design for the classifier than a simple recurrent network.
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