
A Goal-Driven Tree-Structured Neural Model for Math Word Problems

Zhipeng Xie∗† and Shichao Sun†

Shanghai Key Laboratory of Data Science, Fudan University
School of Computer Science, Fudan University

{xiezp, scsun17}@fudan.edu.cn

Abstract
Most existing neural models for math word prob-
lems exploit Seq2Seq model to generate solution
expressions sequentially from left to right, whose
results are far from satisfactory due to the lack
of goal-driven mechanism commonly seen in hu-
man problem solving. This paper proposes a tree-
structured neural model to generate expression tree
in a goal-driven manner. Given a math word prob-
lem, the model first identifies and encodes its goal
to achieve, and then the goal gets decomposed into
sub-goals combined by an operator in a top-down
recursive way. The whole process is repeated un-
til the goal is simple enough to be realized by a
known quantity as leaf node. During the process,
two-layer gated-feedforward networks are designed
to implement each step of goal decomposition, and
a recursive neural network is used to encode ful-
filled subtrees into subtree embeddings, which pro-
vides a better representation of subtrees than the
simple goals of subtrees. Experimental results on
the dataset Math23K have shown that our tree-
structured model outperforms significantly several
state-of-the-art models.

1 Introduction
The task of Math word problems (MWPs) aims to automati-
cally answer a mathematical query according to the text de-
scription. A typical MWP is a short narrative that describes
a partial state of the world and poses a question about an un-
known quantity. An example is shown in Table 1. Students
are asked to answer how many baggies Robin could make ac-
cording to problem text. Recently, the task of MWPs has at-
tracted a lot of research attention. Researchers have proposed
several approaches [Ling et al., 2017; Wang et al., 2017;
Huang et al., 2018; Wang et al., 2018a] to solving MWPs
based on the Seq2Seq model [Sutskever et al., 2014]. These
Seq2Seq-based solvers have been proved to have the power
of generating new expressions that do not exist in the training
dataset [Wang et al., 2017]. Besides, another advantage of
∗Contact Author.
†Equal Contribution.

Problem: Robin was making baggies of cookies with 6
cookies in each bag. If she had 23 chocolate cookies and
25 oatmeal cookies, how many baggies could she make?
Solution Expression: (23 + 25)÷ 6 Solution: 8

Table 1: A typical math word problem

the Seq2Seq-based models exists in that they do not rely on
hand-crafted features.

However, the Seq2Seq-based models do not match the
goal-driven mechanism in human problem solving. When
human reads the problem text of a MWP, he firstly figures
out which target quantity is to be derived as the goal, and
then pays attention to the relevant information of the problem
which can help to realize the goal. If the goal can be real-
ized directly by the relevant information, the problem solving
has been completed; otherwise, human needs to decompose
the goal into two sub-goals combined by an operator based
on the relevant information. Next, the same process is re-
peated for each sub-goal until all goals get realized. As for
the example shown in Table 1, the goal is to calculate how
many baggies Robin could make. With this goal, human may
pay attention to the relevant information “6 cookies in each
bag; She had 23 chocolate ... oatmeal cookies.” in the prob-
lem. Then, human infers that the goal can be realized as two
sub-goals connected by the operator “÷”: the first sub-goal
is about “how many cookies she had in total”, the second is
“how many cookies in each bag”. Similarly, the first sub-goal
is realized by two sub-goals(“how many chocolate cookies”
and “how many oatmeal cookies”) combined by an operator
“+”. This moment, all sub-goals can be easily realized by the
existing numeric values in the problem, and the expression
tree is generated as illustrated in Figure 1. As a summary,
human decomposes the goal recursively for solving a math
word problem and finally generates an expression tree.

Another issue is that the Seq2Seq-based models may gen-
erate invalid expressions which can not be calculated. For ex-
ample, it is difficult to know exactly how many consecutive
left parentheses would be needed before the inside operations
are handled, which may sometimes lead to the wrong expres-
sion such as “((23 + 25) ÷ 6” for the example in Table 1.
Although this issue could be solved by using the postorder
traversal of expression tree as target sequence in the Seq2Seq
model [Wang et al., 2018a], it is challenging for Seq2Seq

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5299

Figure 1: The expression tree of the problem in Table 1

to model the tree-structured relationship of expression tree
through its postorder traversal sequence during decoding.

Motivated by the goal-driven mechanism in human prob-
lem solving, we design a novel model to generate expression
tree. Following a top-down goal decomposition process, our
model firstly initializes the root goal vector which represents
the final goal of the problem, and then summarizes relevant
information of the problem into the context vector. Next, a to-
ken is predicted using the goal vector and its context vector,
which implicitly decides whether the goal should be decom-
posed further. If the predicted token is a numeric value or
constant quantity, the goal is realized directly; otherwise (i.e.,
the predicted token is an operator), two new sub-goal vectors
(one for left sub-goal and the other for the right) will be gen-
erated. Lastly, prediction and the goal decomposition process
are repeated for them. However, for a commutative operator
such as “+” or “×”, its right sub-goal may be the same as the
left one, due to its commutative property. To address this is-
sue, our model completes the construction of the left subtree
before generating the right sub-goal. The generation of right
sub-goal takes the information of its left sibling subtree into
consideration, which is encoded as a subtree embedding by a
recursive neural network.

Our contributions are summarized here:

1. We propose a novel neural model to generate an expres-
sion tree in a human-like goal-driven way for solving
math word problems. To the best of our knowledge, this
is the first tree-structured neural model for MWPs.

2. Our model is tree-structured and the information explic-
itly flows through the expression tree in both top-down
(goal decomposition) and bottom-up (subtree embed-
ding) manners.

3. The experimental results show our model significantly
outperforms several state-of-the-art systems on the
dataset Math23K.

2 Related Work
Research in automatically solving MWPs has a very long
history, ranging from rule-based methods [Fletcher, 1985;
Bakman, 2007; Yuhui et al., 2010], statistical machine learn-
ing methods [Kushman et al., 2014; Zhou et al., 2015;
Mitra and Baral, 2016; Roy and Roth, 2018] and seman-
tic parsing methods [Shi et al., 2015; Koncel-Kedziorski
et al., 2015; Huang et al., 2017] to deep learning meth-
ods [Ling et al., 2017; Wang et al., 2017; Wang et al., 2018b;
Huang et al., 2018]. Here we will review some recent works

based on Seq2Seq models. For a more thorough review of
automatic MWPs solver, please refer to a recent survey pa-
per [Zhang et al., 2018].

Wang et al. [2017] made the first attempt to generate ex-
pression using Seq2Seq model with Recurrent Neural Net-
work (RNN) in its encoder and decoder. Robaidek et
al. [2018] have tried to use Convolutional Neural Network
(CNN) instead of RNN [Wang et al., 2017]. These mod-
els have obtained promising results. However, the use of
Seq2Seq models has resulted in some shortcomings. Huang
et al. [2018] pointed out that the Seq2Seq model may gener-
ate spurious numbers or predict numbers at wrong positions.
They added copy-and-alignment mechanism to the standard
Seq2Seq model to solve these issues. Wang et al. [2018a] ob-
served that the Seq2Seq model always suffers from an equa-
tion duplication problem: a MWP can be solved by multi-
ple expressions. They proposed an equation normalization
method to solve this problem.

Different from previous Seq2Seq-based works, we design
a novel tree-structured model to directly generate the expres-
sion tree in human-like goal-driven way.

3 Problem Statement
A math word problem (P, T) consists of a problem text P
and a solution expression tree T , where:
• The problem text P is a sequence of word tokens and

numeric values, which usually begins by describing a
partial quantitative state of a world, followed by simple
updates, and ends with a query about an unknown quan-
tity. Let nP denote the ordered list of numeric values in
P according to their order in the problem text. At a pre-
processing step, all the number tokens are treated as a
special word token NUM, because we usually do not care
about their exact values in solving a math word problem.
• The solution expression tree T is a mathematical expres-

sion tree, which can be easily transformed from the solu-
tion expression. What’s more, the tree T captures the re-
lations among these numeric values which are described
or implied literally by the problem text P . Generally,
T may contain constant quantities, mathematical oper-
ators, and numeric values in nP from problem text P .
The set of mathematical operators (denoted as Vop) con-
tains commonly-used operators such as “+” and “−”.
The set of constant quantities (denoted as Vcon) contains
some special numeric values that may occur in the solu-
tion but not in the problem text, such as π and 2. Such
as the problem “The radius of a circle is 3.5, what is the
circumference?”, the solution is “2 × π × 3.5” where
the constant quantities 2 and π cannot be found in the
text. Therefore, the target vocabulary of P is denoted
as V dec = Vop ∪ Vcon ∪ nP . It should be noticed that
the target vocabulary V dec varies in different problem
P as a result of varied nP . Besides, when the problem
text P contains two identical numbers since the number
occurs in two different positions of P , we treat the two
numbers as different target tokens in nP , and during the
training process, choose the occurrence of higher proba-
bility (Equation (8)) as the target.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5300

Figure 2: Goal-driven Tree-structured Model

4 Model Description

Motivated by the commonly-used goal-driven mechanism in
human problem solving, our method is designed to generate
expression trees by explicitly modeling tree-structured rela-
tionship between quantities. Each node n in the expression
tree T consists of three main components: a goal vector q, a
token ŷ, and a subtree embedding t of n. The goal vector q is
used to instruct how the subtree root from node n should be
constructed, and the subtree is generated to realize the goal.
To do so, our method first predicts the token ŷ according to
the goal vector q. In turn, the predicted token naturally de-
cides whether the goal should be decomposed further. That
is, if the predicted token is a mathematical operator, the goal
will be decomposed into two sub-goals (a left sub-goal ql

and a right one qr) combined by the operator, where the left
(right) sub-goal in turn serves to drive the construction of the
left (right) subtree of n; otherwise, the goal will be simply
realized by the predicted numeric value or constant quantity.
Such a goal decomposition process is conducted recursively
just like a depth-first traversal. An example of partly con-
structed expression tree is illustrated in Figure 2.

More specifically, the goal decomposition process is im-
plemented as the pre-order operation during the traversal. As
such, the left sub-goal is generated according to the goal vec-
tor and the predicted token of its parent node (Equation (10)),
as illustrated by the blue dashed lines of steps ¬­ in Fig-
ure 2. When it comes to the right sub-goal, the construction
of its left sibling subtree has been completed. To make full of
available information, the generation of right sub-goal should
take the information of its left sibling subtree into considera-
tion, in addition to the parent goal and the left sub-goal (Equa-
tion (11)), as blue dotted lines of steps ¯² in Figure 2. To
encode the subtree information of a non-leaf node, bottom-
up recursive neural network is defined which fuses the token
embedding of its mathematical token, and the embeddings of
its left and right subtrees (Equation (12) and Equation (13)),
as red curved lines of step ± in Figure 2. For a leaf node, its
subtree embedding is simply represented as the embedding
of its token (Equation (12) and Equation (5)), as red straight
lines of steps ®° in Figure 2).

4.1 Encoder
In encoder, every word of the problem text P is encoded as
context representation. As for an input problem text P =
x1x2 . . . xn, each word token xi is firstly transformed into the
corresponding word embedding xi by looking up an encoder-
embedding matrix Msen. Then, the sequence of embeddings
is inputted to the Gated Recurrent Unit (GRU) [Cho et al.,
2014] from left to right and from right to left. Formally, the
encoder takes the words x1, x2, . . . , xn of problem text P
one-by-one as the input, and produces a sequences of encoder
hidden states

−→
hp
1,
−→
hp
2, . . . ,

−→
hp
n as the output, where the hidden

state
−→
hp
s at step s is calculated according to the previous hid-

den state
−−→
hp
s−1 and the current input xs:

−→
hp
s = GRU(

−−→
hp
s−1,xs) (1)

where GRU(·, ·) denotes the function of a two-layer GRU. On
the other direction, the hidden state

←−
he
s at step s is calculated

according to the following hidden state
←−−
he
s+1 and the current

input xs:
←−
hp
s = GRU(

←−−
hp
s+1,xs) (2)

The final hidden state hp
s has incorporated contextual infor-

mation of the source token xs, which is calculated as follows:

hp
s =
−→
hp
s +
←−
hp
s (3)

4.2 Root Goal Initialization and Token Embedding
To start the top-down goal decomposition process, our
method initializes the goal vector q0 of the root node n0 (or
equivalently, the whole expression tree T) according to the
hidden states of the encoder of P :

q0 =
−→
hp
n +
←−
hp
0 (4)

where
−→
hp
n and

←−
hp
0 are the final hidden states of forward se-

quence and backward sequence respectively.
For each token y in the target vocabulary V dec of P , its

token embedding e(y|P) is defined as:

e(y|P) =


Mop(y) if y ∈ Vop
Mcon(y) if y ∈ Vcon
hp
loc(y,P) if y ∈ nP

(5)

The token embeddings of mathematical operators and con-
stant quantities are obtained by looking up two trainable em-
bedding matrices Mop and Mcon respectively, which are in-
dependent of the specific problems. However, for a numeric
value in nP , its token embedding takes the corresponding hid-
den state hp

loc(y,P) from the encoder, where loc(y, P) is the
index position of y in P . Clearly, the token embeddings of nu-
meric values are dependent on the specific problems in which
they occur.

4.3 Top-down Goal Decomposition
Given a goal vector q, we first derive a context vector c
that summarizes relevant information of the problem at hand,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5301

which is expected to help predict the token and make the fol-
lowing decisions. The context vector c is calculated as a
weighted representation of the source tokens by a vector a
of attention weights as:

c =
∑
s

ash
p
s (6)

where

as =
exp(score(q,hp

s))∑
i exp(score(q,hp

i))

and
score(q,hp

s) = v>a tanh(Wa[q,h
p
s]).

where va and Wa are trainable parameters.
Next, the unnormalized log probability s(y|q, c, P) of gen-

erating a token y from the target vocabulary V dec is formu-
lated as:

s(y|q, c, P) = w>n tanh (Ws [q, c, e(y|P)]) (7)

where e(y|P) is the token embedding of y in Equation (5),
wn is a trainable vector, and Ws is a trainable matrix.

The probability prob(y|q, c, P) over target vocabulary is
the normalization of s(y|q, c, P) through softmax:

prob(y|q, c, P) = exp (s (y|q, c, P))∑
i exp (s (yi|q, c, P))

(8)

The token ŷ with the highest probability is generated as the
prediction:

ŷ = argmax
y∈V dec

prob(y|q, c, P) (9)

The predicted token ŷ implies a decision about how to realize
the goal q: if ŷ is a numeric value or a constant quantity, the
goal is realized directly by ŷ; otherwise (i.e., ŷ is an operator),
the goal will be decomposed into two sub-goals.

Left Sub-Goal Generation
Let the predicted token ŷ is an operator, the current goal q
will be realized by a left sub-goal ql and a right sub-goal
qr. The left sub-goal vector ql is calculated by a two-layer
feedforward neural network with gating mechanism:

ol = σ (Wol [q, c, e(ŷ|P)])
Cl = tanh (Wcl [q, c, e(ŷ|P)])
hl = ol � Cl

gl = σ (Wglhl)

Qle = tanh (Wlehl)

ql = gl �Qle

(10)

where Wol, Wcl, Wgl, Wle are trainable matrices. hl is the
hidden state, which parent node delivers to its left child.

Right Sub-Goal Generation
The right sub-goal quantity of right child takes into account
the left child subtree, which has been generated prior to the
right child owing to the essence of pre-order traversal. The

left subtree is encoded bottom up as tl according to the re-
cursive neural network described by Equation (12) in Sec-
tion 4.4. Then the goal vector qr of the right child is calcu-
lated as follows:

or = σ (Wor [q, c, e(ŷ|P)])
Cr = tanh (Wcr [q, c, e(ŷ|P)])
hr = or � Cr

gr = σ (Wgr [hr, tl])

Qre = tanh (Wre [hr, tl])

qr = gr �Qre

(11)

where tl is the tree embedding of its sibling node and Wor,
Wcr, Wgr, Wre are trainable matrices. hr is the hidden
state, which parent node top-down delivers to its right child.

4.4 Subtree Emebedding via Recursive Neural
Network

In this subsection, we design a recursive neural network to
encode a subtree in a bottom-up manner, which will play a
role in the right sub-goal generation (Section 4.3).

Let t be the subtree at hand, and ŷ denote its predicted
token. The embedding t of t is defined recursively as:

t =

{
comb(tl, tr, ŷ) if ŷ ∈ Vop
e(ŷ|P) if ŷ ∈ nP ∪ Vcon

(12)

If the predicted token is an operator (ŷ ∈ Vop), which
means that the subtree t must have two child subtrees tl and
tr, the embedding of t needs to fuse the information from the
operator ŷ, the left child tl and the right child tr, as done by
the function comb(tl, tr, ŷ) with gating mechanism:

comb(tl, tr, ŷ) = gt � Ct

gt = σ (Wgt [tl, tr, e(ŷ|P)])
Ct = tanh (Wct [tl, tr, e(ŷ|P)])

(13)

where Wct and Wgt are trainable parameter matrices,
e(ŷ|P) is the embedding of the operator ŷ (Equation (5)).

On the other hand, if ŷ is a numeric value or a constant
quantity, the recursion stops and t becomes a leaf node. The
embedding of subtree t is simply set as the corresponding
token embedding e(y|P) (Equation (5)).

4.5 Training Objective
Given the training dataset D = {(P i, T i) : 1 ≤ i ≤ N},
where T i is the solution expression tree of problem P i, our
objective to minimize is the negative log-likelihood of D:

J =
∑

(P,T)∈D

− log p(T |P) (14)

In the training stage, for each sample (P, T) ∈ D, the de-
coder generates one target token at each step, in the pre-order
traversal of T . It ensures that the ground truth is used as
the tree structure during training. Therefore, the conditional
probability p(T |P) can be decomposed as:

p(T |P) =
m∏
t=1

prob(yt|qt, ct, P) (15)

where m denotes the size of T , qt and ct are the goal vec-
tor and its context vector at the t-th node, the probabilities
prob(·|·) are calculated by Equation (8).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5302

Model Accuracy(%)

Hybrid model w/ SNI [Wang et al., 2017] 64.7
Ensemble model w/ EN [Wang et al., 2018a] 68.4

GTS model w/o Subtree Embedding 70.0
GTS model 74.3

Table 2: Model comparison on answer accuracy

5 Experimental Evaluation
In this section, we conduct experiments to evaluate our model
with several state-of-the-arts on a large dataset Math23K1.

Dataset. The dataset Math23K contains 23,161 math word
problems annotated with solution expressions and answers.
To the best of our knowledge, Math23K is the largest among
the datasets of math word problems, such as Alg514 [Kush-
man et al., 2014] with 514 problems and AllArith [Roy
and Roth, 2017] with 831 problems. All problems in this
dataset can be solved by one linear algebra expression, and
the solution expression can be easily transformed into the cor-
responding expression tree.

Models for Comparison. The methods to be compared are
listed as below:

• Hybrid model w/ SNI [Wang et al., 2017]: Hybrid model
combines the retrieval model and the seq2seq model
with significant number identification(SNI).

• Ensemble model w/ EN [Wang et al., 2018a]: Ensem-
ble model selects the result according to models’ gener-
ation probability among BiLSTM, ConvS2S and Trans-
former with equation normalization(EN).

• Goal-driven tree-structured MWP solver (GTS in short):
the method proposed in this paper.

• GTS model w/o Subtree Embedding: To make clear the
effect of subtree embedding component on the perfor-
mance of GTS, we implement right sub-goal generation
in the same way as the left sub-goal (that is, the subtree-
embedding component gets removed).

5.1 Implementation Details
Our model is implemented using PyTorch2 on a Ubuntu sys-
tem with GTX1080Ti. All the words with less than 5 oc-
currences are converted to a universal token “<unk>”. The
dimensionality of word embedding layer is set to 128, and
the dimensionalities of all hidden states for the other layers
are set to 512.

Our model is trained for 80 epochs by Adam optimization
algorithm [Kingma and Ba, 2014] where the mini-batch size
is set to 64. In each epoch, all the training data get shuffled
randomly, and then cut into mini-batches. The initial value
of learning rate is set to 0.001, and the learning rate will be
halved every 20 epochs. In addition, we set the dropout prob-
ability [Hinton et al., 2012] as 0.5 and weight decay as 1e-5

1Available from http://ai.tencent.com/ailab/Deep Neural
Solver for Math Word Problems.html

2http://pytorch.org

2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 18 000
45

50

55

60

65

70

75

Training Set Size

A
ns

w
er

A
cc

ur
ac

y
[%

]

Seq2Seq
GTS

Figure 3: Answer accuracy versus training set size

to prevent overfitting. Last but not least, we set the beam size
to 5 in beam search to generate expression trees.

5.2 Results and Analyses
Answer Accuracy. We use answer accuracy as the eval-
uation metric: the predicted expression tree is thought of
correct, if its calculated value equals to the answer. The
answer accuracy metric is reasonable as a result of expres-
sion equivalence. For example, the predicted expression tree
of “n0 + n1” is different from the target expression tree
of “n1 + n0”, but they are equivalent and their calculated
values are equal. The results are summarized in Table 2,
where the answer accuracies are evaluated on the Math23K
dataset via 5-fold cross-validation. Several observations can
be made from Table 2: First, the GTS model without sub-
tree embedding module has achieved slightly better perfor-
mance than the two state-of-the-art models. It proves that the
goal-driven mechanism is feasible for solving the math word
problems. Second, with the subtree embedding module, our
GTS model has gained additional absolute 4.3% on accuracy,
which means that the subtree embedding module is helpful
and complementary to top-down goal decomposition process,
especially for the generation of right sub-goal. Last, the GTS
model with subtree embedding module outperforms the com-
pared state-of-the-art systems by a large margin of nearly 6%
on absolute accuracy.

Answer Accuracy vs. Training Set Size Training deep
models typically needs large training data, so we conduct ex-
periment to check how the performance of our model varies
with respect to different numbers of training instances. We
implement a Seq2Seq model with attention mechanism as
the baseline model, which contains the same encoder as GTS
model but takes GRU as decoder. The test set contains 4,632
randomly sampled instances (20% of the whole dataset). The
GTS model, together with the Seq2Seq baseline, is trained on
different numbers of the remaining training instances ranging
from 3,000 to 18,000. From the results as illustrated in Fig-
ure 3, it can be observed that the accuracy increases with the
number of training instances. The increase in accuracy is
faster for smaller training set (as seen from 3,000 to 10,000),
and this trend of increase is slowing with the growth of train-
ing set (beyond 10,000 instances). In addition, the GTS out-
performs the Seq2Seq for all cases, and the gap between GTS
with Seq2Seq takes on a weak increasing trend.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5303

Case 1: The store shipped in a batch of leather shoes. NUM(n0 [1
3

]) of the total was sold on the first day, and NUM(n1 [3
5

]) of the first
day’s sale was sold on the second day. There were NUM(n2 [280]) pairs left. How many pairs of leather shoes did the store bring in?
Seq2Seq: ÷n2 − 1n0 ∗ n0n1;(error) GTS: ÷n2 −−1n0 ∗ n0n1;(correct)
Case 2: Of the NUM(n0 [697]) combined shipment equipments of Shenzhou NUM(n1 [7]) spacecraft, NUM(n2 [346]) are followed,
NUM(n3 [237]) are updated, and the rest are newly developed. How many new equipments are there?
Seq2Seq: −− n0n3n4;(error) GTS: −− n0n2n3;(correct)
Case 3: Guangming Primary School spent NUM(n0 [288]) yuan on NUM(n1 [12]) chairs. And then NUM(n2 [36]) chairs of the same
kind were bought. How much did the school spend on chairs?
GTS w/o Subtree Embedding: ×÷ n0n1 ÷ n0n1;(error) GTS: ×÷ n0n1 + n1n2;(correct)

Table 3: Typical cases. Note that the results are represented as pre-order traversal of expression trees.

Expr. Tree Size 3- 5 7 9+
Test Instances 907 2303 921 501

Table 4: Numbers of test instances over expression tree sizes

3- 5 7 9+

40

60

80

Expression Tree Size

A
ns

w
er

A
cc

ur
ac

y
[%

]

Seq2Seq
GTS

Figure 4: Answer accuracies for different sizes of expression trees

Performance on Expression Length Intuitively, the larger
the size of expression tree is, the more complex the mathe-
matical relationship of the problem is, and the more difficult
it is to solve the problem. Here, we also use the Seq2Seq
model as the baseline and randomly select 20% instances
from Math23K as test dataset and all the rest instances as
training dataset. The test dataset is partitioned into 4 subsets
according to the sizes of expression trees, as shown in Ta-
ble 4. The answer accuracies of all the 4 subsets are listed
in Figure 4. We can see that there is a clear tendency for
answer accuracy to degrade with the growth of the problem
complexity measured as the size of expression tree, and our
GTS model outperforms the baseline Seq2Seq model in all
situations of different expression tree sizes, which indicates
that our GTS model can better model the mathematical rela-
tionships of the problem in an explicit tree structure. It can
also be noticed that the promotion of our GTS model over the
Seq2Seq model is increasing when the problem complexity
becomes more complex. When the expression tree size is no
less than 9, the tree will contain at least 4 mathematical op-
erators, the corresponding problem may be hard to solve in
some degree, and it is observed that there is a clear drop on
accuracy for both GTS and Seq2Seq models.

Results on a Small Dataset. Apart from the large
Math23K dataset, we also test the performance of the GTS
model on another small dataset called AllArith3, which
consist of 831 instances. We use the same 5-fold cross-

3Available from https://github.com/CogComp/arithmetic

validation as in [Roy and Roth, 2017]. To improve the repro-
ducibility, we repeat the experiment 20 times, and the average
accuracy of GTS is 69.5%, compared with 66.5% of Seq2Seq
model. Due to the dataset is small, we also perform McNe-
mar’s test and get p-value 0.001, which shows that it rejects
the null hypothesis and this increase is statistically significant.

5.3 Case Study

Further, we conduct a case analysis and provide three cases
in Table 3. Our analyses are summarized as follows:

• From Case 1, we can see that the GTS model can avoid
generating mathematically invalid expressions. This is
because our model generates the expression tree directly,
and its sequence of pre-order traversal can be guaranteed
to be computable;

• From Case 2, it is obvious that the GTS model can avoid
predicting spurious numbers, such as “n4”, which can
not be converted back to a number. This is because the
effective size of target vocabulary is set dynamically ac-
cording to the specific problem;

• From Case 3, we find that the subtree embedding com-
ponent can prevent generating the same subtree as its left
sibling when the parent node is “+” or “×”.

6 Conclusion

Motivated by the goal-driven mechanism in human problem
solving, we propose a novel neural model (called GTS) for
math word problems by directly predicting an expression
tree. In our model, the information is able to flow explicitly
through the expression tree by top-down goal decomposition
and bottom-up subtree embedding. Experimental results have
demonstrated that the proposed GTS model can significantly
outperform previous state-of-the-art systems. Case study has
shown that the GTS model can avoid generating mathemati-
cally invalid expressions and spurious numbers.

Acknowledgements

This work is supported by National Key Research and Devel-
opment Program of China (No.2018YFB1005100). We are
grateful to the anonymous reviewers for their valuable com-
ments.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5304

References
[Bakman, 2007] Yefim Bakman. Robust understanding of

word problems with extraneous information. arXiv
preprint math/0701393, 2007.

[Cho et al., 2014] Kyunghyun Cho, Bart van Merrienboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using RNN encoder–decoder for statistical
machine translation. pages 1724–1734, October 2014.

[Fletcher, 1985] Charles R Fletcher. Understanding and
solving arithmetic word problems: A computer simula-
tion. Behavior Research Methods, Instruments, & Com-
puters, 17(5):565–571, 1985.

[Hinton et al., 2012] Geoffrey E Hinton, Nitish Srivas-
tava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by prevent-
ing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[Huang et al., 2017] Danqing Huang, Shuming Shi, Chin-
Yew Lin, and Jian Yin. Learning fine-grained expressions
to solve math word problems. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language
Processing, pages 805–814, 2017.

[Huang et al., 2018] Danqing Huang, Jing Liu, Chin-Yew
Lin, and Jian Yin. Neural math word problem solver with
reinforcement learning. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics, pages
213–223, 2018.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Koncel-Kedziorski et al., 2015] Rik Koncel-Kedziorski,
Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni,
and Siena Dumas Ang. Parsing algebraic word problems
into equations. Transactions of the Association for
Computational Linguistics, 3:585–597, 2015.

[Kushman et al., 2014] Nate Kushman, Yoav Artzi, Luke
Zettlemoyer, and Regina Barzilay. Learning to automat-
ically solve algebra word problems. In Proceedings of
the 52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), volume 1,
pages 271–281, 2014.

[Ling et al., 2017] Wang Ling, Dani Yogatama, Chris Dyer,
and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word prob-
lems. arXiv preprint arXiv:1705.04146, 2017.

[Mitra and Baral, 2016] Arindam Mitra and Chitta Baral.
Learning to use formulas to solve simple arithmetic prob-
lems. In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 2144–2153, 2016.

[Robaidek et al., 2018] Benjamin Robaidek, Rik Koncel-
Kedziorski, and Hannaneh Hajishirzi. Data-driven meth-
ods for solving algebra word problems. arXiv preprint
arXiv:1804.10718, 2018.

[Roy and Roth, 2017] Subhro Roy and Dan Roth. Unit de-
pendency graph and its application to arithmetic word
problem solving. In Thirty-First AAAI Conference on Ar-
tificial Intelligence, 2017.

[Roy and Roth, 2018] Subhro Roy and Dan Roth. Mapping
to declarative knowledge for word problem solving. Trans-
actions of the Association of Computational Linguistics,
6:159–172, 2018.

[Shi et al., 2015] Shuming Shi, Yuehui Wang, Chin-Yew
Lin, Xiaojiang Liu, and Yong Rui. Automatically solv-
ing number word problems by semantic parsing and rea-
soning. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, pages
1132–1142, 2015.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing
systems, pages 3104–3112, 2014.

[Wang et al., 2017] Yan Wang, Xiaojiang Liu, and Shuming
Shi. Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 845–854, 2017.

[Wang et al., 2018a] Lei Wang, Yan Wang, Deng Cai,
Dongxiang Zhang, and Xiaojiang Liu. Translating math
word problem to expression tree. In Proceedings of the
2018 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1064–1069, 2018.

[Wang et al., 2018b] Lei Wang, Dongxiang Zhang, Lianli
Gao, Jingkuan Song, Long Guo, and Heng Tao Shen.
Mathdqn: Solving arithmetic word problems via deep re-
inforcement learning. 2018.

[Yuhui et al., 2010] Ma Yuhui, Zhou Ying, Cui Guangzuo,
Ren Yun, and Huang Ronghuai. Frame-based calculus
of solving arithmetic multi-step addition and subtraction
word problems. In Education Technology and Computer
Science (ETCS), 2010 Second International Workshop on,
volume 2, pages 476–479. IEEE, 2010.

[Zhang et al., 2018] Dongxiang Zhang, Lei Wang, Nuo Xu,
Bing Tian Dai, and Heng Tao Shen. The gap of seman-
tic parsing: A survey on automatic math word problem
solvers. arXiv preprint arXiv:1808.07290, 2018.

[Zhou et al., 2015] Lipu Zhou, Shuaixiang Dai, and Liwei
Chen. Learn to solve algebra word problems using
quadratic programming. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pages 817–822, 2015.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5305

