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Abstract
Fine-grained entity typing (FET), which annotates
the entities in a sentence with a set of finely spec-
ified type labels, often serves as the first and criti-
cal step towards many natural language processing
tasks. Despite great processes have been made, cur-
rent FET methods have difficulty to cope with the
noisy labels which naturally come with the data ac-
quisition processes. Existing FET approaches ei-
ther pre-process to clean the noise or simply fo-
cus on one of the noisy labels, sidestepping the fact
that those noises are related and content dependent.
In this paper, we directly model the structured,
noisy labels with a novel content-sensitive weight-
ing schema. Coupled with a newly devised cost
function and a hierarchical type embedding strat-
egy, our method leverages a random walk process
to effectively weight out noisy labels during train-
ing. Experiments on several benchmark datasets
validate the effectiveness of the proposed frame-
work and establish it as a new state of the art strat-
egy for noisy entity typing problem.

1 Introduction
Fine-grained entity typing (FET) [Ling and Weld, 2012;
Yogatama et al., 2015; Ren et al., 2016a; McCallum et al.,
2018] refers to the task of annotating the text expressions
(also known as mentions) of entities in a document or sen-
tence, using a set of finely specified type labels. Knowl-
edge acquired through FET is often utilized to facilitate many
downstream natural language processing (NLP) tasks, such
as knowledge base construction and expansion [Dong et al.,
2014], relation extraction [Koch et al., 2014; Liu et al., 2014],
entity linking [Ling et al., 2015] and factual question an-
swer [Dong et al., 2015], amongst many others.

Despite great processes have been made in the past years,
the FET problem is however confronted by a major challenge
issue: noisy labels. Such noisy labels naturally come with
the data acquisition processes such as the popular distant su-
pervision method [Mintz et al., 2009]. Additionally, a men-
tion, namely, a word or phrase, may assume different types.

∗Corresponding author: zhangrc@act.buaa.edu.cn

C
O
U
N
T
R
Y

C
I
T
Y

S
T
A
T
E
-
P
R
O
V CO

NT
IN
EN
T

L
A
K
E
-
O
C
E
A
N

R
I
V
E
R

R
E
G
I
O
N

GPE
LOCATION

Figure 1: An example of a type hierarchy extracted from the BBN
dataset, where two possible types GPE.COUNTRY and LOCATION
for the word “Mexico” are shown as red paths and solid nodes.

For example, depending on its context, the word “Mexico”
may refer to the location of Mexico in a general sense, or
it may also refer to the country “United Mexican States” in
the political sense (as shown in a small example of a type hi-
erarchy depicted in Figure 1). Such noise can significantly
degrade the predictive performance of the FET models [Ren
et al., 2016a]. Unfortunately, existing FET approaches ei-
ther embrace a labor intensive pre-processing step to clean
the noise [Gillick et al., 2014] or simply bias the learning
to only model one of the noisy labels [Ren et al., 2016a;
Abhishek et al., 2017; Xu and Barbosa, 2018], sidestepping
the fact that those noises are related and content dependent.

To directly model the structured noisy labels for FET, in
this paper, we propose a novel content-sensitive weighting
schema that is powered by a newly devised cost function and
a hierarchical type embedding strategy. In detail, the hierar-
chically structured typing labels in the given data are first nor-
malized to having only the leaf nodes of the tree as candidate
types. Next, context dependent weights for all typing labels
are then randomly initialized. Finally, through maximizing
the expected reward of a random walk process, the weights
of all candidate types are re-weighted such that only one of
them will have large value, which corresponds to the correct
type. In this way, the proposed weighting schema is able to
effectively de-noise the noisy hierarchical typing labels dur-
ing training, thus improving the predictive performance of the
FET models.

Experiments on several widely used datasets show that our
method significantly outperforms its competitors, resulting in
new state-of-the-art performance on these benchmark data
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Figure 2: An example of our proposed fine-grained entity typing
(FET) model Noise-Detective Prediction (NDP).

sets. We also provide an extensive ablation study to val-
idate the effectiveness of different components of our pro-
posed framework, highlighting the effectiveness of our newly
devised cost function. To the best of our knowledge, this
is the first work to jointly model the hierarchical structure
of and the noise contained in the label type. We have
posted the code on the GitHub ( https://github.com/wujsAct/
fine-grained-entity-typing-Hier-Denoise ).

2 The Content-Based Weighting Model (NDP)
The overall architecture of our content-based weighting
model is depicted in Figure 2. We denote our method as Noise
Detective Prediction (NDP). In a nutshell, our NDP method
first normalizes the hierarchically structured typing labels, so
that only the leaf nodes represent valid type. Next, a loss con-
straint is used to regularize the training to weight out noisy
labels.

2.1 Problem Statement
Let T denote the given type hierarchy of data set for the fine-
grained entity typing (FET) task. Specifically, we interpret
T as a tree, in which each edge is labeled by a type token,
such as LOCATION, CITY, REGION, RIVER etc in Figure
1. Each node u in the tree T is a type, which can be uniquely
specified by the path from the root node to the node u. For
example, LOCATION, LOCATION.RIVER in Figure 1 are
all types. We consider that T is given.

In general, an entity in the reality, such as in a KB (Knowl-
edge base), may be categorized into multiple types in T . For
example, an entity that refers to a person that can be cate-
gorized both as type PERSON.BUSINESSMAN and as type
PERSON.POLITICIAN. Thus the same entity in different
context may assume different types.

A sentence s is regarded as a sequence (w1, w2, . . . , wL)
of words. In a sentence of interest, a subsequence of words
m := (wJ , wJ+1, wJ+d−1) has been recognized as a men-
tion, namely that it corresponds to some entity in a KB. Let
e(m) denote the entity that the mention m refers to in sen-
tence s. The objective of a (sentence-level) fine-grained entity
typing task is to find a type in T , which is the most appropri-
ate for the entity e(m) in the context of the sentence s. We
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Figure 3: The normalized type hierarchy for the type tree in Figure
1. The added nodes and edges are shown in blue.

will refer to the most appropriate type for mention m in sen-
tence s as the correct type for simplicity.

The dominant approach to solving this problem is via
learning a predictive model which predicts the correct type
for a given sentence s and a mentionm therein. This relies on
some training data Dtrain, which typically takes the follow-
ing form: Dtrain := {(si,mi, τi) : i = 1, 2, . . . , N}, where
in each triple (si,mi, τi), si is sentence, mi is a mention in
si, and τi is a subset of T , namely a subset of types associ-
ated with the entity e(mi) corresponding to mi. Ideally, we
wish that τi contains only the correct type for mi in si. In
reality, however, it is difficult or costly to acquire the correct
types for a large number of training examples and usually τi
is obtained in a automatic manner such as via a weak multi-
label classifier, e.g., distant supervision [Mintz et al., 2009].
Inevitably, some τi’s contain additional incorrect types, and
we will call such sentence-mention pairs noisy. It has been
observed that in standard datasets, rather significant fractions
of mentions have noise type labels [Ren et al., 2016a], and the
statistics of such noise for the standard datasets can be found
in Table 1.

2.2 Normalized Type Hierarchy
As discussed earlier, a type can in general correspond to any
node in a type hierarchy T . This creates difficulty for a model
to directly predict the mention of a type at the right tree depth.
To resolve this problem cleanly, we propose converting the
type hierarchy to a different representation. Given the type
hierarchy T , we transform it to a normalized type hierarchy
T ∗ as follows: For each intermediate (namely, non-leaf and
non-root) node u in T , add a child node v to u, and label the
edge connecting u to v by a new type token, which we denote
by STOP. This gives rise to the normalized type hierarchy T ∗.
Figure 3 shows the transformation of a type hierarchy to its
normalized version.

There is a natural map ϕ that maps all nodes in the original
tree T to the leaf nodes in tree T ∗. Specifically, if u is the
root node or any leaf node in T , ϕ(u) is the same node in T ∗;
and if u is an intermediate node in T , ϕ(u) is the the newly
added leaf node of u in T ∗.

Under this mapping, every type in T can be identified with
a leaf node in T ∗, or equivalently by a path in T ∗ connect-
ing the root node to that leaf node. In a normalized type
hierarchy, only the leaf nodes represent valid types. Using
such a normalized representation, the learned model will only
consider the leaf nodes of the tree as candidate types. If the
model predicts the type as a leaf node v that is pointed to by a
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STOP edge, for example, the node LOCATION.STOP, then
the parent node of v, namely, LOCATION, is declared as the
predicted type. Thus using such a normalized tree allows the
model to predict types at any level of the original type hierar-
chy, without recourse to additional heuristics. From here on,
we will work with the T ∗ instead of T , and every reference
to a type will refer to its image in T ∗ under ϕ.

2.3 Weight Out Noise with Loss Function
For notation convenience, we will denote the set of
all sentence-mention pairs in Dtrain by Din

train, that is,
{(si,mi, τi) : i = 1, 2, · · · , N} := Din

train.
For each training example (si,mi, τi), we will also gen-

erate a negative training example, (si,mi, τ
−
i ), where τ−i

is a random set of types in T ∗ but not in τi. We will
denote by D−train the set of all negative training examples
{(si,mi, τ

−
i ) : (si,mi) ∈ Din

train}. Our NDP model will
be trained on both Din

train and D−train.
For any given sentence-mention pair (s,m), let x(s,m) ∈

RkF denote the embedding of (s,m). For each type t ∈ T ,
let t ∈ RkT denote the embedding of t. We will postpone the
construction of embeddings x(s,m) and t in later sections.

Our loss function relies on the following hypotheses.

Hypothesis 1 For every sentence s of interest and the iden-
tified mention m in s, there is exactly one type for m in the
context s.

Hypothesis 2 For each training example (si,mi, τi) ∈
Dtrain, τi contains the correct type of mi in si.

Hypothesis 1 above may appear overly stringent at the first
glance. We wish to note however that this is in fact consistent
with our problem setting. Recall that the problem is to predict
the most appropriate type for the mention of interest. Even
if from the context two or more types may be appropriate,
it is reasonable to consider that there is only one that is the
most appropriate. On the other hand, it is remarkable that an
important purpose of setting up hypotheses in machine learn-
ing is to constrain the space of learning so as to reduce the
model capacity, enhance learn-ability and avoid over-fitting.
Such practice usually becomes particularly important when
the training data is limited. Theoretically, the hypotheses one
sets up need not to be perfectly “correct”, it is only required
that the hypotheses do not conflict with the ground truth, ex-
hibited partially from the observed data. Such a conflict, if
existing, would result in under-fitting and degrade the model
performance. But if such a conflict does not exist, even over-
simplified hypotheses provide benefits to learning. This has
been the reason underlying numerous models in which the
very unrealistic Gaussian hypotheses are made.

Given that the training set Din
train is usually noisy, it is crit-

ical that the FET model is capable of coping with such noise.
For an arbitrary x ∈ RkF and a t ∈ RkT , let there be a score

function φ(x, t). Although one may explore a wide variety of
score functions, in this paper, we specialize the score function
by

φ(x, t) = xTAt (1)
where A is the trainable matrix of size kF × kT.

For each input (si,mi) in Din
train, let its positive-example

score be defined as

S(si,mi) :=
∑
t∈τi

α(t; si,mi)φ(x(si,mi), t) (2)

where α(t; si,mi)’s are a set of non-negative weights sum-
ming to 1, namely, satisfying∑

t∈τi

α(t; si,mi) = 1.

The construction of these weights is given in a later section.
The idea here is that after these weights are learned, only one
of them will have large value (near 1), which corresponds to
the correct type assumed in Hypotheses 1 and 2.

For each input (si,mi) in Din
train, let its negative-example

score with respect to a negative type t− ∈ τ−i be defined as

S−(si,mi, t
−) := φ(x(si,mi), t−) (3)

We then define a margin-based loss E(si,mi) by

E(si,mi) :=
∑
t−∈τ−

i

max
(
0, λ−S(si,mi)+S

−(si,mi, t
−)
)

(4)

where λ is a positive hyper-parameter. Note that under this
equation, when E(si,mi) takes the minimum value 0, for
any wrong type t− ∈ τ−i , the score S−(si,mi, t

−) is lower
than the positive-example score S(si,mi) by at least λ. Thus
when we minimize E(si,mi) for input (si,mi), we implic-
itly maximize S(si,mi) and force score S−(si,mi, t

−) to be
sufficiently low.

The overall loss function of the model is then given by

L :=
∑

(si,mi)∈Din
train

E(si,mi). (5)

Generation of Weights
Suppose that a training input (si,mi) is given. We now ex-
plain how the weights {α(t; si,mi) : t ∈ τi} are generated.
Briefly these weights are essentially the probabilities that a
random walk on T ∗ lands on each leaf node of T ∗.

Specifically, let Q be the random walk on the normalized
type hierarchy T ∗, which we now define. The walk starts
from the root of T ∗ and follows the tree structure to eventu-
ally arrives at some leaf node. For each node u ∈ T ∗, let
C(u) be the set of all children of u in T ∗. For each node
u in T ∗, let q(·|u) be a distribution on C(u), where q(v|u)
for a child v of u is the probability that the walk goes to v
given its current location is u. Given the set of distributions
{q(·|u) : u ∈ T ∗}, one can express the probability p(z) that
the walk eventually arrives at any given leaf node z. More
precisely, suppose that the path from the root node to z is the
node sequence (u0, u1, . . . , um), where u0 is the root node
and um is z. Then

p(z) =
m∏
j=1

q(uj |uj−1)

For every training input (si,mi), we construct such a pro-
cess Q(si,mi), namely, a set of conditional distributions
{q(·|u) : u ∈ T ∗}). Then we define for every type t ∈ τi,

α(t; si,mi) := p(t) (6)
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under the random walkQ(si,mi). The set of all such random
walks

{
Q(si,mi) : (si,mi) ∈ Din

train

}
will be learned during

training.
We also propose two testing weight methods: average

weight (AW) and global data-dependent weight (DDW). For
average weight, we treat all the types equally. For global
DDW, we directly utilize the normalized type score as the
type weight. The the type weight are computed similar to
Equation 1 as follows:

α(t; si,mi) ∝ exp(si
TBt) (7)

where B is the trainable matrix of size kF × kT.

Interpretation of Loss Function
We now pause and revisit the loss function (5) to give some
insight on the design of this loss function. Given a training
input (si,mi), one can imagine that a random walker walks
down the type hierarchy T ∗, according to an unknown pro-
cess Q(si,mi). According to process, he may arrive at any
leaf node in τi with some probability. At leaf node t ∈ τi,
he would collect a “reward” whose value equals the score
φ(x(si,mi), t). Then S(si,mi) defined in (2) may then
be regarded as the expected reward the walker will get un-
der Q(si,mi). Thus, maximizing S(si,mi) over its set of
weights in (2) is equivalent to maximizing the walker’s ex-
pected reward over the random walk process Q(si,mi).

It is easy to see that under such a random walk process, the
probabilities that the walker arrives at two sibling leaf nodes
in the tree T ∗ are related by the probability the walker goes
through their common parent. Thus, the random walk process
naturally looks after the correlation between the siblings.

We also like to stress that such a random walk is not global
to all training examples. Rather, for each training example,
there is a separate such process, and its parameter q(·|·) is
learned during training. Since incorrect type labels tend to
give high loss value, for each training example, the optimiza-
tion process will result in a function q which puts a low proba-
bility on the wrong types and a high probability to the correct
type. That is, minimizing the loss function squeezes out noise
and enhances signal.

2.4 Type and Feature Embedding
For type embedding, we construct a embedding matrix DT

for the set of all type tokens in T ∗, from each token is as-
signed a vector in RkT as its embedding vector. We note
that all “STOP” tokens in the T ∗ are consider different and
hence they all have different embedding vectors. For every
type t ∈ T ∗, if the path from the root to node t is the se-
quence (c1, c2, . . . , cl), the embedding t of type t is defined
as

t :=
l∑

j=1

cj , (8)

where cj is the embedding vector for token cj .
Feature embedding in our model largely follows the previ-

ous approaches in [Abhishek et al., 2017] and [Xin et al.,
2018]. Specifically, for any sentence-mention pair (s,m),
its feature embedding x(s,m) is the concatenation of vectors
s ∈ Rks and vector m ∈ Rkm , which we now define.

First note that we adopt a pre-trained word embedding dic-
tionary DW from Glove [Pennington et al., 2014]. Using this
embedding dictionary DW, the vector m is simply the aver-
age of the embedding vectors of all surface words in m.

To obtain vector s, first note that the mention m
partitions s into two word subsequences, the sequences
(wL

1 , w
L
2 , . . . , w

L
a ) left to the mention and the sequences

(wL
1 , w

L
2 , . . . , w

L
a ) right to the mention. The left and right se-

quences are each passed to Bidirectional LSTM network, and
correspondingly generate output sequences (hL1 , h

L
2 , . . . , h

L
a)

and (hL1 , h
L
2 , . . . , h

L
a) respectively. The outputs of the two

networks are respectively attentively combined and then
summed up to give rise the embedding s. More precisely,

s :=
a∑
i=1

βL
i h

L
i +

b∑
i=1

βR
i h

R
i

Here βL
i ’s and βR

i ’s are attention weights, computed accord-
ing to

βL
i ∝ exp(θ tanh(UhLi + V m))

βR
i ∝ exp(θ tanh(UhRi + V m))

where U and W are trainable parameter matrices, serving to
map a vector into RkA , and θ is a vector of dimension kA.

At this point, we have completely defined the proposed
NDP model. When using the trained model for predicting the
type of a mention m in a sentence s, we simply compute the
score φ(x(s,m), t) for every t ∈ T ∗ under the model. The
type t with the highest score is then declared as the correct
type. Note that if the declared type is one pointed to by the
STOP edge, we regard the declared type as its parent type.

3 Experimental Studies
3.1 Settings
We evaluate the NDP approach using three popular datasets,
Wiki 1 [Ling and Weld, 2012], OntoNotes [Weischedel et al.,
2011] and BBN [Weischedel and Brunstein, 2015]. We uti-
lize the pre-processed data provided by [Ren et al., 2016a],
where 10% of each testing data is used as a validation set,
following the standard protocol widely adopted in the pre-
vious works [Abhishek et al., 2017; Shimaoka et al., 2017;
Ren et al., 2016b; Ren et al., 2016a]. Table 1 shows the statis-
tics of the three datasets.

We note that the fraction of training sentence-mention pairs
( “mentions” in Table 1) that are noisy (namely, containing
more than one type) is 35.42% in Wiki, 27.4% in OntoNotes,
and 27.4% in BBN. This suggests that the training set con-
tains significant amount of noise and that learning approaches
robust to such noise are highly desirable. On the other hand,
noise in the testing data is much less severe. In fact, the test-
ing set of BBN contains no noisy mention, and the testing

1In the Wiki dataset, there exist types that have no parent. The
original structure of types in Wiki thus does not qualify as a tree.
Ren et al. [Ren et al., 2016a] fixed this problem by adding 15 types.
As we do not consider those added types during testing, adding those
types have no effect on the test performance
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Data sets Wiki OntoNotes BBN
#Orginial types 113 89 47
#Type hierarchy level 2 3 2
#Type tokens 177 141 63
#STOP tokens 49 52 16
#Types 128 89 47
#Training mentions 2.69M 220,398 86,078
#Training sentences 1.51M 88,284 32,739
#Test mentions 563 9,603 13,282
#Test sentences 434 1,312 6,431
%Noisy training mentions 35.42 27.4 24.08
%Noisy test mentions 11.72 6.23 0

Table 1: Statistics of datasets

Hyper-parameter Wiki OntoNotes BBN
Learning rate 0.001 0.001 0.001
Batch size 2000 1000 1000
Loss margin 0.2 0.4 0.3
#Negative types 100 70 30
LSTM hidden-size 300 200 100
ks 600 400 200
km 300 300 300
kF 900 700 500
kT 200 100 50
kA 50 40 40
L2 loss weight 0.001 0.001 0.001

Table 2: Hyper-parameters for three datasets

data of OntoNotes is also quite clean (with 6.23% noisy men-
tions). The fraction of noisy mentions in the testing data of
Wiki is 11.72%, higher than the other two datasets, although
mild relative to its training data.

Similar to previous work [Abhishek et al., 2017], in our im-
plementation of the proposed NDP model, we utilize the word
embedding provided by Glove [Pennington et al., 2014].
And, We do not fine tune them during training. The Adam op-
timizer [Kingma and Ba, 2014] is utilized to train the model.
An early-stop strategy is employed to terminate training when
the loss on validation data does not decrease. We incorporate
dropout and L2 regularization to avoid over-fitting. The left
and right sequence lengths are truncated to 10. We utilize
random search to explore the proper hyper-parameters. The
chosen hyper-parameters are listed in Table 2.

We compare NDP with several state-of-the-art neural net-
work models: FIGER [Ling and Weld, 2012], HYENA
[Yosef et al., 2012], WSABIE [Yogatama et al., 2015], Pro-
toLE and Proto-HLE [Ma et al., 2016], AFET [Ren et al.,
2016a], ATTN [Shimaoka et al., 2017], ABH [Abhishek et
al., 2017], and NFETC [Xu and Barbosa, 2018]. For com-
parison, we use the reported performances of these models in
their respective original papers, except for FIGER and ATTN,
the performances of which are taken from [Ma et al., 2016]
and [Abhishek et al., 2017]. The evaluation metrics used
are Accuracy (Acc), Micro-averaged F1 (Mi-F1) score and
Macro-F1 (Ma-F1) score. These metrics are the most com-
monly used for evaluating the FET models [Ling and Weld,
2012; Ren et al., 2016a].

3.2 Predictive Performance
The comparison results are presented in Table 3, where best
performance is highlighted in bold. The performances of
the compared models are all taken from the literature. We
also run the published code of ATTN, ABH, ABH-AllC and
NFETC and the re-produced results are labelled by ∗ symbol.
Note that original NFETC paper using a prepossessed dataset.
So their original results are not included for comparison. We
re-implement the NFETC model by using the original type
hierarchy from Wiki dataset.

It can be seen that NDP outperforms all compared models
resulting in a state-of-the-art result under all metrics. This
confirms the advantage of the proposed NDP model. In par-
ticular, on BBN, NDP outperforms other testing methods with
a large margin. We believe that this is the most accurate and
truthful demonstration of the advantage of NDP. As men-
tioned earlier, the testing set of BBN has signficantly less
noise than the other datasets. As such, evaluation on this
dataset is the closest to evaluation against the ground truth.
Thus relative to other used datasets, the evaluation results ob-
tained on BBN are the most reliable.

It is worth noting that NDP exhibits superior performance
consistently on all three datasets, whereas other models tend
to achieve good performance, if at all, only on one or two
datasets. In this sense, NDP is more robust against the vary-
ing intrinsic structures of the datasets.

3.3 Ablation Studies
Performances at Different Levels of the Type Hierarcy
We further investigate the performances of the compared
models at each level of the type hierarchy. We use the BBN
dataset for this purpose and examine the level-1 and level-2
performances of these models. Specifically, for level-2 per-
formances, the testing examples without having type at level
2 are disregarded from evaluation. For level-1 performances,
the testing examples which only have type at level 1 are con-
sidered. The results of this evaluation are given in Table 5.
At both levels NDP outperforms significantly the other mod-
els in F1.

Benefit of the Hierarchical Type Normalization
We also conduct experiments to evaluate the impact of the hi-
erarchical normalization type embedding on the NDP frame-
work. We simple replace our hierarchical type embedding
with the Complex Bilinear hierarchical structure model (de-
noted ComplEx) recently introduced in [McCallum et al.,
2018]. Results are presented in Table 4. Table 4 indicates that
the normalization component we adopted significantly benefit
the predictive performance of our NDP model (the last three
rows of Table 4), compared to that of the ComplEx strategy
(the first three rows of Table 4).

Impact of the Random Walk Weights
We further exams the effects of our random walk strategy on
our framework. We compare with average weighting (AW)
and a learnable data-dependent weighting schema (DDW).
The comparison results are depicted in Table 4. From Ta-
ble 4, we can see that the random walk method brings signif-
icant gain, in terms of predictive performance, over the other
two testing weighting schemes.
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Model Wiki OntoNotes BBN
Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1

FIGER 0.474 0.692 0.655 0.369 0.578 0.516 0.467 0.672 0.612
HYENA 0.288 0.528 0.506 0.249 0.497 0.446 0.523 0.576 0.587
WSABIE 0.480 0.679 0.657 0.404 0.580 0.527 0.619 0.670 0.680
ProtoLE 0.535 0.681 0.665 0.469 0.659 0.591 0.704 0.758 0.765

Proto-HLE 0.505 0.666 0.653 0.493 0.682 0.613 0.695 0.745 0.74.5
AFET 0.533 0.693 0.664 0.551 0.711 0.647 0.670 0.727 0.735
ATTN 0.581 0.780 0.744 0.473 0.655 0.586 0.484 0.732 0.724
ATTN* 0.57 0.775 0.736 0.497 0.636 0.558 0.512 0.700 0.728

ABH-AllC 0.662 0.805 0.77 0.514 0.672 0.626 0.655 0.736 0.752
ABH-AllC* 0.650 0.791 0.766 0.530 0.673 0.611 0.650 0.752 0.767

ABH 0.658 0.812 0.774 0.522 0.685 0.633 0.604 0.741 0.757
ABH* 0.627 0.766 0.743 0.537 0.675 0.621 0.667 0.761 0.772

NFETC* 0.645 0.794 0.751 0.556 0.703 0.641 0.680 0.719 0.734
NDP 0.677 0.818 0.780 0.580 0.712 0.648 0.727 0.764 0.777

Table 3: Performance of FET models on Wiki, OntoNotes and BBN datasets. Reproducing results for these models are labelled with ∗.

Model Wiki OntoNotes BBN
Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1

NDP (ComplEx AW) 0.602 0.724 0.687 0.565 0.689 0.623 0.706 0.737 0.748
NDP (ComplEx DDW) 0.609 0.734 0.685 0.561 0.689 0.613 0.707 0.745 0.755
NDP (ComplEx RWW ) 0.627 0.748 0.706 0.571 0.696 0.634 0.712 0.748 0.756

NDP (AW) 0.632 0.766 0.733 0.585 0.720 0.656 0.710 0.751 0.758
NDP (DDW) 0.652 0.785 0.747 0.573 0.703 0.637 0.713 0.752 0.765
NDP (RWW) 0.677 0.818 0.780 0.580 0.712 0.648 0.727 0.764 0.777

Table 4: Performance of variant NDP models. AW: average weight; DDW: data-dependent weight; RWW: random walk weight

Model Level 1 Level 2
P R F1 P R F1

ATTN 0.379 0.675 0.485 0.808 0.636 0.712
ABH-AllC 0.433 0.748 0.549 0.886 0.608 0.721

ABH 0.466 0.752 0.575 0.858 0.631 0.727
NFETC 0.540 0.681 0.603 0.775 0.688 0.729

NDP 0.580 0.731 0.646 0.817 0.725 0.769

Table 5: Performance of different level types on BBN test data.

4 Related Work
Type Hierarchy Modeling The most earlier models ignore
the type hierarchy and simply treat it as a flat structure (see,
e.g., [Ling and Weld, 2012; Yogatama et al., 2015; Shimaoka
et al., 2017; Abhishek et al., 2017]). Some works, e.g.,
[Yosef et al., 2012; Ren et al., 2016a; Xu and Barbosa, 2018;
McCallum et al., 2018] have made efforts explicitly model-
ing the correlation among hierarchical types. These models,
although demonstrating some successes, rely on some heuris-
tic procedure to walk down the type hierarchy, stop at a node,
and then declare the node as the predicted type. The recent
work [McCallum et al., 2018] proposed the structure loss to
solve this problem. Unlike these works, we propose a generic
framework that directly model the hierarchical typing without
additional structure loss function to train or heuristic method
to infer through the type tree.
Label Noise Handling Various approaches have been pro-
posed to deal with noisy entity mentions in the training set.
Gillick et al. [Gillick et al., 2014] refined the training data
by applying a set of heuristics to prune types. [Yogatama

et al., 2015] proposed a man-made function to transform
the positive type rank to a weight. [Ren et al., 2016a;
Abhishek et al., 2017; Xu and Barbosa, 2018] model noisy
and clean entity mentions separately. Nevertheless, these
methods enforce the model to choose the most relevant type
as the golden positive type label for noisy entity mention dur-
ing training. Instead, we explicitly model all the noisy labels
and their structures during training.

5 Conclusion and Future Work
We introduce a novel approach for Fine-grained Entity Typ-
ing modeling. Our method leverages a novel cost function
to jointly model the correlation among hierarchical types and
label noises. Our experimental results demonstrate the power
of this approach convincingly. We prefer call this approach
a “framework” rather than a single model, since under this
approach, one can freely explore other constructions of fea-
ture embedding module and other choices of score function
φ. More research is underway to explore this rich space of
strategies.
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